用户名: 密码: 验证码:
卵巢上皮癌相关抗原的筛选、鉴定、血清学检测及抗原基因生物学功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是严重危胁女性生命健康的恶性肿瘤,具有起病隐藏、复发死亡率高的特点。因早期缺乏典型临床症状,75%患者确诊时已是晚期,这些患者的5年生存率也从临床Ⅰ期患者的95%下降到约20~25%,因此早期诊断对于提高生存率、改善患者预后具有重要的意义。然而,目前仍缺乏有效的早期诊断方法,没有能有效用于卵巢癌早期诊断的标志物。SEREX技术的建立不仅为肿瘤抗原的筛选提供了一种新的方法,而且通过对肿瘤抗原自身抗体的检测为肿瘤的诊断提供了新的血清标志物。目前对肿瘤抗原自身抗体的研究主要集中在IgG型抗体,对于IgM型抗体的报导很少。本研究在已有的研究基础上,用SMARTA法对从卵巢浆液性囊腺癌腹水肿瘤cDNA表达文库中筛选出10个抗原克隆进行血清学检测,对其中6个(TM4SF1、C1D、TIZ、OV-142、FXR1、OV-189)在卵巢癌血清中阳性率明显高于正常对照血清的抗原克隆进行测序分析;用RT-PCR法检测它们在卵巢癌组织中的表达情况;构建、表达、纯化了原核重组融合蛋白;建立了间接ELISA法,检测了血清中这些抗原IgG、IgM型自身抗体的相对含量,分析了这些卵巢肿瘤相关抗原自身抗体(谱)在卵巢癌诊断及预后中的作用;并对其中一个相关抗原基因FXR1在卵巢癌细胞中的生物学功能进行了初步研究。
     第一部分卵巢上皮癌相关抗原异体血清筛选及生物学信息分析
     目的:检测候选卵巢上皮癌相关抗原克隆与卵巢癌、正常对照血清中相应IgG、IgM型自身抗体反应情况,并对阳性反应率差异显著的抗原克隆进行测序及生物信息学分析。
     方法:用SMARTA法对10个候选卵巢上皮癌相关抗原克隆与62例卵巢癌、62例正常对照血清中IgG、IgM型自身抗体反应情况进行定性检测,从中选出在癌血清中抗体阳性反应率与正常对照血清相比差异显著的抗原克隆,进行核苷酸测序,在相关网站上进行生物信息学分析。
     结果:其中6个抗原克隆与卵巢癌血清中自身抗体阳性反应率显著高于正常对照血清,在癌血清中的阳性率为12.9%~27.4%,在正常血清中的阳性率为1.6%~11.3%,其中IgM型自身抗体的阳性率为19.4%~27.4%。对这6个抗原克隆进行核苷酸测序,经比对分析发现这6个抗原克隆其中4个是已知基因(TM4SF1、C1D、TIZ、FXR1),一个是与卵巢癌相关基因高度相似的基因(OV-142),一个是Genbank中无相似序列的新基因(OV-189)。TM4SF1蛋白是一种有四个疏水跨膜区的细胞表面蛋白,该蛋白在对调节细胞生长、活化、迁移的信号转换中起媒介作用,在肺癌、结肠癌、乳腺癌、卵巢上皮性癌等上皮细胞恶性肿瘤中高表达,是一种细胞表面抗原,可作为抗体免疫治疗的靶向。C1D基因编码的是一个保守的DNA绑定蛋白,C1D蛋白是一个隐藏的凋亡激活剂,是多发性肌炎硬皮病重叠综合征的自身抗原。FXR1蛋白是一种RNA绑定蛋白,可在在核与胞浆间穿梭,与多聚核糖体有关,具有细胞生长依赖的翻译活性功能,有可能是硬皮病的一种自身抗原,并且在肺鳞状细胞癌中检测到FXR1基因的过表达。TIZ是一个锌指蛋白,通过调节肿瘤坏死因子受体相关因子6(TRAF6)的信号活性,在破骨细胞分化过程中起一定作用。尚未见有C1D、TIZ、FXR1与卵巢癌相关的报导。其中OV-142有可能是BARD1基因的剪切变异体,可能有MHC-Ⅰ类抗原表位肽,可能成为卵巢癌免疫治疗的新靶点。初步认为OV-189是LINE中有转录活性的一种—L1家族中的一个新成员,可能有MHC-Ⅰ类抗原表位肽,有可能成为卵巢癌免疫治疗的靶点。
     结论:我们的研究显示卵巢上皮癌相关抗原不仅能够介导IgG体液免疫反应而且能够诱导机体产生特异性的IgM自身抗体,这些抗原克隆在异体癌血清中较高的抗体阳性反应率,提示这些抗原的自身抗体有可能成为卵巢癌诊断的血清标志物。这些抗原基因有进一步研究的价值。
     第二部分RT-PCR检测卵巢上皮癌相关抗原基因在卵巢癌组织中的相对表达水平
     目的:检测卵巢上皮癌相关抗原基因在卵巢癌、良性卵巢肿瘤、正常卵巢组织中的相对表达水平。
     方法:用RT-PCR方法检测上述6个卵巢上皮癌相关抗原基因在36例卵巢癌、15例良性卵巢肿瘤及13例正常卵巢组织中的相对表达水平。
     结果:这6个抗原基因在癌、良性肿瘤、正常卵巢组织中几乎都有表达,只是在癌组织中的表达水平明显高于良性肿瘤及正常卵巢组织。显示出三种表达趋势:一类是癌组织中的表达水平显著高于正常卵巢组织,而良性肿瘤组织中的表达水平高于正常组织,癌组织中的表达水平稍高于良性肿瘤组织(TIZ、C1D、TM4SF1、OV-142);一类是癌组织中的表达水平显著高于良性肿瘤及正常卵巢组织,而良性与正常组织中表达相当(OV-189);一类是癌组织中的表达水平明显高于良性,癌与良性肿瘤组织中的表达水平均显著高于正常组织,且晚期癌组织中表达水平显著高于早期,分化差的组织表达水平显著高于分化好的(FXR1)。
     结论:我们在mRNA水平证实这6个卵巢上皮癌SEREX抗原基因均与癌组织有很好的相关性。
     第三部分卵巢上皮癌相关抗原蛋白的表达、纯化
     目的:在原核表达系统中构建、表达、纯化这6个抗原蛋白。
     方法:用RT-PCR克隆这些抗原基因的CDS,在pET-30b(+)系统中构建原核表达质粒,经IPTG诱导在大肠杆菌中表达重组融合蛋白,采用Ni-NTA His-Bind Resins和SDS-PAGE制备胶电洗脱进行纯化,复性、浓缩得到有活性的目的蛋白。
     结论:成功构建、表达、纯化了这6个抗原蛋白,得到浓度在0.3~0.8mg/ml之间,纯度都在90%以上、有活性的重组融合抗原蛋白。
     第四部分卵巢癌上皮癌相关抗原自身抗体谱的研究
     目的:用自己制备的抗原蛋白建立间接ELISA法,检测这些卵巢上皮癌相关抗原在血清中相应自身抗体的相对含量,并分析它们的临床价值。
     方法:建立间接ELISA法,检测126例治疗前、24例治疗后卵巢癌、42例良性卵巢肿瘤、20例乳腺癌、20例食管癌、20例肺癌癌患者、142例正常女性对照血清中卵巢上皮癌相关抗原IgG、IgM型自身抗体的相对含量。绘制ROC曲线,确定cut off值,单独或用Logistic回归分析法联合分析这些自身抗体/抗体谱的临床价值。同时测量CA125的含量,比较自身抗体谱与CA125在卵巢癌诊断上的效能。
     结果:分析单个自身抗体时,卵巢癌血清中这些抗原IgG型自身抗体反应的阳性率为34.1%~47.6%,非癌患者的阳性率为13.0%~17.9%;癌血清中IgM型自身抗体反应的阳性率为39.7%~53.2%,非癌患者的阳性率为12.0%~33.2%,分析单个卵巢癌相关抗原自身抗体在卵巢癌诊断时意义均不大,但TIZ、FXR1、OV-189抗原IgM型自身抗体在早期病人中的阳性率均高于晚期病人,两者相比较差异有统计学意义。当联合多个自身抗体(抗体谱):TM4SF1 IgG、C1D IgG、TIZ IgG、TIZ IgM、FXR1 IgG、FXR1 IgM分析时敏感为75.4%,特异性为78.2%,准确性为76.5%,与单独分析CA125相比较敏感性明显提高(61.1%),特异性降低(89.1%),准确性相当(77.7%),但该自身抗体谱在早期(76.6%versus 51.1%)尤其是Ⅰ期(83.3%versus 44.4%)卵巢癌诊断的敏感性显著高于CA125,差异有统计学意义。将多个卵巢癌相关抗原自身抗体(TM4SF1 IgG、TM4SF1 IgM、C1D IgG、TIZ IgM、FXR1 IgG)与CA125联合分析时,诊断卵巢癌的敏感性为86%,特异性为91%,准确率为88.7%,与CA125相比,在敏感性、特异性、准确性均提高,阳性预测值、阳性似然比、阴性预测值明显提高,阴性似然明显降低;并且与CA125联合后在上皮性癌(包括浆液、粘液性癌)的诊断敏感性显著高于CA125,统计学上差异有显著性;同时对于早期、晚期卵巢癌的诊断敏感性亦显著高于CA125,统计学上差异有显著性。比较了配对的24例卵巢癌患者治疗前后卵巢癌自身抗体谱变化情况,结果显示治疗后自身抗体谱的阳性率显著低于治疗前。乳腺癌、食管癌、肺癌血清的检测,结果发现卵巢癌自身抗体谱的阳性率分别为30%、20%、25%。
     结论:卵巢癌患者血清中存在IgG型、IgM型肿瘤自身抗体,并且可用于卵巢癌早期诊断。联合多个卵巢癌肿瘤自身抗体可达到与CA125相当的诊断效果,且该自身抗体谱在早期特别是Ⅰ期卵巢癌的诊断上优于CA125。将多个自身抗体与CA125联合可显著提高卵巢癌的诊断效能。卵巢上皮癌相关抗原自身抗体谱对疗效也有一定的监测作用。
     第五部分真核转染上调FXR1基因表达对卵巢癌细胞生物学行为影响的初步研究
     目的:了解上调FXR1基因表达对卵巢癌细胞系H08910生物学行为的影响。
     方法:RT-PCR扩增FXR1 CDS,构建FXR1真核表达载体,脂质体介导下转染H08910细胞,经G418筛选获得稳定转染株,检测转染后细胞相应生物学行为。
     结果:成功构建了FXR1基因的真核表达载体,并稳定转染了H08910细胞。生长曲线显示上调FXR1基因表达可促进细胞的生长;克隆形成实验显示上调FXR1基因表达可促进细胞增殖,基质粘附实验显示上调FXR1基因表达可加强细胞对基质的粘附能力,流式细胞周期检测亦发现与对照(80%)相比,转染FXR1基因后G1期细胞(67.1%)比例明显减少,这说明转染FXR1后细胞的增殖更旺盛。同时发现FXR1对细胞侵袭、迁移的能力无明显影响。凋亡检测虽提示转染FXR1基因后早期凋亡细胞的比例较对照增多,但总的凋亡细胞比例太少仅0.31%,意义可能不大。
     结论:真核载体稳定转染技术是一种可靠、行之有效的研究基因功能的方法。上调FXR1基因表达可能有促进卵巢癌细胞的生长、增殖、加强细胞对基质粘附能力的作用。
     第六部分RNA干扰FXR1基因对卵巢癌细胞系生物学行业影响的初步研究
     目的:了解抑制FXR1基因表达对卵巢癌细胞系A2780生物学行为的影响。
     方法:设计、合成、筛选有效的FXR1基因siRNA,将有效siRNA商业化构建siRNA表达载体,脂质体介导下转染A2780细胞,经G418筛选获得稳定转染株,检测转染后细胞相应生物学行为。
     结果:设计并成功筛选出了抑制效率达80%的FXR1基因siRNA,将商业构建的siRNA表达载体成功稳定转染了A2780细胞,抑制效率约60%。细胞生长曲线显示出下调FXR1表达可轻度抑制细胞的生长;克隆形成实验结果显示,下调FXR1基因的表达对A2780细胞的增殖能力有的抑制作用;流式细胞周期分析发现下调FXR1基因的表达G1期细胞比例为49.2%多于转染阴性对照组(40%),S期与G2期比对照比例稍少,提示抑制FXR1基因的表达可延缓细胞增殖;同时发现下调FXR1基因的表达对A2780细胞体外侵袭、迁移能力、基质粘附能力及凋亡无明显影响。
     结论:RNAi技术是一种强有力的研究基因功能的方法。抑制FXR1基因的表达可轻度抑制A2780细胞的生长、明显抑制细胞增殖。
EOC is the most lethal gynecological malignancy.Unfortunately,the majority of EOCs remain clinically undetected until patients have developed late stage disease and only a mere 25%of cancers are detected as stageⅠdisease.Once stageⅢandⅣovarian cancer,which is define by peritoneal and extra peritoneal metastatic spread,is diognosed,the survival decreases from 95%at stageⅠto approximately 20~25%.Therefor,clinical outcome and possibly survival may be significantly improved by the identification of stageⅠdisease. Nevertheless,there are not efficient methods or biomarkers that could bc used to detected ovarian cancer at early stage.SEREX provides a new way to screening caner antigens. Autoantibody against cancer antigen may be a new biomarker in detecting cancer.Currently, majority study focus on IgG autoantibody.There is rarely report about IgM autoantibody.We performed heterological sero-immunoscreening of 10 EOC associated antigen clones from ascites EOC cells cDNA library.Six clone(TM4SF1、C1D、TIZ、OV-142、FXR1、OV-189) which positive ratio in ovarian cancer is significantly higher than in cancer-free were sequenced and bioinformatics analyzed.The expression pattern of these 6 EOC associated antigens in EOC tissues were evaluated by RT-PCR.We constructed and expressed these 6 recombinant fusion antigen proteins in Escherichia coli.Antigen proteins were purified by Ni-NTA His-Bind Resins and electroeluting.We developed and optimized a novel enzyme immunoassay method(indirect ELISA)to measure IgG、IgM autoantibodies against EOC associated antigens in serum and evaluated the clinical value of autoantibody spectrum in detecting ovarian cancer.The biological function of FXR1 in EOC cell line was studied by upregulated and downregulated(RNAi)FXR1 expression.
     Part 1:Heterological sero-immunoscreening of EOC associated antigen and bioinformatics analysis
     Objective:The goal of the study was to investigate the reaction of EOC associated antigens with IgG、IgM autoantibody in serum from patients with ovarian cancer and healthy women.The antigen clones which postive ratio in serum from cancer were significantly higher than in serum from healthy women were sequenced and bioinformatics analyzed.
     Methods:Serological mini-arrays of recombinant tumor antigens(SMARTA)was used to investigate the reaction of 10 EOC associated antigen clones with IgG、IgM autoantibodies in serum from 62 patients with ovarian cancer and 62 healthy women.The postive clones were sequenced and bioinformatics analyzed in NCBI.
     Results:The positive ratio of Six clone(OV-59、84、106、142、178、189)reacted with IgG、IgM autoantibodies in patients(12.9%~27.4%)was significantly higher than control(1.6%~11.3%).After sequenced and analyzed,results showed that 4 of 6 clone were known genes.OV-159(TM4SF1):The protein encoded by this gene is a member of the transmembrane 4 superfamily,also known as the tetraspanin family characterized by the presence of four hydrophobic domains.TM4SF1 protein mediate signal transduction events that play a role in the regulation of cell development,activation,growth and motility. TM4SF1 is a cell surface antigen and is highly expressed in different carcinomas and is a target for antibody-mediated therapy.OV-84(C1D):The protein encoded by this gene is a conserved DNA binding and apoptosis-inducing protein and a major autoantigen in patients with the PM-scleroderma overlap syndrome.OV-178(FXR1):The protein encoded by this gene is an RNA binding protein.FXR1 protein shuttle between the nucleus and cytoplasm and associate with polyribosomes and have cell-growth-dependent translation activation.FXR1 protein may be a autoantigen in patient with scleroderma.FXR1 gene is most frequently overexpressed in the center of the amplified domain(3q26-27)in squamous cell carcinomas of lung.OV-106(TIZ):The novel zinc finger protein TIZ may play a role during osteoclast differentiation by modulating TRAF6 signaling activity.OV-142 has highly homology with BARD1 and is a splice variant of BARD1.OV-142 presume protein maybe has MHC-Ⅰbinding peptide and is maybe a potential immumotherapy target of ovarian cancer.OV-189 is a new gene has no homology sequence in genbank.We preliminarily presume that OV-189 is a new member of L1 family that is one class of LINE. OV-189 presume protein maybe has MHC-Ⅰbinding peptide and is maybe a potential immumotherapy target of ovarian cancer.
     Conclusion:Our date show EOC associated antigen not only elicit humoral immunity mediated by IgG,also induce specific IgM autoantibody in ovarian cancer patients.The high positive ratio of autoantibody against EOC associated antigen in serum from patients with ovarian cancer indicates that these autoantibodis are potent biomarker in detection ovarian cancer.
     Part 2:Evaluating the expression pattern of EOC associated antigen genes in ovarian cancer tissues by RT-PCR
     Objective:The goal of the study was to evaluate the expression pattern of EOC associated antigen genes in ovarian cancer tissues.
     Methods:The relatived expression level of 6 EOC associated antigen genes were assayed in 36 ovarian cancer tissues,15 ovarian benign tumor tussues,13 normal ovarian tussues by semiquantitative RT-PCR.
     Results:All of 6 EOC associated antigen genes almost expressed in all specimens.But the relative expression level of 6 genes in EOC tissues were higher than in benign tissues and normal ovarian tissues.The expression trends of 6 genes were grouped into three classes:1) The expression level of genes in EOC tissues was significantly higher than in normal ovarian tissues and slightly higher than in benign tissues.The expression level of genes in benign tissues was moderately higher than in normal ovarian tissues.For example:TIZ、C1D、TM4SF1、OV-142;2)The expression level of genes in EOC tissues was significantly higher than in normal ovarian tissues and benign tissues.The expression level of genes in benign tissues and normal ovarian tissues was equivalent.For example OV-189;3)The expression level of genes in EOC tissues was significantly higher than in normal ovarian tissues and benign tissues.The expression level of genes in benign tissues was significantly higher than in normal ovarian tissues.The expression level of genes in advanced EOC tissues was significantly higher than in early stage EOC tissues.The expression level of genes in high grade(2-3)EOC tissues was significantly higher than in low grade EOC tissues For example FXR1.
     Conclusion:Our data demonstrated that 6 EOC associated antigen genes were associated with EOC.
     Part 3:Expression and purification of recombination associated antigens of EOC
     Objective:The goal of the study was to express and purify recombination associated antigens of ECO.
     Methods:CDSes of ECO associated antigen genes were amplified by PCR.Products of PCR were digested with corresponding restriction endonuclease and subcloned into pET-30b(+).Recombination plasmids were identified by restriction endonuclease analysis and DNA sequencing.Positive plasmids were transformed into E.coli BL21(DE3)for expression under induction with IPTG.Recombination fusion proteins were purified by Ni-NTA His-Bind Resins and electroeluting.Products of purification were refolded and then identified by SDS-PAGE and Western blot.
     Results:We successfully constructed the recombination plasmids of EOC associated antigen genes and expressed the recombination fusion proteins in pET-30b(+)system.The results showed that 6 recombination antigen proteins with purity over 90%and concentration from 0.3 mg/ml to 0.8mg/ml were obtained.The recombinant antigen proteins were activity and can be used for following study.
     Part 4:Study on autoantibody spectrum against EOC associated antigens
     Objective:The objective of this study was to evaluate the clinical value of autoantibody spectrum in detecting ovarian cancer.
     Methods:We developed and optimized a novel enzyme immunoassay method(indirect ELISA)to measure IgG、IgM autoantibodies against EOC associated antigens in serum. Circulating autoantibodies were measured in serum from 150 patients with ovarian cancer (126 prior treatment,24 post-treatment),42 patients with benign ovarian masses,142 healthy women,20 female patients with breast cancer,20 female patients with esophageal cancer,20 female patients with lung cancer.Cut off value of IgG、IgM autoantibodies were determined by ROC curve.CA125 was measured in serum by IRMA.We evaluated the clinical value of autoantibody in detecting ovarian cancer alone,combining multiple autoantibody (autoantibody spectrum),combining multiple autoantibody with CA125.
     Results:Our data indicated that serum contains IgG、IgM autoantibodies against EOC associated antigens.The positive ratio of IgG autoantibodies in serum from ovarian cancer patients and cancer-free patients were 34.1%~47.6%and 13.0%~17.9%,respectively.The positive ratio of IgM autoantibodies in serum from ovarian cancer patients and cancer-free patients were 39.7%~53.2%and 12.0%~33.2%,respectively.There was not significantly clinical utility when individual autoantibodies analyzed separately.The positive ratio of IgM autoantibodies against C1D、TIZ、FXR1、OV-189 in early ovarian cancer were significantly higher than in advanced ovarian cancer.Combining five autoantibodies(TM4SF1 IgG、C1D IgG、TIZ IgG、TIZ IgM、FXR1 IgG、FXR1 IgM)showed significantly improved sensitivity (75.4%)、lower specificity(78.2%)and similar accuracy(76.5%)in detecting ovarian cancer compared to those of CA125(61.1%,89.1%,77.7%).But the autoantibody spectrum showed significantly improved sensitivity in classifying early stage(76.6%),especially stageⅠ(83.3%) ovarian cancer compared to those of CA125(51.1%,44.4%).The positive ratio of the autoantibody spectrum wsa significantly lower in 24 post-treatment serum(37.5%)compared to the pairing prior treatment serum(70.8%).The positive ratio of the autoantibody spectrum in serum from breast cancer,esophageal cancer and lung cancer were 30%,20%,25%, respectively.Combining five autoantibodies(TM4SF1 IgG、TM4SF1 IgM、C1D IgG、TIZ IgM、FXR1 IgG)with CA125 showed significantly improved sensitivity(86%),specificity (91%)and accuracy(88.7%)in detecting ovarian cancer compared to those of CA125(61.1%, 89.1%,77.7%).
     Conclusion:Our data indicated that serum contained IgG、IgM autoantibodies against EOC associated antigens.The autoantibody spectrum(TM4SF1 IgG、C1D IgG、TIZ IgG、TIZ IgM、FXR1 IgG、FXR1 IgM)was associated with ovarian cancer with significantly improved sensitivity,lower specificity and similar accuracy in detecting ovarian cancer compared to those of CA125.This autoantibody spectrum showed significantly higher sensitivity in classifying early stage,especially stageⅠovarian cancer than CA125 alone. Combining five autoantibodies(TM4SF1 IgG、TM4SF1 IgM、C1D IgG、TIZ IgM、FXR1 IgG)with CA125 showed significantly higher sensitivity,specificity and accuracy than CA125 alone.The autoantibody spectrum was a potent biomarker in detecting EOC.
     Part 5:Preliminary study of the biological behaviour change of EOC cell line HO8910 by upregulated FXR1 expression
     Objective:The goal of this study was to investigate the biological behaviour change of EOC cells HO8910 by upregulated FXR1 expression.
     Methods:FXR1 CDS was amplified by RT-PCR.The PCR product was digested with corresponding restriction enzymes and subcloned into PCDNA3.1 plasmid.HO8910 cells transfected with PCDNA3.1/FXR1 or PCDNA3.1 were selected in G418 to generate HO8910/ PCDNA3.1/FXR1 and HO8910/PCDNA3.1.Cells growth curve,clone formation assay,adhesion assay,vitro migration and ivasion assay,flow cytometric assay for cells cycle and apoptotic were examined.
     Results:We successfully constructed recombinant PCDNA3.1/FXR1 plasmid.The stable transfection strains of HO8910 transfected with PCDNA3.1/FXR1 or PCDNA3.1 were obtained in G418 and identified by RT-PCR and Western blot.Cell growth curve showed upregulated FXR1 expression in HO8910 significantly increased their energy for growth. Clone formation assay showed upregulated FXR1 expression in HO8910 significantly increased cells proliferation.Upregulated FXR1 expression in HO8910 significantly increased cells adhesion and did not affect vitro migration,invasion.Flow cytometric assay showed that upregulated FXR1 expression in HO8910 decreased percentage(67.1%)of G1 phase cells compared with negtive control(80%)and did not affect cells apoptotic.
     Conclusion:Upregulated FXR1 expression in HO8910 significantly increased cells energy for growth,proliferation and adhesion.
     Part 6:Preliminary study of the biological behaviour change of EOC cell line A2780 by RNAi FXR1 expression
     Objective:The goal of this study was to investigate the biological behaviour change of EOC cell line by RNAi FXR1 expression.
     Methods:Three paires siRNAs targeting FXR1 were designed and Synthesised.The highest inhibition efficient siRNA was selected by transient transfection and subcloned into siRNA expression vector PGPU6/GFP/Neo.A2780 cells transfected with positive siRNA expression vector and negtive control were selected in G418 for stable transfection strains. Cell growth curve,clone formation assay,adhesion assay,vitro migration and ivasion assay, flow cytometric assay for cells cycle and apoptotic were examined.
     Results:The inhibition ratio of siRNA subcloned into PGPU6/GFP/Neo is 80%.The stable transfection strains of A2780 transfected with siRNA expression vector PGPU6/GFP/Neo were obtained in G418.The highest inhibition ratio of the stable transfection strains is 60%.Downregulated FXR1 expression in A2780 mild decreased their energy for growth and significantly decreased their energy for clone formation. Downregulated FXR1 expression in A2780 did not affect the migration,invasion and adhesion.Flow cytometric assay showed that downregulated FXR1 expression on A2780 increased percentage(49.2%)of G1 phase cells compared with negtive control(40%)and did not affect cells apoptotic.
     Conclusion:Downregulated FXR1 expression in A2780 mild decreased cells energy for growth and significantly decreased cells proliferation and did not affact adhesion.
引文
1 Bast Jr RC, Status of tumour markers in ovarian cancer screening, J Clin Oncol 2003,21(Suppl. 10), 200-205
    2 Ozols R, Rubin S, Thomas G, et al,Epthelial ovarian cancer, Philadelphia, PA,Lippincott Williams and Wilkins, 2000
    3 Hoskins P, Eisenhauer E,Vergote I,et al, Phase II feasibility study of sequential couplets of Cisplatin/Topotecan followed by paclitaxel/cisplatin as primary treatment for advanced epithelial ovarian cancer: a National Cancer Institute of Canada Clinical Trials Group Study, J Clin Oncol, 2000,18(24), 4038-404
    4 Krkavcova M, Jancarkova N, Janashia M, et al, Genetic alterations in gynecological malignancies, Neoplasma, 2008, 55(3), 205-214
    5 Garrett AP, Lee KR, Colitti CR, et al,K-ras mutation may be an early event in mucinous ovarian tumorgenesis, Int Gynceol Pathol, 2001, 20(3), 244-251
    6 Yang G.Thompson JA, Fang B,et al, Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumorgrowth in a model of human ovarian cancer, Oncogene, 2003,22(36), 5694-5701
    7 Crijns APG, Boezen HM, Schouten JP, et al, Prognostic factors in ovarian cancer:current evidence and future prospects, EJC Supplement, 2003, 1(6), 127-145
    8 Camilleri-Broet S, Hardy-Bessard AC, Le-Tourneau A, et al, HER-2 Overexpression is an independent marker of poor prognosis of advanced primary ovarian carcinoma, A multicenter study of the GINECO group, Ann Oncol 2004,15(1), 104-112
    9 Tanabe H, Nishii H, Sakata A, et al, Overexpression of HER-2/neu is not a risk factor in ovarian, clear cell adenocarcinoma, Gynecol Oncol,2004,94(3), 735-739
    10 Malamou-Mitsi V, Crikoni O, Taimotheadou E, et al, Prognostic significance of HER-2, p53 and Bcl-2 in patients with epithelial ovarian cancer, Anticancer Res, 2007, 27(2), 1157-1165
    11 Verri E, Guglielmini P, Puntorni M, et al,HER2/neu oncoprotein Overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance, Clinical study, Oncology, 2005, 68(2-3), 154-161
    12 Dimova I,Raitcheva S, Dimitrov R, et al, Correlations between c-myc gene copy-number and clinicopathological parameters of ovarian tumours, Eur J Cancer, 2006, 42(5), 674-679
    13 Chen CH, Shen J, Lee WJ, et al, Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer, Int J Gynecol Cancer, 2005,15(5),878-883
    14 Irie T.Kigawa J, Minagawa Y, et al, Alteration of a p53 gene status affects outcome of patients with recurrent ovarian cancer, Oncology, 2000,58(3), 237-241
    15 Singer G, Stohr R, Cope L, et al, Patterns of p53 mutations separate ovarian serous borderline tumors and low-and high-grade carcinomas and provide support for a new model of ovarian Carcinogenesis: a mutational analysis with immunohistochemical correlation, Am J Surg Pathol, 2005,29(2),218-224
    16 Alvarez AA, Axelrod JR, Whitaker RS, et al, Throbosponclin-1 expression in epithelial ovarian carcenoma: Association with p53 status, tumor angiogenesis, and survival in platinum-treated patients, Gynecol Oncol, 2001, 82(2), 273-278
    17 Skimiadottir I, Seidal T, Gerdin E, ea al,The prognostic importance of p53, bcl-2, and bax in early stage, epithelial ovarian carcinoma treated with adjuvant chemotherapy, Int J Gynecol Cancer, 2002, 12(3), 265-276
    18 Coronado Martin PJ, Fasero Laiz M, Garcia Santos J, et al, Overexpression and prognostic value of p53 and HER2/neu proteins in benign ovarian tissue and in ovarian cancer, Med Clin (Barc), 2007, 128(1),1-6
    19 Masciullo V, Sgambato A, pacilio C, et al, Frequent loss of expression of the cyclin-dependent kinase inhibitor p27 in epithelial ovarian cancer, Cancer Res, 1999,59 (15) ,3790-3794
    20 Valeria M, Grabiella F, Bruna P, et al,p27 expression is assoceated with clinical outcome in advanced epithelial ovarian cancer:Multivariate analysis, Clin Cancer Res,2000, 6 (12) ,4816-4822
    21 Goff BA, Paley PJ, Greer BE,et al, Evaluation of chemore-sistance markers in women with epithelial ovarian cancinoma, Gynecol Oncol, 2001, 81 (1) ,18-24
    22 Psyrri A, Bamias A, Yu Z, et al, Subcellular localization and protein levels of cyclin-dependent kinase inhibitor p27 independently predict for survival in epithelial ovarian cancer, Clin Cancer Res, 2005, 11(23), 8384-8390
    23 Tian XX, Pang JC, To SS, et al, Restoration of wild-type PTRN expression leads to apoptosis, induces differentiation, and reduces telomerase activity in human glioma cells,Neuropathol EXP Neurlol, 1999,58(5),472
    24 Obata K, Hoshiai H, Common genetic changes between endometriosis and ovarian cancer, Gynecol Obstet Invest, 2000, 50 (1),3
    25 Castiblanco G A, Pires N Y, Wistuba O I, et al, Pathogenic role of PTEN tumor suppressor gene in ovarian cancer associated to endometriosis, Rev Med Chi 1, 2006,134 (3), 271-278
    26 Hashiguchi Y, Tauda H, Inoue T, et al, PTEN expression in clear cell adenocarcinoma of the ovary, Gynecol Oncol, 2006, 10191, 71-75
    27 Kolasa IK, Rembiszewska A, Janiec-Jankowska A, et al, PTEN mutation, expression and LOH at its locus in ovarian carcinomas, Relation to TP53, K-RAS and BRCA1 mutations, Gynecol Oncol, 2006, 10392, 692-697
    28 Yu Y, Luo R,Wei Feng W, et al, Biochemistry and biology of ARM (DIRAS3), an imprinted tumor suppressor gene whose expression is lost in ovarian and breast cancers, Methods Enzynol, 2006, 407, 455-468
    29 Bao J, LeX, WangRetal, Reexpression of the tumor suppressorgene ARHI induces apoptosis in ovarian and breast cancer cells through a caspase-independent calpain-dependent pathway, Cancer Res, 2002,62 (24), 7264-722
    30 Hisatom Ih, Nagao K, Wakita K, et al, ARHI/NOEY2 inactivation may be important in breast tumor pathogensis, Oncology, 2002,62(2), 136-140
    31 Rosen DG, Wang L, Jain AN, et al, Expression of the tumor suppressor gene ARHI in epithelial ovarian cancer is associated with increased expression of p21WAFl/CIPl and prolonged progression-free survival, Clin Cancer Res, 2004, 10(19), 6559-6566
    32 Feng W, Marguez RT, Lu Z, et al, Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation, Cancer, 2008,112(7), 1489-1502
    33 Lu Z, Luo RZ, Peng H, et al,Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer, Clin Cancer Res, 2006, 12(8), 2404-2413
    34 Sheu JJ, Shih IeM, Clinical and biological significance of HLA-G expression in ovarian cancer, Semin Cancer Biol, 2007,17(6), 436-443
    35 Lin A, Yan WH, Xu HH, et al, HLA-G expression in human ovarian carcinoma counteracts NK cell function, Ann Oncol, 2007,18 (11) ,1804-1809
    36 Stutman O, Immunodepression and malignancy, Adv Cancer Res, 1975, 11, 261-42
    37 Street SE, Trapani JA MacGregor D, et al, Suppression of lymphoma and epithelial malignancies effected by interferon-γ, J Exp Med, 2002,196 (1) ,129-134
    38 Old LJ, Cancer immunology:the search for specificity-G. H. A Clowes memorial lecture, Cancer Res, 1981,41 (2) ,361-175
    39 Kryczk I.Zou L.Rodriguez P, et al,B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma, J Exp Med, 2006, 203(4), 871-881
    40 Kryczek I, Wei S, Zou L, et al, Cutting edge: induction of B7-H4 on APCs through IL—10: novel suppressive mode for regulatory T cells, J Immunol, 2006,177(1), 40-44
    41 Groh V, Wu J, Yee C, Tumor derived soluble MIC ligands impair expression of NKG2D and T cell activation, Nature, 2002, 419 (6908):,734-738
    42 Wolf AM, Wolf D, Steurer M, et al, Increase of regulatory T cell in the peripheral blood ofcancer patients, Clin Cancer Res, 2003, 9(2), 606-612
    43 Curiel TJ, Coukos G, Zou L, et al, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival , Nat Med,2004,10(9), 942-949
    44 Wan YY, Flavell RA, Regulatory T cells, transforming growth factor-beta, and immune suppression, Proc Am Thorac Soc,2007,4(3),271-276
    45 Renkvist N, Castilli C, Robbins PF, et al, A listing of human tumor antigens recognized by T cells, Cancer Immunol Immunother, 2001,50 (1) ,3-15
    46 Van der Bruggen P, Traversari C, Chome P, et al, Science, 1991,254(5038), 1643-1647
    47 Boon T,Van der Bruggen P, J Exp Med, 1996,183(3),725-729
    48 Cox AL, Skipper J, Chen Y et al, Science, 1994,264(5159), 716-719
    49 Castelli C, Storkus WJ, Maeurer MJ et al,J Exp Med, 1995,181(1), 363-36
    50 Sahin U, Tureci O, Schmitt H, et al,Human neoplasms elicit multiple specific immune responses in the autologous host, Proc Natl Acad Sci U S A, L995 ,92(25), 11810-11813
    51 Kuboshima M, Shimada H, Liu TL, et al, Identification of a novel SEREX antigen, SLC2A1/GLUT1 , in esophageal squamous cell carcinoma, Int J Oncol, 2006, 28(2), 463-468
    52 Ishikura H, Ikeda H, Abe H, et al, Identification of CLUAP1 as a human osteosarcoma tumor-associated antigen recognized by the humoral immune system, Int J Oncol, 2007, 30(2), 461-467
    53 Devitt G, Meyer C, Wiedemann N, et al, Serological analysis of human renal cell carcinoma, Int J Cancer, 2006,118(9), 2210-2219
    54 Nakatsura T, Senju S, Ito M, et al, Cellular and humoral immune responses to a human pancreatic cancer antigen, coactosin-like protein, originally defined by the SEREX method, Eur J Immunol, 2002, 32(2), 826-836
    55 Di Modugno F, Bronzi G, Scanlan MJ, et al, Human Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8+ T-cell immune, Int J Cancer, 2004,109(6), 909-918
    56 Wang W, Epler J, Salazar LG, et al, Recognition of breast cancer cells by CD8+ cytotoxic T-cell clones specific for NY-BR-1, Cancer Res, 2006 ,66(13), 6826-6833
    57 Mizukami M, Hanagiri T, Yasuda M, et al, Antitumor effect of antibody against a SEREX-defined antigen(UOEH-LC-) on lung cancer xenotran-splanted into severe combined immunodeficiency mice, Cancer Res, 2007,67(17), 8351-8357
    58 Jager D, Filonenko V, Gout I, et al, NY-BR-1 is a differentiation antigen of the mammary gland, Appl Immunohistochem Mol Morphol, 2007,15(1), 77-88
    59 ScanlanMJ, ChenYT, Williamson B, et al, Characterization of human colon cancer antigens recognized by autologous antibodies, Int J Cancer, 1998, 76 (5), 652-658
    60 Stefan E, Dirk U, Reinhard D, et al, Serological detection of cutaneousT-cell lymphoma associated antigens, PANS, 2001, 98(2),629-634
    61 Tetsuya N, Satoru S, Kazuhiro Y, et al,Gene cloning of immunogenic antigens overexpressed in pancreatic cancer, Biochen Biophys Res Commun, 2001, 281(4), 936-94
    62 Scanlan MJ, Gordan JD, Williamson B,et al, Antigensrecognized by autologous antibody in patientswith renal-cell carcinoma, Int J Cancer,1999,83(4), 456-464
    63 Scanlan MJ, Chen YT, Williamson B, et al. Characterization of human colon cancer antigens recognized by autologous antibodies, Int J Cancer, 1998,76 (5) ,652-658
    64 Gure AO, Tureci O, SahinU, et al, SSX:a multigene family with several members transcribed in normal testis and human cancer,Int J Cancer,1997,72(6), 965-971
    65 Chen YT, ScanlanMJ, SahinU, et al, Atesticular antigen aberrantly expressed in human cancers detected by autologous antibody screening, Proc Natl Acad Sci USA, 1997, 94(5),1914-1918
    66 Chen YT, Scanlan MJ, Obata Y, et al, Identification of human tumor antigens by serological expression cloning, Principles and Practice of BiologicTherapy of Cancer, Rosenberg SA, Philadelphia PA, Lippincott Williams Wilkins,2000, 557-570
    67 Kawakami Y, Fujita T, Matsuzaki Y, et al, Identification of human tumor antigens and its implications for diagnosis and treatment of cancer, Cancer Sci, 2004,95 (10), 784-791
    68 Fe lix-Ferna M, Tanga N, Alansaria H, et al, Improved approach to identify cancer-associated autoantigens, Autoimmunity Rev, 2005,4,230-235
    69 Jager D, karbach J, Pauligk C, et al, Humoral and cellular immune responses against the breast cancer antigen NY-BR-1: Definition of two HLA-A2 restricted peptide epitopes, Cancer Immun, 2005, 5, 11
    70 Preuss KD, Zwick C, Bormann C, Neumann F,Pfreundschuh M: Analysis of the B-cell repertoire against antigens expressed by human neoplasms Immunol Rev, 2002, 188, 43 - 50
    71 Liang P, Pardee AB, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science,1992 ,257 (5072),967-971
    72 Bertioli DJ, Schlichter UH, Adams MJ, et al, An analysis of differential display shows a strong bias towards high copy number mRNAs, Nucleic Acids Res, 1995 , 23 (21),4520-4523
    73 Ding C, CantorCR, Quantitative analysis ofnucleic acids-the last few years ofprogress, J BiochemMolBio,12004, 37(1), 1-1
    74 Gravesen A, Warthoe P, Knochel S, et a, 1 Restriction fragmentdifferential display of pediocin-resistant listeria monocytogenes 412 mutants shows consistent Overexpression of a putative beta-glucoside-specific PTS system, Microbiology, 2000, 146(6), 1381-1389
    75 Rzucidlo SJ, Gibbons J, Stice SL, et al, Comparison by restriction fragmentdifferential display RT-PCR of geneexpression pattern in bovine oocytesmatured in the presence or absence of fetal calf serum, MolReprod Dev,2001, 59(1), 90-96
    76 Bowler LD, Representational difference analysis of cDNA, Methods MolMed, 2004, 94,49-66
    77 Lin H, Pizer ES, Morin PJ, A frequent deletion polymorphism on chromosome 22q13 identified by representational difference analysis of ovarian cancer, Genomics, 2000,69(3), 391-394
    78 Chen H, Wang M, Wang XY, et al, Identification of differential genes in ovarian cancer using representational difference analysis of cDNA, Chin Med Sci J, 2005, 20(3), 185-189
    79 Cai LY, Abe M, Izumi S, et al, Identification of PRFDC1 silencing and aberrent promoter methylation of GPR150, ITGA8 and HOXD11 in ovarian cancers, Life Sci, 2007, 80(16), 1458-65
    80 Diatchenko L, au YF, Campbell AP, et al, Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc Natl Acad Sci U S A,1996,93 (12),6025-30
    81 Rebrikov DV, Desai SM, Siebert PD, Suppression subtractive hybridization, Methods Mol Bio, 2004, 258,107-134
    82 Rebrikov DV, Desai SM, Siebert PD, et al, Suppression subtractive hybridization, Methods Mol Biol,2004, 258,107-134
    83 Ji W, Wright MB, Cai L, et al, Efficacy of SSH PCR in isolating differentially expressed genes, BMC Genomics, 2002, 3 (1), 12
    84 Roberts D,Williams SJ, Cvetkovic D,et al.Decreased expression of retinol-blinding proteins is associated with malignant transformation of the ovarian surface epthelium, DNA Cell Biol, 2002, 21(1), 11-9,
    85 Atalay A, Crook T, Ozturk M, et al, Identification of genes induced by BRCA1 in breast cancer cells, Biochem Biophys Res Commun, 2002, 299(5),839-846
    86 Velculescu VE, Zhang L, Vogelstein B, et al, Serial analysis of gene expression, Science,1995, 270 (5235), 484-487
    87 Boheler KR, Tarasov KV, SAGE analysis to identify embryonic stem cell-predominant transcripts, Methods Mol Bio, 2006, 329,195-221
    88 RichardsM, Tan SP, Bongso A, Reverse serial analysis of gene expression (SAGE) characterization of orphan SAGE tags from human embryonic stem cells identifies the presence of novel transcripts and antisense transcription of key pluripotency genes, Stem Cells, 2006, 24(5), 1162-1173
    89 Wilkins M, Australia backs off telescope promise[J], Nature, 1995,378(6558), 653
    90 Gould KL, Ren L, Feuktistova AS,et al, Tandem affinity purification and identifications of protein complex components, Methods,2004, 33(3), 239-244
    91 AngelikaG, WalterW, Michael J, et al, Current two-dimensional electrophoresis technology for proteomics, Proteomics, 2004, 4(12), 3665-388
    92 Gagnon A, Kim JH, Schorge JO, et al, Use of combination of approaches to identify and validate relevant tumor-associated antigens and their corresponding autoantibodies in ovarian cancer pttients, Clin Cancer Res, 2008, 14(3), 764-771
    93 Young TW, Mei FC, Yang G, et al, Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surfaceovarian epithelial cells revealed by functional proteomics and mass spectrometry, Cancer Research, 2004, 64(13), 4577-4584
    94 O' Farrell PH, High resolution two-dimensional electrophoresis of proteins, J Biol Chem ,1975, 250 (10) , 4007-21
    95 Klose J, Kobalz U, Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome, Electrophoresis, 1995, 16 (6) , 1034 - 59
    96 Leimgruber RM, Malone JP, Radabaugh MR, et al, Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses, Proteomics, 2002, 2 (2) ,135-44
    97 Ogurl T, Takahata I, Katsuta K, et al, Proteomics, Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis, Proteomics, 2002, 2 (6) ,666-672
    98 Tonella L, Hoogland C, Binz PA, et al, Proteomics, New perspectives in the Escherichia coli proteome investigation Proteomics, 2001,1(3): 409-423
    99 Ogorzalek Loo R, Cavalcoli J, VanBogelon R, et al, Virtual 2-D gel electrophoresis: visualization and analysis of the E. coli proteome by mass spectrometry, Anal Chem, 2001, 73(17), 4063-4070
    100 Wang H, Hanash S, Multi-dimensional liquid phase based separations in proteomics, J Chromatogr B Analyt Technol Biomed Life Sci, 2003, 787(1), 11-18
    101 Jonsson AP, Mass spectrometry for protein and peptide characterisation, Cell Mol Life Sci, 2001, 58 (7) , 868-84
    102 Hutchens T W, Yip T T, New desoprtion strategies for the mass-spectrometric analysis of macromolecules, Rapid Commun Mass Spectrom, 1993, 7,576-80
    103 Issaq HJ, Veenstra TD, Conrads TP, et al, The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification, Biochem Biophys Res Commun, 2002, 292 (3), 587 - 92
    104 Wright GL, Cazares LH, Leung SM, et al, Proteinchip surface enhanced laser desorption/ionisation (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures, Prostate Cancer and Prostatic Diseases , 1999, 2, 264 - 76
    105 Jinong Li, Zhen Zhang, Jason Rosenzweig, et al, Proteomics and Bioinformatics Approaches for Identification of Serum Biomarkers to Detect Breast Cancer Proteomics and Bioinformatics Approaches for Identification of Serum Biomarkers to Detect Breast Cancer, Clinical Chemistry , 2002, 48(8), 1296-1304
    106 Tempi in MF, Stoll D, Schrenk M, et al, Protein microarray technology, Drug Discovery Today ,2002, 7 (15) , 815-22
    107 Haab BB, Dunham MJ, Brown P0, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions, Genome Biol ,2001, 2 (2) , RESEARCH0004
    108 Chinni SR, Falchetto R, Gercel TC, et al, Humoral immune responses to cathepsin D and glucose regulated protein 78 in ovarian cancer patients, Clin cancer Res, 1997, 3(9),1 557-1 564
    109 AlexeG, Alexe S, LiottaLA, eta, 1 Ovarian cancerdetection by logical analysis ofproteomic data, Proteomics, 2004, 4(3),766-783
    110 Wu SP, Lin YW, LaiHC, et a, 1 SELDI-TOFMS profiling ofplasma proteins in ovarian cancer, Taiwan JObstetGyneco, 2006, 45(1), 26-3
    111 Fauq AH, Kache R, KhanMA, et a, 1 Synthesis of acid-cleavable light isotope-coded affinity tags ( icat-1) for potentialuse in proteomic expression profiling analysis, BioconjugChem, 2006,17,248-254
    112 Jones MB, Krutzsch H, Shu H, et al, Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer, Proteomics , 2002, 2(1), 76-84
    113 Naora H, Yang YQ, Montz FJ, et al, A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells, PANS, 2001, 98(7), 4060-4065
    114 Naora H, Montz FJ, Chai CY, et al, Aberrant expression of homeobox gene HOXA7 is associated with mullerian -like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response, Proc Natl Acad Sci U S A, 2001 ,98(26), 15209-15214
    115 Luo LY, Herrera I, Soosaipillai A, et al, Identification of heat shock protein 90 and other proteins as tumor antigens by serological screening of an .ovarian carcinoma expression library, Br J Cancer, 2002 ,87(3),339-343
    116 Stone B, Schummer M, Paley PJ, et al, Serologic analysis of ovarian tumor antigens reveals a bias toward antigens encoded on 17q, Int J Cancer, 2003 ,104(1), 73-84
    117 Lokshin AE, Winans M, Landsittel D, et al, Circulating IL-8 anti-IL-8 autoantibody in patients with ovarian cancer, Gynecol Oncol , 2006, 102(2), 244-251
    118 Ishikura H, Ikeda H, Abe H, et al, Identification of CLUAP1 as a human osteosarcoma tumor-associated antigen recognized by the humoral immune system, Int J Oncol, 2007, 30(2), 461-7
    119 Hasegawa K, Koizumi F, Noguchi Y, et al, SSX expression in gynecological cancers and antibody response in patients, Cancer Immun, 2004,4,16
    120 Valmori D, Qian F, Ayyoub M, et al, Expression of synovial sarcoma X (SSX) antigens in epithelial ovarian cancer and identification of SSX-4 epitopes recognized by CD4+ T cells, Clin Cancer Res, 2006,12(2), 398-404
    121 Rangel LB, Agarwal R, Sherman-Baust CA, et al, Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancer, Cancer Biol Ther,2004,3(10), 1021-1027
    122 Rangel LB, Sherman-Baust CA, Wernyj RP, et al, Characterization of novel human ovarian cancer-specific transcripts(HOSTs) identified by serial analysis of gene expression, Oncogene, 2003, 22(46), 7225-7232
    123 Peters DG, Kudla DM, Deloia JA, et al, Comparative gene expression analysis of ovarian carcinoma and normal ovarian epithelium by serial analysis of gene expression, Cancer Epidemiol Biomarkers Pre,2005,14(7), 1717-1723
    124 Yen MJ, Hsu CY, Mao TL, et al, Diffuse mesothelin expression correlates with prolonged patient survival in ovarian serous carcinoma, Clin Cancer Res, 2006,12(3 pt 1),827-831
    125 Schaner ME,Ross DT,Ciaravino G,et al,Gene expression patterns in ovarian carcinomas,Mol Biol Cell,2003,14(11),4376-4386
    126 Heinzelmann-Schwarz VA,Gardiner-Garden M,Henshall SM,et al,A distinct molecular spectrum associated with mucinous epthelail ovarian cancer,Br J Cancer,2006,94(6),904-913
    127 Bignotti E,Tassi RA,Calza S,et al,Differential gene expression spectrum between tumor biopsies and short-term primary cultures of ovarian serous carcinomas:identification of novel molecular biomarkers for early diagnosis and therrpy,Gynecol Oncol,2006,103(2),405-16
    128 Santin AD,Zhan f,Bellone S,et al,Gene expression spectrums in primary ovarian serous papillary tumors and normal ovarian epithelium:identification of candidate molecular markers for ovarian cancer diagnosis and therapy,Int J Cancer,2004,112(1),14-25
    129 Lu KH,Patterson AP,WangL,et al,Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis,Clin Cancer Res,2004,10(10),3291-300
    130 Adib TR,Henderson S,Perrett C,et al,Predicting biomarkers for ovarian cancer using gene-expression microarrays,Br J Cancer,2004,90(3),686
    131 Collins Y,Tan DF,Pejovic T,et al,Identification of differentially expressed genes in clinically distinct groups of serous ovarian carcinomas using cDNAmicroarray,Int J Mol Med,2004,14(1),43
    132 Hibbs K,Skubitz KM,Pambuccian SE,et al,Differential gene expression in ovarian carcinoma:identification of potential biomarkers,Am J pathol,2004,165(2),397
    133 Lee BC,Cha K,Avraham S,et al,Microarray analysis of differentially expressed genes associated with human ovarian cancer,Int J Oncol, 2004, 24(4),847
    134 Huddleston HG, Wong KK, Welch WR, et al, Clinical applications of microarray technology:creatine kinase B is an up-regulated gene in epithelial ovarian cancer and shows promise as a serummarker .Gynecol Oncol, 2005,96(1),77
    135 Jackson D, Craven RA, Hutson RC, et al, Proteomic profiling identifies afamin as a potential biomarker for ovarian cancer, Clin Cancer Res, 2007,13(24), 7370-7379
    136 Ott HW, Lindner H, Sarg B, et, al, Calgranulins in cystic fluid and serum from patients with ovarian carcinomas, Cancer Res, 2003,63(21), 7507-7514
    137 Petricoin EF, Ardekani AM, Hitt BA, et al, Use of proteomic patterms in serum to identify ovarian cancer, Lancet, 2002, 359(9306), 572-577
    138 Rai AJ, Zhang Z, Rosenzweig J, et al, Proteomic approaches to tumor marker discovery, Arch Pathol Lab Med, 2002,126(12), 1518-1526
    139 Kozak KR, Amneus MW, Pusey SM, et al, Identification of biomarkers for ovarian cancer using strong anion-exchange Protein Chipspotential use in diagnosis and prognosis, Proc Natl Acad Sci U S A, 2003,100(21), 12343-12348
    140 Ahmed N, Barker G, Oliva KT, et al, Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer, Br J Cancer, 2004, 91(1), 129-140
    141 Zhang Z, Bast RC Ju, Yu Y, et al, Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer, Cancer Res, 2004,64 (16), 5882-5890
    142 Moshkovskii SA, Serebryakova MV, Kuteykin KB, et al, Ovarian cancer marker of 11,7 kDa detected by proteomics is a serum amyloid Al, Proteomics, 2005,5(14), 3790-3797
    143 Woong SA, Sung PP, Su Mb, et al, Identification of hemoglobin-alpha and - beta subunits as potential serum biomarkers for the diagnosis and prognosis of ovarian cancer, Cancer Sci, 2005, 96(3), 197-201
    144 Lin YW, Lin CY, LalHC, et al, Plasma proteomic pattern as biomarkers for ovarian cancer, Int J Gynecol Cancer, 2006, 16(11), 139-146
    145 Moscova M, Marsh DJ, Baxter RC, Protein chip discovery of secreted proteins regulated by the phosphatidylinositol3-kinase pathway in ovarian cancer cell lines, Cancer Res, 2006, 66(3), 1376-1383
    146 AnHJ, Kim DS, ParkYK, eta, 1 Comparative proteomics ofovarian epithelial tumors, J Proteome Res, 2006, 5(5), 1082-1090
    147 Sica G L, Choi I H, Zhu Get al,B7-H4, a molecule of the B7 family, negatively regulates T cell immunity ,Immunity, 2003,18(6), 849-861
    148 Prasad D V.Richards S, Mai XMet al,B7Sl,a novel B7 familymember that negatively regulates T cell activation , Immunity, 2003,18(6), 863-873
    149 Zang X, Loke P, Kim Jet al,B7x:a widely expressed B7 family member that inhibitsT cell activation ,Proc Natl Acad Sci USA, 2003,100(18), 10388-10392
    150 Kfryczek I,Wei S, Zhu G, et al, Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma, Cancer Res, 2007, 67(18), 8900-8905
    151 Bignotti E, Tassi RA, Calza S, et al, Differential gene expression spectrum between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therrpy, Gynecol Oncol, 2006,103(2), 405-16
    152 Tringler B, Liu W, Corral L, et al,B7-H4 Overexpression in ovarian tumors, Gynecol Oncol, 2006,100(1),44-52
    153 Simon I, Zhuo S, Corral L, et al,B7-H4 is a novel membrane-bound protein and a candidate serum an tissue biomarker. for ovarain cancer, Cancer Res, 2006, 66 (3),1570-1575
    154 Simon I,Katsaros D, Rigault de la Longrais I,et al,B7-H4 is over-expressed in early-stage ovarian cancer and is independent of CA125 expression, Gynecol Oncol, 2007,106(2), 334-341
    155 Salceda S, Tang T, Kmet M, et al, The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancersand promotes epithelial cell transformation, Exp Cell Res, 2005,306(1), 128-141
    156 Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening, Proc Natl Acad Sci U S A ,1997, 94(5), 1914-8
    157 Jager E,Gnjatic S,Nagata Y, et al, Induction of primary NY-ESO-1 immunity:CD8+T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+cancers, Proc Natl Acad Sci USA, 2000, 97(22): 12198-203
    158 Odunsi K, Jungbluth AA, Stockert E, et al, NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer, Cancer Res,2003, 63(18), 6076-6083
    159 Gnjatic S, Atanackovic D, Jager E, et al, Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses, Proc Natl Acad Sci U S A ,2003,100(15), 8862-8867
    160 Matsuzaki J, Qian F, Luescher I, et al, Recognition of naturally processed and ovarian cancer reactive CD8(+) T cell epitopes within a promiscuous HLA class II T-helper region of NY-ESO-1, Cancer Immunol Immunother, 2008[Epub ahead of print] ESO (119-143)
    161 Qian F, Gnjatic S, Jager E, et al, Thl/Th2 CD4+ T cell responses against NY-ESO-1 .in HLA-DPB1*0401/0402 patients with epithelial ovarian cancer, Cancer Immun, 2004, 4, 12
    162 Qdunsi K, Qian F,Matsuzaki J, et al, Vaccination with an NY-ESO-1 peptide of HLA class I/I I specificities induces integrated humoral and T cell responses in ovarian cancer, Proc Natl Acad Sci U S A,2007,104(31), 12837-12842
    163 Fligman I, Lonardo J, Jhanwar SC, et al, Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 transcript, Am J Pathol, 1995,147(6), 1592-1599
    164 dos Santos NR, deBrijn DR, Balemans M, et al, Nuclear localization of SYT, SSX and the synovial sarcoma-associated SYT-SSX fusion proteins, Hum Mol Genet, 1997, 6(9), 1549-1558
    165 Gure AO, Tureci O, Sahin U, et al, SSX: A multigene family with several members transcribed in normal testis and human cancer, Int J Cancer, 1997,72(6), 965-971
    166 Gure Ao,Wei IJ, Old IJ, et AL, The SSX gene family: characterization of 9 complete genes , Int J Cancer, 2002,101(5), 448-453
    167 Lim FL, Soulez M, Koczan D, et al,A KRAB-related domain and a novel transcription repression domain in proteins encode by SSX genes that are disrutped in human sarcomas, Oncogene, 1998, 17(15), 2013-2018
    168 Tureci 0, Chen YT, Sahin U, et al, Expression of SSX genes in human tumors, Int J Cancer, 1998, 77(1), 19-23
    169 Valmori D, Qian F, Ayyoub M, et al, Expression of synovial sarcoma X(SSX) antigens in epithelial ovarian cancer and identification of SSX4 epitopes recognized by CD4+ T cells, Clin Cancer Res, 2006,12(2), 398-404
    170 Hasegawa K, Koizumi F, Noguchi Y, et al, SSX expression in gynecological cancers and antibody response in patients, Cancer Immun, 2004,4,16
    171 Jagadish N, Rana R, Selvi R, et al, Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein, Biochem J ,2005, 389(Pt 1), 73-82
    172 Shankar S, Mohapatra B, Suri A, Cloning of a novel human testis mRNA specifically expressed in testicular haploid germ cells, having unique palindromic sepuences and encoding a leucine zipper dimerization motif, Biochem Biophys Res Commun, 1998, 243(2),561-565
    173 Jagadish N, Rana R, Selvi R, et al, Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein, Biochem J ,2005, 389 (Pt 1), 73-82
    174 Shankar S, Mohapatra B, Verma S, Selvi R, Jagadish N, Suri A, Isolation and characterization of a haploid germ cell specific sperm associated antigen 9 (SPAG9) from the baboon, Mol Reprod Dev ,2004, 69(2), 186-93
    175 Garg M, Chaurasiya D, Rana R, et al, Sperm-associated antigen 9, a novel cancer testis antigen, is a potential target for immunotherapy in epithelial ovarian cancer, Clin Cancer Res, 2007,13(5), 1421-1428
    176 Jagadish N, Rana R, Mishra D, et al, Characterization of immune response in mice to plasmid DNA encoding human sperm associated antigen 9 (SPAG9), Vaccine, 2006, 24(17), 3695-3703
    177 Cheng W, Liu J, Yoshida H, et al, Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract, Nat Med, 2005,11(5), 531-537
    178 Grier DG, Thompson A, Kwasniewska A, et al, The pathophysiology of HOX genes and their role in cancer, J Pathol, 2005, 205(2), 154-171
    179 Naora H, MontzFJ, Chai CY, et al, Aberrant expression of homeoboxgene H0XA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation ofa specific autologous antibody response, Proc Natl Acad Sci U S A,2001,98(26), 15209-15214
    180 Ota T, Gilks CB, Longacre T, et al, HOXA7 in epithelial ovarian cancer: interrelationships between differentiation and clinical features, Reprod Sci,2007,14(6),605-614
    181 Wu X, Chen H, Parker B, et al, HOXB7, a Homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition, Cancer Res, 2006,66 (19),9527-9534
    182 Naora H, Yang YQ, Montz FJ, et al, A serologically identified tumor antigen encoded by a homeobox gene growth of ovarian epithetial cells, Proc Natl Acad Sci USA, 2001,98(7),4060-4065
    183 Yamashita T, Tazawa S, Yawei Z,et al.Supreeion f invasive characteristic by antisense introduction of overexpressed HOX genes in ovarian cancer cells, Int J Oncol, 2006, 28(40), 93
    184 Erkanli A,Taylor DD, Dean D, et al, Application of Bayesian modeling of autologous antibody responses against ovarian tumor-associated antigens to cancer detection, Cancer Res, 2006,66(3), 1792-1798
    185 Yoshimura T, Matsushima K, Oppenheim JJ, et al, Neutrophil Chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes:partial characterization and separation from interleukinl (IL1), J Immunol, 1987,139(3), 788-793
    186 Davidson B, Reich R, Kopolovic J, et al, Interleukin-8 and vascular endothelial growth factor mRNA and protein levels are down-regulated in ovarian carcinoma cells in serous effusions, Clin Exp Metastasis, 2002, 19(2), 135-144
    187 Lokshin AE, Winans M, Landsittel D, et al, Circulating IL-8 anti-IL-8 autoantibody in patients with ovarian cancer, Gynecol Oncol, 2006, 102(2), 244-251
    188 Gorelik E, Landsittel DP, Marrangoni AM, et al, Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer, Cancer Epiemiol Biomarker, Prev, 2005,14(4), 981-7
    189 MowakM, Szpakowski M,Malinowski A, et al, Serum cytokines in patients with ovarian cancer and benign ovarian cysts, Ginekol Pol, 2001, 72(12A), 1444-1448
    190 Mayerhofer K, Bodner K, Bodner Adler B, et al, Interleukin-8 serum level shift in patients with ovarian carcinoma undergoing paclitaxel-containing chemotherapy, Cancer, 2001, 91(2), 388-393
    191 Kassira SK, El-Salahy EM,Fayed ST, et al, Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients, Clin Biochem, 2004, 37(5), 363-369
    192 Takemoto Y, Yano H, M omosaki S, ea al, Antiproliferative effects of interferon-alphaConl on ovarian clear cell adenocarcinoma in vitro and in vivo, Clin Cancer Res, 2004, 10(21), 7418-7426
    193 Merritt WM, Lin YG, Spannuth WA, et al, Effect of interleukin-8 gene silenceing with liposome-encapsulated small interfering RNA on ovarian caneer cell growth, 2008 , 100(5), 359-72. Epub 2008 Feb 26
    194 Abdollahi T, Robertson NM, Abdollahi A, et al, Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3, Cancer Res,2003,63(15), 4521-4526
    195 Abdollahi T, Robertson NM, Abdollahi A, et al, Inhibition of TRAIL-induced apoptosis by IL-8 is mediated by the p38-MAPK pathway in OVCAR3 cells, Apoptosis,2005,10(6), 1383-1393
    196 Xu L, Fidler IJ, Interleukin8:an autocrine growth factor for human ovarian cance, Oncol Res, 2000, 12(2), 97-106
    197 So J, Navari J, Wang FQ, et al, Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8, Gynecol Oncol, 2004,95(2), 314-322
    198 Chang K, Pastan I, Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers, Proc Natl Acad Sci USA, 1996,93,136-140
    199 Ordonez NG, Value of mesothelin immunostaining in the diagnosis of mesothelioma, Mod Pathol, 2003, 16(3), 192-7
    200 Schaner ME, Ross DT, Ciaravino G, et al, Gene expression patterns in ovarian carcinomas,Mol Biol Cell, 2003, 14(11), 4376-4386
    201 Argani P, Iacobuzio-Donahue C, Ryu B, et al, Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE), Clin Cancer Res, 2001, 7(12), 3862-3868
    202 Hassan R, Kreitman RJ, Pastan I, et al, Localization of mesothelin in epithelial ovarian cancer, Appl Immunohistochem Mol Morphol, 2005, 13(3), 243 - 247
    203 Rump A, Morikawa Y,Tanaka M, et al, Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion, J Biol Chem, 2004, 279,9190-9198
    204 Gubbels JA, Belisle J, OndaM, et al, Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitate speritoneal metastasis of ovarian tumors, Mol Cancer, 2006, 279(10), 50-58
    205 Gubbels JA, Belisle J, Onda M, et al, Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors, Mol Cancer, 2006, 5(1), 50
    206 Ho M, Hassan R, Zhang J, et al, Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients, Clin Cancer Res, 2005, 11(10). 3814 -3820
    207 Hassan R, Remaley AT, Sampson ML, et al, Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer, Clin cancer Res, 2006,12(2), 447-453
    208 Huang CY, Cheng WF, Lee CN, et al, Serum mesothelin in epithelial ovarian carcinoma: A new screening markerand prognostic factor , Anticancer Res, 2006, 26(6C), 4721-4728
    209 Yen MJ, Hsu CY, Mao TL, et al, Diffuse mesothelin expression correlates with prolonged patient survival in ovarian serous carcinoma, Clin Cancer Res, 2006,12(3 pt 1),827-831
    210 Ho M, Hassan R, Zhang J, et al, Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients, Clin Cancer Res, 2005, 11(10), 3814 -3820
    211 Martin KJ, Kritzman BM,Price LM, et al, Linking gene expression patterns to therapeutic groups in breast cancer, Caner Res, 2000, 60, 2232-2238
    212 Vidal CI, Mintz PJ, Lu K, et al, An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients, Oncogene,2004,23(55), 8859-8867
    213 Elpek GO, Karaveli S, Simsek T, et al, Expression of heat-shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries, APMIS, 2003,111(4), 523-530
    214 Copola D,Szabo M, Boulware D, et al . Correlation of osteopontin protein expression and pathological, stage across a wide varitety of tumor histologieso Clin Cancer Res, 2004, 10(1 Pt 1), 184-190
    215 Rosen DG, Wang L,Atkinson JN,et al, Potential markers that complementet expression of CA125 in epithelial ovarian cancer, Gyneeol Oncol,2005, 99(2), 267-277
    216 Maki M, Hirota S, Kaneko Y, et al, Expression of osteopontin messenger RNA by macrophages in ovarian serous papillary cystadenocarcinoma:a possible association with calcification of psammoma bodies, Pathol Int, 2000,50, 531-535
    217 Fisher LW, Jain A, Tayback M, et al, Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers, Clin Cancer Res, 2004,10 (24) ,8501-8511
    218 O'Neill CJ, Deavers MT,Malpica A, et al, Immonohistochemical comparison between low-grade and high-grade ovarian serous carcinomas: significantly higher expression of P53,MIBI, BCLZ, HER-2/neu, and C-KIT in high-grade neoplasms, Am J Surg Pathol, 2005, 29(8), 1034-1041
    219 Mor G, Visintin L, Lai Y, et al, Serum protein markers for early deteetion of ovarian cancer, Proc Natl Acad Sci U S A, 2005, 102(21), 7677-682
    220 Brakora KA, Lee H, Yusuf R, et al, Utility of osteopontin as a biomarker in recurrent epithelial ovarian cancer, Gynecol Oncol, 2004, 93(2), 361-365
    221 Schorge JO, Drake RD, LEE H, et al, Osteopontin as an adjunct to CA125 in detecting recurrent ovarian cancer, Clin Cancer Res, 2004, 10(10), 3474-3478
    222 Kim JH, Skates SJ, Uede T, et al, Osteopontin as a potential diagnostic biomarker for ovarian cancer , JAMA, 2002, 287(13), 1671-1679
    223 Nakae M, Iwamoto I, Fujino T, et al, Preoperative plasma osteopontin level as a biomarker complementary to carbohydrate antigen 125 in predicting ovarian cancer, Preoperative plasma osteopontin level as a biomarker complementary to carbohydrate antigen CA125 in predicting ovarian cancer, J Obstet Gynaecol Res, 2006,32(3), 309-14
    224 Kohler G, Milstein C, Continuous culture of fused cells secreting antibody of predefined specificity, Nature, 1975, 256(5517), 495-497
    225 Khazaeli MB, Conry RM, LoBuglio AF, Human immune response to monoclonal antibodies ,J Immunother, 1994, 15(1), 42-52
    226 Borrebaeck CK, Malmborg AC, OhlinM, Does endogenous glycosylation prevent the use ofmouse monoclonal antibodies as cancer therapeutics? , Immunol Today, 1993,14(10),477-479
    227 Soderlind E, Strandberg L, Jinrholt P, et al, Recombining germline derived CDR sequences for creating diverse single-framework antibody libraries, Nat Biotechnol,2000,18 (8),852-856
    228 Chung KY, Saltz LB, Antibody-Based therapies for colorectal cancer, Oncologist, 2005, 10(9), 701-709
    229 Scott AM, Liu Z, Murone C, et al, Immunological effects of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma, Cancer Immun, 2005, 5(3), 49-53
    230 Jimenez X, Lu D, Brennan L, et al, A recombinant fully human bispecific antibody neutralizes the biological activitiesmediated by both vascular endothelial growth factor receptors 2 and 3,Mol CancerTher, 2005, 4(3), 427-434
    231 Hurwita HI,Fehrenbacher L, Hainsworth JD, et al,Bevacizumab in combination with fluorouracil and leucovorin:an active regimen for first line metastatic colorectal cancer, J Clin Oncol, 2005, 23(15), 3502-3508
    232 McCafferty J.Griffiths AD, Winter G, et al, Phage antibodies:filamentous phage displaying antibody variable domains, Nature, 1990, 348(6301), 552-554
    233 Winter G, Griffiths AD, Hawkins RE, et al, Makinq antibodies by phage display technology, Annu Rev Immunol, 1994, 12, 433-455
    234 Lamia T, Erdmann VA, Searching sequence space for highaffinity binding peptides using ribosome display, JMol Biol,2003,329(2),381-388
    235 Jimenez X, Lu D, Brennan L, et al, A recombinant fully human bispecif ic antibody neutralizes the biological activitiesmediated by both vascular endothelial growth factor receptors 2 and 3,Mol CancerTher, 2005,4(3), 427-434
    236 Li J, Sai T, Berger M, et al, Human antibodies for immunotherapy development generated via a human B cell hybridoma technology, Proc Natl Acad Sci, 2006,103(10), 3557-3562
    237 Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening, Proc Natl Acad Sci U S A , 1997, 94(5), 1914 - 1918
    238 Odunsi K, Jungbluth AA, Stockert E, et al, NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer, Cancer Res, 2003, 63(18), 6076-6083
    239 Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki RG, Dupont B, RitterG, Chen YT, Knuth A, Old LJ: Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses, Proc Natl Acad Sci U S A ,2003, 100(15), 8862 - 8867
    240 Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ: A survey of the humoral immune response of cancer patients to a panel of human tumor antigens, J Exp Med , 1998, 187(8), 1349 - 1354
    241 Jager E, Stockert E, Zidianakis Z, Chen YT, Karbach J, Jager D, Arrand M, Ritter G, Old LJ, Knuth A: Humoral immune responses of cancer patients against 'Cancer-Testis'. antigen NY-ESO-1: correlation with clinical events, Int J Cancer ,1999, 84(5), 506 - 510
    242 Kim JH, Herlyn D, Wong KK, Park DC, Schorge JO, Lu KH, Skates SJ, Cramer DW, Berkowitz RS, Mok SC: Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer, Clin Cancer Res ,2003, 9(13), 4782-4791
    243 Luo LY, Herrera I, Soocsaipillai A, et al, Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library, Br J Cancer, 2002,87(3), 339-343
    244 Gadducci A, Ferdeghini M, Buttitta F, Cosio S, Fanucchi A, Annicchiarico C, Gagetti O, Bevilacqua G, Genazzani AR: Assessment of the prognostic relevance of serum anti-p53 antibodies in epithelial ovarian cancer, Gynecol Oncol , 1999, 72(1), 76-81
    245 Abendstein B, Marth C, Muller-Holzner E, Widschwendter M, Daxenbichler G, Zeimet AG: Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma, Cancer ,2000, 88(6), 1432 - 1437
    246 Goodell V, Salazar LG, Urban N, et al, Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer, J Clin Oncol, 2006:24(5), 762-768
    247 Hurwitz H, Fehrenbacher L, Novotny W, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer, N Engl J Med , 2004, 350(23), 2335-2342,
    248 Monk BJ, Choi DC, Pugmire G, et al: Activity of bevacizumab (rhuMAB VEGF) in advanced refractory epithelial ovarian cancer, Gynecol Oncol, 2005, 96(3), 902-905,
    249 Caponigro F, Basile M, de Rosa V, et al, New drugs in cancer therapy, National Tumor Institute, Naples, 17rl8 June 2004, Anticancer Drugs, 2005, 16(2),. 211-221
    250 Coliva A, Zacchetti A, Luison E, et al, 90Y Labeling of monoclonal antibody M0vl8 and preclinical validation for radioimmunotherapy of human ovarian carcinomas, Cancer Immunol Immunother, 2005:54(12),1200-1213
    251 McQuarrie SA, Mercer JR, Syme A, et al: Preliminary results of nanopharmaceuticals used in the radioimmunotherapy of ovarian cancer, J Pharm Pharmaceut Sci, 2004, 7(4), 29-34
    252 Secord AA, Blessing JA, Armstrong DK, et al, Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study, Gynecol Oncol, 2008,108(3), 493-499
    253 Seiden MV, Burris HA, Matulonis U, A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies, Gynecol Oncol, 2007, 104(3), 727-731
    254 Nowak M, Szpakowski M, Malinowski A, et al, Serum cytokines in patients with ovarian cancer and benign ovarian cysts, Ginekol Plo, 2001, 72(12A), 1444-1448
    255 Zakrzewska I, Poznanski J, Changes of serum il—6 and CRP after chemotherapy in patients with ovarian carcinoma, Pol Merkuriusz Lek, 2001,11 (63), 210-213
    256 Suzuki M, Kobayashi H, OhwadaM, et al, Macrophage colony-stimulating factor as a marker for malignant germ cell tumors of the ovary , Gynecol Oncol, 1998,68(1),35-37
    257 Fo Ti E, Ferrandina G, Mar Tucci R, et al, IL-6, AM-CSF and IAP cytokines in ovarian cancer: simulatneous assessmint of serum levels , Oncology, 1999, 57(3),211-215
    258 Zakrzewska I, Poznanski J, Serum levels of interleukin-10 in patiens with ovarian carcinoma in response to chemotherapy, Przegl Lek, 2003, 60(1),18-20
    259 Lambeck AJ, Crijns AP, Leffers N, et al, Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin 7, Clin Cancer Res,2007, 13(8), 2385-2391
    260 Zeimet AG, Widschwend Teer M, Knabbe C, et al, Ascitic interleukin-12 is and independert prognostic factor n ovarian cancer, J Clin Oncol, 1998, 16(5),1861-1868
    261 Akahiro J, Konno R, Ito K, et al, Impact of serum interleukin-18 level as a prognostic indicator in patients with epithelial ovarian carcinoma, Int J Clin Oncol, 2004, 9(1), 42-46
    262 Abdollahi T, Robertson NM, Abdollahi A, et al, Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3 , Cancer Res, 2003,63(15), 4521-4 526
    263 Nilsson EE, SkinnerMK, Role of transforming growth factor beta in ovariansurface epithelium biology and ovarian cancer, Reprod Biomed Online, 2002, 5(3), 254-258
    264 Sonmezer M, Gungor M,Ensari A, et al, Prognostic significance of tumor angiogenesis in epithelial ovarian cancer: in association with transforming growth factor beta and vascular endothelial growth factor, Int Jgynecol Cancer, 2004, 14(1), 82-8
    265 Rodriguez GC, Haisley C, Hurteau J, et al, Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta, Gynecol Oncol, 2001, 80(2), 245-253
    266 Castriconi R, Cantoni C, Delia Chiesa M, et al, Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors:consequences for the NK-mediated killing of dendritic cells,Proc Natl Acad Sci USA,2003,100(7),4120-4125
    267 Mitra R,Khar A,Suppression of macrophage function in AK-5 tumor transplanted animals:role of TGF-betal,Immunol Lett,2004,91(2-3),189-195
    268 Liu XH,KirschenbaumA,Yu K,et al,Cyclooxygenase-2 suppresses hypoxia-induced apoptosis via a combination of direct and indirec inhibition ofp53activityin a human prostate cancer cell line,J Biol Chem,2005,280(5),3817-3823
    269 金伯泉主编,细胞和分子免疫学,西安:世界图书出版公司,1995,p1
    270 龙振洲主编,医学免疫学,北京,人民卫生出版社,1007,p190
    271 Todd I,Cells of the immune system,Encyclopedia of life sciences,2001,Macmillan Publishers Ltd,Nature Publishing Group/www.els.net
    272 Kast WM,Schreiber Hand Velders MP,Tumour immunology,Encyclopedia of life sciences,2001,Macmillan Publishers Ltd,Nature Publishing Group /www.els.net
    273 Jager E,Gnjatic S,Nagata Y et al,Induction of primary NY-ESO-1 immunity:CDS+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers,Proc Natl Acad Sci USA,2000,97(22),12198-12203
    274 Hicks A M,Wiliingham M C,Du W,et al,Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice,Cancer Immunity,2006,(6),11-20
    275 Wang Y,Whittall T,Mc Gowan E,et al,Identfication of stimulating and inhibitory epitopes with in the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells,Immunology,2005,174(6),3306-3316
    276 Curiel TJ, ChengP, MottramP, et al, Dendrtic cell subsets differentially regulate angiogenesis in human ovarian cancer , CancerRes, 2004, 64(16), 5535-5538
    277 Dikov MM, Ohm JE, Ray N, et al, Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation , J Immunol, 2005, 174(1),215-222
    278 Gabrilovich D, Mechanisms and functional significance of tumor-induced dendritic cell defects, Nat Rev Immunol, 2004,4(12), 941-952
    279 Zou W, Immunosuppressive networks in the tumour environment and their therapeutic relevance, Nat Rev Cancer,2005, 5(4), 263-274
    280 Cohen LS, Escobar PF, Scharm C, et al, Three dimensional power Doppler ultrasound imp roves the diagnostic accuracy for ovarian cancer prediction, Gynecol Oncol, 2001, 82(1), 40-48
    281 Olivier RI, Lubsen-Brandsma MA, Verhorf S, et al, CA125 and transvaginal ultrasound monitoring in high-risk women cannot prevent the diagnosis of advanced ovarian cancer, Gynecol Oncol, 2006, 100(1), 20-26
    282 Van Calster B, Timmerman D, Bourne T, et al, Discrimination between benign and malignant adnexal masses by specialist ultrasound examination versus serum CA-125, J Natl Cancer Inst, 2007,99(22), 1707-1714
    283 McIntosh MW, Drescher C, Karlan B, Scholler N, Urban N, Hellstrom KE, Hellstrom I: Combining CA125 and SMR serum markers for diagnosis and earl detection of ovarian carcinoma, Gynecol Oncol , 2004, 95(1), 9-15
    284 Jacobs IJ, Menon U, Progress and challenges in screening for early detection of ovarian cancer, Mol Cell Proteomics, 2004, 3(4), 355-366
    285 Zhang Z, Bast Rc, Yu J, et al, Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer, Cancer Res, 2004, 64 (16), 5882-5890.
    286 Jacobs IJ, Menon U, Progress and challenges in screening for early detection of ovarian cancer, Mol Cell Proteomics,2004, 3(4), 355-366
    287 Berek JS, Taylor PT, Nicodemus CF, et al, CA125 velocity at relapse is a highly significant predictor of survival post relapse: results of a 5-year follow-up survey to a randomized placebo-controlled study of maintenance oregovomab immunotherapy in advanced ovarian cancer, J Immunother,2008, 31(2), 207-214
    288 Markmann S, Gerber B, Brese V, Prognostic value of Ca 125 levels during primary therapy, Anticancer Res, 2007, 27(4A), 1837-1839
    289 Jorissen RN, Treutlein HR, Epa VC, Burgess AW, Modeling the epidermal growth factor -epidermal growth factor receptor 12 domain interaction: implications for the ligand binding process, J Biomol Struct Dyn, 2002, 19(6), 961-972
    290 Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW, Epidermal growth factor receptor: mechanisms of activation and signalling, Exp Cell Res, 2003, 284, 31-53
    291 Raymond E, Faivre S, Armand JP, Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy, Drugs, 2000, 60 ( suppl 1), 15-23, discussion, 41-42
    292 Woodburn JR, The epidermal growth factor receptor and its inhibition in cancer therapy, Pharmacol Ther, 1999, 82(2-3), 241-250
    293 Mendelsohn J, Baselga J, The EGF receptor family as targets for cancer therapy, Oncogene, 2000, 19(56), 6550-6565,
    Maihle NJ, Baron AT, Barrette BA, et al, EGF/ErbB receptor family in ovarian cancer, Cancer Treat Res, 2002,107, 247-258
    294 Berchuck A, Kohler MF, Bast RC Jr, Oncogenes in ovarian cancer, Hematol Oncol Clin North Am, 1992, 6(4), 813-827
    295 Alper O, Bergmann-Leitner ES, Bennett TA, Hacker NF, Stromberg K, Stetler-Stevenson WG, Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells, J Natl Cancer Inst, 2001, 93(18), 1375-1384
    296 Pack SD, Alper OM, Stromberg K, et al, Simultaneous suppression of epidermal growth factor receptor and c-erbB-2 reverses aneuploidy and malignant phenotype of a human ovarian carcinoma cell line, Cancer Res, 2004, 64(3), 789-794
    297 El-Rayes BF, LoRusso PM, Targeting the epidermal growth factor receptor, Br J Cancer, 2004, 91(3), 418-424,
    298 Sewell JM, Macleod KG, Ritchie A, Smyth JF, Langdon SP, Targeting the EGF receptor in ovarian cancer with the tyrosine kinase inhibitor ZD 1839 (Iressa), Br J Cancer, 2002, 86(3), 456-462
    299 Secord AA, Blessing JA, Armstrong DK, et al, Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study, Gynecol Oncol, 2008, 108(3), 493-499
    300 Bose R, Molina H, Patterson AS, et al, Phosphoproteomic analysis of Her2/neu signaling and inhibition, Proc Natl Acad Sci USA, 2006, 103(26), 9773-9778
    301 Klos KS, Wyszomierski SL, Sun M, et al, ErbB2 increases vascular endothelial growth factor proteinsynthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells, Cancer Res, 2006, 66(4), 2028-237
    302 Tan M, Li P, Klos KS, et al, ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis, Cancer Res, 2005, 65(5), 1858-1867
    303 Funda MB, Hung MC, Advances in Targeting Human Epidermal Growth Factor Receptor-2 Signaling for Cancer Therapy, Clin Cancer Res, 2006,12(21), 6326-6330
    304 Fujimura M, Katsumata N, Tsuda H, et al, HER2 is frequently over-expressed in ovarian clear cell adenocarcinoma: possible novel treatment modality using recombinant monoclonal antibody against HER2, trastuzumab, Jpn J Cancer Res, 2002,93(11), 1250-1257
    305 Itamochi H, Kigawa J, Kanamori Y, et al, Adenovirus type 5 E1A gene therapy for ovarian clear cell carcinoma: a potential treatment strategy, Mol Cancer Ther, 2007, 6(1), 227-235
    306 Bookman MA, Darcy KM, Clarke-Pearson D, et al, Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with Overexpression of HER2: a phase II trial of the Gynecologic Oncology Group, J Clin Oncol, 2003, 2192,283-290
    307 Zum Buschenfelde CM, Hermann C, Schmidt B, Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells, Cancer Res, 2002, 62(8), 2244-2247
    308 Delord JP, Allal C, Canal M, et al, Selective inhibition of HER2 inhibits AKT signal transduction and prolongs disease-free survival in a micrometastasis model of ovarian carcinoma, Ann Oncol, 2005,16(12), 1889-1897
    309 Palm S, Back T, Claesson I, et al, Therapeutic efficacy of astatine-211-labeled trastuzumab on radioresistant SKOV-3 tumors in nude mice, Int J Radiat Oncol Biol Phys, 2007, 69(2), 572-579
    310 WalsheJM, Denduluri N, Berman AW, et al, A phase II trial with trastuzumab and pertuzumab in patients with HER2-overexpressed locally advanced and metastatic breast cancer, Clin Breast Cancer, 2006, 6(6), 535-539
    311 Agus DB, Gordon MS, Taylor C, et al, Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer, J Clin Oncol, 2005, 23(11), 2534-2543
    312 Takai N, Jain A, Kawamata N, et al, 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth, Cancer, 2005,104(12), 2701-2708
    313 Gordon MS, Matei D, Aghajanian C, et al, Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status, J Clin Oncol, 2006, 24(26), 4324-4332
    314 Shen GH, GhazizadehM, Kawanami O, et al, Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma, Br J Cancer, 2000, 83(2), 196-203,-15
    315 Sonmezer M, Gungor M, Ensari A, Ortac F, Prognostic significance of tumor angiogenesis in epithelial ovarian cancer: in association with transforming growth factor beta and vascular endothelial growth factor, Int J Gynecol Cancer, 2004, 14(1), 82-88
    316 Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ, Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice, J Natl Cancer Inst, 1998, 90,447-454
    317 Zhang L, Yang N, Garcia JR, et al, Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma, Am J Pathol, 2002, 161(6), 2295-2309
    318 Byrne AT, Ross L, Holash J, et al, Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic yascular remodeling in an ovarian cancer model, Clin Cancer Res, 2003, 9(15), 5721-5728
    319 Hu L, Hofmann J, Holash J, Yancopoulos GD, Sood AK, Jaffe RB, Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model, Clin Cancer Res, 2005, 11(19 Pt 1), 6966-6971
    320 Hu L, Hofmann J, Zaloudek C, Ferrara N, Hamilton T, Jaffe RB, Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer, Am J Pathol, 2002, 161(5), 1917-1924
    321 Sweeney CJ, Miller KD, Sissons SE, et al: The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors, Cancer Res , 2001, 61(8), 3369-3372,
    322 Caponigro F, Basile M, de Rosa V, et al, New drugs in cancer therapy, National Tumor Institute, Naples, 17-18 June 2004, Anticancer Drugs, 2005, 16(2), 211-221
    323 Burger RA, Sill M, Monk BJ, Greer B, Sorosky J, Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer (EOC) or primary peritoneal cancer (PPC): a Gynecologic Oncology Group (GOG) study, American Society of Clinical Oncology, 2005
    324 Garcia AA, Oza AM, Hirte H, et al, Interim report of a phase II clinical trial of bevacizumab (bev) and low dose metronomic oral cyclophosphamide (mCTX) in recurrent ovarian cancer(OC) and primary peritoneal carcinoma: A California Cancer Consortium Trial, American Society of Clinical Oncology, 2005
    325 Garcia AA, Hirte HW, Fleming G, .et al, Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia, J Clin Oncol, 2008, 26(1), 76-82
    326 Cannistra SA, Matulonis U, Penson R, et al: Bevacizumab in patients with advanced platinum-resistant ovarian cancer, J Clin Oncol, 2006, 240,257
    327 Wright JD, Hagemann A, Rader JS, Bevacizumab combination therapy in recurrent, platinum-refractory, epithelial ovarian carcinoma: A retrospective analysis, Cancer, 2006,107(1), 83-89
    328 Cannistra SA, Matulonis UA, Penson RT, et al, Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer, J Clin Oncol, 2007, 25(33), 518-526
    329 Friberg G, Oza AM, Morgan RJ, et al, Bevacizumab (B) plus erlotinib (E) for patients (pts) with recurrent ovarian (OC) and fallopian tube (FT) cancer: Preliminary results of a multi-center phase II trial, J Clin Oncol, 2006, 24(12), 260
    330 Byrne AT, Ross L, Holash J, et al, Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model, Clin Cancer Res, 2003, 9,5721-5728
    331 Hu L, Hofmann J, Holash J, Yancopoulos GD, Sood AK, Jaffe RB, Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model, Clin Cancer Res, 2005, 11(19 Pt 1), 6966-6971
    332 Monk BJ, Choi DC, Pugmire G, et al, Activity of bevacizumab(rhuMAB VEGF) in advanced refractory epithelial ovarian cancer, Gynecol Oncol 2005, 96(3), 902-905
    333 MobusVJ, Baum RP, BolleM, et al, Immune responses tomurine monoclonal antibody-B43,13 correlate with prolonged survival of women with recurrent ovarian cancer, Am J Obstet Gynecol 2003,189(1), 28-3
    334 Ehlen TG, Hoskins PJ, Miller D, A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer, Int J Gynecol Cancer, 2005,15(6), 1023-1034
    335 Sabbatini P, Dupont J, Aghajanian C, et al, Phase I study of abagovomab in patients with epithelial ovarian, fallopian tube, or primary peritoneal cancer, Clin Cancer Res, 2006,12(18), 5503-5510
    336 Pfisterer J, du Bois A, Sehouli J, et al, The anti-idiotypic antibody abagovomab in patients with recurrent ovarian cancer, A phase I trial of the AGO-OVAR, Ann Oncol, 2006,17(10), 1568-1577
    337 MoniauxN, Escande F, PorchetN,et al, Structural organization and classification of the human mucin genes, Front Biosci, 2001, 6 (1), Dl 192-1206
    338 Taylor-Papadimitriou J, Burchell J,Miles DW, et al,MUC1 and cancer, Biochim BiophysActa, 1999, 1455(2-3), 301-313
    339 Hamann PR, Hinman LM, Beyer CF, et al, A calicheamicin conjugate with a fully humanized anti-MUCl antibody shows potent antitumor effects in breast and ovarian tumor xenografts, Bioconjug Chem, 2005,16(2), 354-360
    340 Song EY, Qu CF, Rizvi SM, et al, Bismuth-213 radioimmunotherapy with C595 anti-MUC1 monoclonal antibody in an ovarian cancer ascites model, Cancer Biol Ther,2008,7 (1) ,76-80
    341 Verheijen RH, Massuger LF, Benigno BB, Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission, J Clin Oncol, 2006, 24(4), 571-578
    342 Hassan R, Ebel W, Routhier EL, et al, Preclinical evaluation of MORAb-009,A chemeric antibody targeting tumor-associated mesothelin, Cancer Immuno, 2007, 7, 20
    343 Armstrong DK, Laheru D, Ma WW, et al, A phase 1 study of MORAb-009, a monoclonal antibody against mesothelin in pancreatic cancer, mesothelioma and ovarian adenocarcinoma, J Clin Oncol, 2007,25 (Supp. 1), 14041
    344 Ebel W, Routhier EL, Foley B, Preclinical evaluation of MORAb-003, a humanized monoclonal antibody antagonizing folate receptor-alpha, Cancer Immun, 2007, 7, 6
    345 Coliva A, Zacchetti A, Luison E, et al, 90Y Labeling of monoclonal antibody M0vl8 and preclinical validation for radioimmunotherapy of human ovarian carcinomas, Cancer Immunol Immunother, 2005,54(12),1200-1213
    346 Kalli KR, MORAb-003, a fully humanized monoclonal antibody against the folate receptor alpha, for the potential treatment of epithelial ovarian cancer, Curr Opin Investig Drugs, 2007, 8(12),1067-1073
    347 Hurteau JA, Blessing JA, DeCesare SL, Creasman WT, Evaluation of recombinant human interleukin-12 in patients with recurrent or refractory ovarian cancer: a gynecologic oncology group study, Gynecol, Oncol, 2001, 82(1), 7-10
    348 Lenzi R, RosenblumM, Verschraegen C et al, Phase I study of intraperitoneal recombinant human interleukin 12 in patients with Mullerian carcinoma, gastrointestinal primary malignancies, and mesothelioma, Clin, Cancer Res,2002,8(12), 3686 - 3695
    349 Berek JS, Markman M, Stonebraker B et al, Intraperitoneal interferon-α in residual ovarian carcinoma, a Phase II gynecologic oncology group study, Gynecol, Oncol, 1999, 75(1),10-14
    350 Berek JS, Welander C, Schink JC, Grossberg H, Montz FJ, Zigelboim J, A Phase I -II trial of intraperitoneal cisplatin and a-interferon in patients with persistent epithelial ovarian cancer, Gynecol, Oncol, 1991, 40(3), 237-243
    351 Markman M, Belinson J, Webster K et al, Phase 2 trial of interferonβ as second-line treatment of ovarian cancer, fallopian tube cancer, or primary carcinoma of the peritoneum, Oncology, 2004, 66(5), 343-346
    352 Recchia F, Saggio G, Cesta A et al, Interleukin-2 and 13-cis retinoic acid as maintenance therapy in advanced ovarian cancer, Int, J, Oncol, 2005, 27(4), 1039 - 1046
    353 Marth C, Windbichler GH, Hausmaninger H, et al, Interferon-gamma in combination with carboplatin and paclitaxel as a safe and effective first-line treatment option for advanced ovarian cancer: results of a phase I/II study, Int J Gynecol Cancer, 2006, 16(4), 1522-1528
    354 Pujade-Lauraine E, Guastalla JP, Colombo N et al, Intraperitoneal recombinant interferon-γ in ovarian cancer patients with residual disease at second-look laparotomy, J, Clin, Oncol, 1996, 14(2), 343-350
    355 Windbichler GH, Hausmaninger H, Stummvoll W, et al, Interferon-g in the first-line therapy of ovarian cancer: a randomized Phase III trial, Br, J, Cancer, 2000, 82(6), 1138-1144
    356 Alberts DS, Marth C, Alvarez RD, et al, Randomized phase 3 trial of interferon gamma-1b plus standard carboplatin/paclitaxel versus carboplatin/paclitaxel alone for first-line treatment of advanced ovarian and primary peritoneal carcinomas: results from a prospectively designed analysis of progression-free survival, Gynecol Oncol, 2008,109(2), 174-181
    357 Liu M, Acres B, Balloul JM et al, Gene-based vaccines and immunotherapeutics, Proc, Natl Acad, Sci, USA ,2004,101 (Suppl. 2), 14567-14571
    358 Sterman DH, Gillespie CT, Carroll RG et al, Interferon b adenoviral gene therapy in a patient with ovarian cancer, Nat, Clin, Pract, 2006,3(11), 633 - 639
    359 Murray JL, Przepiorka D, Ioannides CG, Clinical trials of HER-2/neu-specific vaccines, Semin, Oncol, 27(6 Suppl. 11), 71-75, discussion 92-100
    360 Disis ML, Schiffman K, Cancer vaccines targeting the HER2/neu oncogenic protein, Semin, Oncol, 2001, 28(6 Suppl. 18), 12-20
    361 Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR, Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with Overexpression of HER2: a Phase II trial of the Gynecologic Oncology Group. J. Clin, Oncol, 2003, 21(2), 283-290
    362 Hellstrom I, Goodman G, Pullman J, Yang Y, Hellstrom KE, Overexpression of HER-2 in ovarian carcinomas, Cancer Res, 2001, 61(6), 2420-2423
    363 DisisML, Gooley TA, Rinn K, et al, Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol, 2002, 20,2624-2632
    364 Baxevanis CN, GritzapisAD, TsitsilonisOE, et al, HER-2/neu-derived peptide epitopes are also recognized by cytotoxic CD3(+)CD56(+) (natural killer T) lymphocytes, Int J Cancer, 2002, 98, 864-87
    365 Disis ML, Schiffman K, Guthrie K et al, Effect of dose on immune response in patients vaccinated with an HER-2/neu intracellular domain protein-based vaccine. J. Clin, Oncol,2004, 22(10), 1916-1925
    366 Disis ML, Goodell V, Schiffman K, Knutson KL, Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J. Clin, Immunol, 2004, 24(5)., 571-578
    367 Coelho M, Gauthier P, Pugniere M, et al, Isolation and characterisation of a human anti-idiotypic scFv used as a surrogate tumour antigen to elicit an anti-HER-2/neu humoral response in mice, Br J Cancer, 2004, 90(10),2032-2041
    368 Jaffee EM, Hruban RH, Biedrzycki B, et al, Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation, J Clin Oncol, 2001,19,145-156
    369 Thomas AM, Santarsiero LM, Lutz ER, et al, Mesothelin-specific CD8(+) T cell response provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients, J Exp Med, 2004,2000, 297 - 306
    370 Yokokawa J, Palena C, Arlen P, et al, Identification of novel human CTL epitopes and their agonist epitopes of mesothelin, Clin Cancer Res, 2005, 11 (), 6342 - 6351
    371 Hung CF, Tsai YC, He L, Wu TC, Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells, Gene Ther, 2007,14(12), 921 - 929
    372 Hung CF, Calizo R, Tsai YC, He L, Wu TC, A DNA vaccine encoding a single-chain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors, Vaccine, 2007, 25(1), 127 - 135
    373 Reinartz S, Kohler S, Schlebusch H et al, Vaccination of patients with advanced ovarian carcinoma with the anti-idiotype ACA125: immunological response and survival (Phase Ib/II), Clin, Cancer Res, 2004,10(5), 1580-1587
    374 Berek JS, Immunotherapy of ovarian cancer with antibodies: a focus on oregovomab, Expert Opin, Biol, Ther, 2004, 4(7), .1159-1165
    375 Berek JS, Taylor PT, Gordon A et al, Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer, J, Clin, Oncol, 2004, 22(17), 3507-3516
    376 Odunsi K, Jungbluth AA, Stockert E et al, NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer, Cancer Res, 2003,63(18), 6076-6083,
    377 Odunsi K, Qian F, Matsuzaki J et al, Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer, Proc Natl Acad Sci USA, 2007,104(31), 12837 - 12842
    378 Sabbatini PJ, Ragupathi G, Hood C et al, Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer, Clin, Cancer Res, 2007, 13(14), 4170-4177
    379 Berd D, Kairys J, Dunton C, Mastrangelo MJ, Sato T, Maguire HC Jr, Autologous, hapten-modif ied vaccine as a treatment for human cancers, Semin, Oncol, 1998,25(6), 646-653
    380 Hodi FS, Mihm MC, Soiffer RJ et al, Biologic activity of cytotoxic T lymphocyte-associa ted antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients, Proc, Natl Acad, Sci, USA , 2003,100 (8), 4712-4717
    381 Austin FC, Boone CW, Virus augmentation of the antigenicity of tumor cell extracts, Adv, Cancer Res, 1979, 30, 301-345
    382 Schirrmacher V, Ahlert T, Probstle T et al, Immunization with virus-modified tumor cells, Semin, Oncol, 1998, 25(6), 677-696
    383 Bash JA, Wallack MK, Vaccinia virus oncolysates in the treatment of malignant melanoma, Cancer Treat, Res, 1998, 43, 177-190
    384 Schirrmacher V, Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory, Cancer Immunol, Immunother, 2004, 54(6), 587 - 598
    385 Mobus V, Horn S, Stock M, Schirrmacher V, Tumor cell vaccination for gynecological tumors, Hybridoma, 1993, 12(5), 543-547
    386 Hodge JW, Grosenhaeh DW, Aarts WM, et al, Vaccine therapy of establ ished tumors in the abseneeof autoimmunity, Clin Caneer Res, 2003, 9(5), 1837 — 1849
    387 Brockstedt DG, Leong ML, Bahjat KS, et al, Live-attenuated L, monocytogenes encoding mesothelin for immunotherapy of patients with pancreas and ovarian cancers, AACR Proceedings, 2007 ,4, 14, (Abstract #1874)
    388 Breidenbach M, Rein DT, Everts M, et al, Mesothelin-mediated targeting of adenoviral vectors for ovarian cancer gene therapy, Gene Ther, 2005, 12, 187 - 193
    389 Chang CL, Wu TC, Hung CF, Control of human mesothel in-express ing tumors by DNA vaccines, Gene Ther, 2007,14(16), 1189-1198
    390 Schuler G, Schuler Thurner B, Steinman RM, The use of dendritic cells in cancer immunotherapy, , CurrOpin Immunol, 2003, 15 (2), 138-147
    391 Brossart P, Wirths S, Stuhler G, et al, Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide pulsed dendritic cells, Blood, 2000, 96(9), 3102-3108
    392 Santin AD, Bellone S, Ravaggi A, et al, Induction of ovarian tumor specific CD8+ cytotoxic T lymphocytes by acid eluted peptide pulsed autologous dendritic cells, Obstet Gynecol, 2000, 96(3), 422-430
    393 Kim DK, Kim JH, Kim YT, et al, The comparison of cytotoxic T lymphocyte effects of dendritic cells stimulated by the folate binding protein peptide cultured with IL 15 and IL 2 in solid tumor, Yonsei Med J, 2002, 43(6), 691-700
    394 Hernando JJ, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T, Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a Phase I trial, Cancer Immunol, Immunother, 2002, 51 (1), 45-52
    395 Santin AD, Hermonat PL, Ravaggi A, et al, In vitro induction of tumor-specific human lymphocyte antigen class I restricted CD8 cytotoxic T lymphocytes by ovarian tumor antigen pulsed autologous dendritic cells from patients with advanced ovarian cancer, Am J Obstet Gynecol, 2000, 183(3), 601-609
    396 Santin AD, Bellone S, Palmieri M, et al, Restoration of tumor specific human leukocyte antigens class I restricted cytotoxicity by dendritic cell stimulation of tumor infiltrating lymphocytes in patients with advanced ovarian cancer, Int J Gynecol Cancer, 2004, 14(1), 64-75
    397 Schlienger K, Chu CS, Woo EY, et al, Trance and CD40 ligand matured dendritic cells reveal MHC class I restricted T cells specific for autologous tumor in late stage ovarian cancer patients, Clin Cancer Res, 2003, 9, 1517-1527
    398 Gong J, Chen D, Kashiwaba M, et al, Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells, Proc Natl Acad Sci USA, 1998, 95(11),6279-6283
    399 Gong J, Nikrui N, Chen D, et al, Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity, J Immunol, 2000, 165(3), 1705-1711
    400 Homma S, Sagawa Y, Ito M, Ohno T, Toda G, Cancer immunotherapy using dendritic/tumour-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses, Clin, Exp, Immunol, 2006, 144(1), 41-47
    401 Wan Y, Bramson J, Carter R, et al, Dendritic cells transduced with an adenoviral vector encoding a model tumor associated antigen for tumor vaccination, Hum Gene Ther, 1997, 8(11), 1355-1363
    402 Miller PW, Sharma S, Stolina M, et al, Intratumoral administration of adenoviral interleukin 7 gene modified dendritic cells augments specific antitumor immunity and achieves tumor eradication, Hum Gene Ther, 2000, 11(1), 53-65
    403 Akiyama Y, Maruyama K, Watanabe M, et al, Retroviral mediated IL 12 gene transduction into human CD34+cell derived dendritic cells, Int J Oncol, 2002, 21(3), 509-514
    404 Hernando JJ, Park TW, Fischer HP et al, Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-α for relapsed metastatic ovarian cancer, Lancet Oncol,2007,8(5), 451-454
    405 Hodge JW, Tsang KY, Poole DJ, et al, General keynote: vaccine strategies for the therapy of ovarian cancer, Gynecol Oncol, 2003, 88(1 Pt2),s97-s104
    406 Baselga J, Averbuch SD, ZD1839 (Iressa) as an anticancer agent, Drugs, 2000, 60( suppl. 1), 33-40, discussion, 41-42
    407 Ciardiello F, Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents, Drugs, 2000, 60( suppl. 1), 25-32, discussion, 41-42
    408 Albanell J, Gascon P, Small molecules with EGFR-TK inhibitor activity, Curr Drug Targets, 2005, 6(3), 259-274
    409 Fujimura M, Hidaka T, Saito S, Selective inhibition of the epidermal growth factor receptor by ZD1839 decreases the growth and invasion of ovarian clear cell adenocarcinoma cells, Clin Cancer Res, .2002, 8(7), 2448-245
    410 Rosano L, Di Castro V, Spinella F, et al, Combined targeting of endothelin A receptor and epidermal growth factor receptor in ovarian cancer shows enhanced antitumor activity, Cancer Res, 2007, 67(3), 6351-6359
    411 Posadas EM, Liel MS, Kwitkowski V, et al, A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer, Cancer, 2007,109 (7), 1323-1330
    412 Wagner U, du Bois A, Pfisterer J, et al, Gefitinib in combination with tamoxifen in patients with ovarian cancer refractory or resistant to platinum-taxane based therapy—a phase II trial of the AGO Ovarian Cancer Study Group (AGO-OVAR 2,6)
    413 Bull Phelps SL, Schorge JO, Peyton MJ, et al, Implications of EGFR inhibition in ovarian cancer cell proliferation.Gynecol Oncol, 2008 ,4, 16[Epub ahead of print]
    414 Schilder RJ, Sill MW, Chen X, et al, Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study, Clin Caner Res, 2005, 11(15), 5539-5548
    415 Smith JA, Gaikwad A, Yu J, et al, In vitro evaluation of the effects of gefitinib on the modulation of cytotoxic activity of selected anticancer agents in a panel of human ovarian cancer cell lines, Cancer Chemother Pharmacol, 2008,62(1), 51-58
    416 Gordon AN, Finkler N, Edwards RP, et al, Efficacy and safety of erlotinib HC1, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study, Int J Gynecol Cancer, 2005, 15(5), 785-792
    417 iri HS, Oza AM, Morgan RJ, et al, Efficacy and safety of bevacizumab plus erlotinib for patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer: A trial of the Chicago, PMH, and California Phase II consortia, Gynecol Oncol, 2008, 17, [Epub ahead of print]
    418 Dai Q, Ling YH, Lia M, Enhanced sensitivity to the HER1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib hydrochloride in chemotherapy-resistant tumor cell lines, Clin Cancer Res, 2005,11(4), 1572— 1578
    419 Apte SM, Fan D, Killion JJ, et al, Targeting the platelet-derived growth factor receptor in antivascular therapy for human ovarian carcinoma,Clin Cancer Res, 2004,10(3), 897-908
    420 Mundhenke C, Weigel MT, Sturner KH, et al, Novel treatment of ovarian cancer cell lines with Imatinib mesylate combined with Paclitaxel and Carboplatin leads to receptor-mediated antiproliferative effects, J Cancer Res Clin Oncol, 2008 May 9. [Epub ahead of print]
    421 Alberts DS, Liu PY, Wilczynski SP, et al, Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211), Int J Gynecol Cancer, 2007,17(4), 784-788
    422 Coleman RL, Broaddus RR, Bodurka DC, et al, Phase II trial of imatinib mesylate in patients with recurrent platinum-and taxane-resistant epithelial ovarian and primary peritoneal cancers, Gynecol Oncol, 2006,101(1), 126-131
    423 Hassan R, Viner JL, Wang QC, Antitumor activity of Kl-LysPE38QQR, an immunotoxin targeting mesothelin, a cell-surface antigen overexpressed in ovarian cancer and malignant mesothelioma, J Immunother, 2000, 23 (4), 473-479
    424 Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ, Immunotoxin therapy of cancer, Nat Rev Cancer,2006,5(7),559-565
    425 Hassan R,Lerner MR,Benbrook D,et al,Antitumor activity of SS(dsFv)PE38and SS1(dsFv)PE38,recombinant antimesothelin immunotoxins against human gynecologic cancers grown in organotypic culture in vitro,Clin Cancer Res,2002,8(11),3520-3526
    426 Hassan R,Bullock S,Premkumar A,et al,Phase I study of SSIP,a recombinant anti-mesothelin immunotoxin given as a bolus i,v,infusion to patients with mesothelin-expressing mesothelioma,ovarian,and pancreatic cancers,Clin Cancer Res,2007,13(17),5144-5149
    427 Song EY,Qu CF,Rizvi SM,et al,Bismuth-213 radioimmunotherapy with C595anti-MUC1 monoclonal antibody in an ovarian cancer ascites model,Cancer Biol Ther,2008,7(1),76-80
    428 Song YJ,Qu CF,Rizvi SM,et al,Cytotoxicity of PAI2,C595 and Herceptin vectors labeled with the alpha-emitting radioisotope Bismuth-213 for ovarian cancer cell monolayers and clusters,Cancer Lett,2006,234(2),176-183
    429 Berger MA,Masters GR,Singleton J,et al,Pharmacokinetic,biodistribution,and radioimmunotherapy with monoclonal antibody 776.1 in a murine model of human ovarian cancer,Cancer Biother Radiopharm,2005,20(6),589-602
    430 Masters GR,Berger MA,Albone EF,Synergistic effects of combined therapy using paclitaxel and[90Y-DOTA]776,1 on growth of OVCAR-3 ovarian carcinoma xenografts,Gynecol Oncol,2006,102(3),461-467
    431 罗元恺,中医妇科学[M],北京:人民卫生出版社出版,1995,377
    432 王玉荣,谈勇,中医药在卵巢恶性肿瘤治疗中的应用思路与方法,山西中医学院学报,2005,6(2)
    433 姚红梅,顾莹清,腹腔化疗及中药治疗卵巢癌术后43例,辽宁中医杂志,1998,25(10),468
    434 刘爱武,齐聪,胡争艳,中西医结合治疗卵巢癌疗效评估,辽宁中医杂志,2001,28(10),618
    435 曾芹,高国俊,中西医结合治疗难治性卵巢癌疗效观察,苏州大学学报(医学版),2005,25(1)
    436 李红,于亮,李宗宪等,艾迪注射液治疗晚期老年恶性肿瘤40例疗效观察,山东医药,2005,45(7)
    437 侯玉娜,原国才,邓木秀,博生癌宁透皮治疗贴联合腹腔化疗治疗中晚期卵巢癌的疗效观察。深圳中西医结合杂志,2003,13(3),151-153
    438 韩凤娟,隋丽华,马荣,理冲生髓饮对卵巢癌患者免疫状态影响的临床研究,中医药信息,2003,20(2),37
    439 潘天慧,樊巧云,手术、化疗配合中药治疗原发性卵巢癌的临床研究,安徽中医学院学报,2004,23(4),15-17
    440 潘玉真,殷东风,张宁苏,等,联合中药消积煎剂综合治疗对顺铂耐药卵巢癌体外作用的实验研究,中华中医药学刊,2008,26(1),77-79
    441 郭文菁,马秀明,杨美香,等。罗勒多糖对卵巢癌生物学行为的影响及其机制研究。现代妇产科进展,2006,15(9),658-660
    442 侯华新,黎丹戎,邝晓聪,等。氧化苦参碱对卵巢癌H08910细胞凋亡影响的血清药理学研究。中国现代应用药学杂志,2006,23(5),349-352
    443 邱巍峰,程建新,刘京生,牛黄天龙饮对裸鼠人卵巢上皮性癌SKOV3细胞株抗肿肿瘤瘤作用的电镜观察,河北医药,2007,29(5),425-426
    444 郑丽端,童强松,吴翠环,姜黄素诱导人卵巢癌细胞株A2780凋亡及其分子机制的研究,癌症,2002,21(12),1296-1300
    445 杨镇洲,大豆异黄酮的抗癌效应研究进展,国外医学肿瘤学分册,2001,28(2),107-110
    446 黄翠萍,王波,杨瑞芳,等,金雀黄素抑制人卵巢癌细胞株增殖的体外研究,中华妇产科杂志,2002,37(12),750-751
    447 徐德平,江汉湖,汤涛,等,大豆及丹贝异黄酮对乳腺癌、子宫癌和卵巢癌癌细胞的抑制效应,食品科学,2001,22
    448 河福金,王健,牛建昭,等,大豆异黄酮抑制裸鼠移植瘤生长及其血管生成的实验研究,中国药理学通报,2003,19(1),73-76
    449 潘子民,叶大风,谢幸,等,人参皂苷Rg 3对荷卵巢癌的严重联合免疫缺陷鼠的抗肿瘤血管生成作用的研究,中华妇产科杂志,2002,37(4),227-230
    450 Monograph,Plant sterols and sterolins,Altern Med Rev,2001,6(2),203-206
    1 蒋燕明,卵巢癌相关抗原的筛选及鉴定,广西南宁,广西医科大学研究生学院,2005年
    2 Lagarkova MA,Koroleva EP,Kuprash DV,et al,Evaluation of humoral response to tumor antigens using recombinant expression-based serological mini-arrays(SMARTA),Immunology Letters,2003,85,71-74
    3 Chen YN,Cancer vaccine:identification of human tumor antigens by SEREX, Cancer J,2000,6,Suppl 3,S208-217
    4 Tsuzuki M,Wu W,Nishikawa H,et al,A truncated splice variant of human BARD1that lacks the RING finger and ankyrin repeats,Cancer Lett,2006,233(1),108-116
    5 Feki A,Jefford CE,Durand P,et al,BARD1 Expression During Spermatogenesis Is Associated with Apoptosis and Hormonally Regulated,Biology Of Reproduction,2004,71,1614-1624.
    6 Gautier F,Irminger-Figner I,Gregoire M,et al,Identification of an Apoptotic Cleavage Product of BARD1 as an Autoantigen:A Potential Factor in the Antitumoral Response mediated by apoptotic bodies,Cancer Res,2000,60(24),6895-6900
    7 Rosen A,Casciola-Rosen L,et al,Autoantigens as substrates for apoptotic proteases:implications for the pathogenesis of systemic autoimmune disease,Cell Death Differ,1999,6,6-12
    8 Li L,Cohen M,Wu J,et al.Identification of BARD1 splice-isoforms involved in human trophoblast invasio,Int J Biochem Cell Biol,2007,39(9),1659-1672
    9 刘新文,童坦君,张宗玉,人类基因组中的反转录转座子,生物化学与生物物理进展,2000,27(1):12-15
    10 Holschneider CH,Berek JS,Ovarian cancer:epidemiology,biology and prognostic factors,Seminars in surgical Oncology,2000,19(1),3-10
    11 Boucheix C,Rubinstein E,Tetraspanins,Cell Mol Life Sci,2001,58(9),1189-1205
    12 Maecker HT,Todd S C,Levy S,The tetraspanin superfamily:molecular facilitators,FASEB J,1997,11(16),428-442
    13 Ikeyama S,Koyama M,Yamaoko M,Sasada R,et al,Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA, J Exp Med, 1993,177(5),1231-1237
    14 Radford K J, Thome RF, Hersey P, Regulation of tumor cell motility and migration by CD63 in a human melanoma cell line, J Immunol, 1997,158(7), 3353-3358
    15 Dong JT, Lamb PW, Rinker-Schaeffer C W, et al, KALI a metastasis suppressor gene for prostate cancer on human chromosome 11p11. 2, Science, 1995 268(5212), 884-886
    16 Testa JE, Brooks PC, Lin JM, et al, Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis, Cancer Res, 1999, 59(15), 3812-3820
    17 Higashiyama M, Taki T, Ieki Y, et al, Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer, Cancer Res, 1995,55(15), 6040-6044
    18 Adachi M, Taki T, Ieki Y, et al, Correlation of KAI1/CD82 gene expression with good prognosis in patients with non-small cell lung cancer, Cancer Res, 1996, 56(8), 1751-1755
    19 Miyake M, Nakano K, Itoi SI, et al, Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer, Cancer Res, 1996, 56(6), 1244-1249
    20 Chu YW, Yang PC, Yang SC, et al, Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line, Am J Respir Cell Mol Biol, 1997,17(3), 353-360
    21 Boucheix C, Rubinstein E, Tetraspanins, Cell Mol Life Sci, 2001, 58(9), 1189-1205
    22 Hellstrom I, Horn D, Linsley P, et al, Monoclonal mouse antibodies raised against human .lung carcinoma, Cancer Res, 1986, 46(8), 3917-3923
    23 Svensson HP, Frank IS, Berry KK, et al, Therapeutic effects of monoclonal antibody-β-lactamase conjugates in combination with a nitrogen mustard anticancer prodrug in models of human renal cell carcinoma, J Med Chem, 1998,41(9), 1507-1512
    24 O' Donnell RT, DeNardo SJ, Shi XB, et al, L6 monoclonal antibody binds prostate cancer, Prostate, 1998, 37 (2), 91-97
    25 Tascou S, Nayernia K, Uedelhoven J, et al, Isolation and characterization of differentially expressed genes in invasive and non-invasive immortalized murine male germ cells in vitro, Int J Oncol, 2001,18(3), 567-574
    26 Goodman GE, Hellstrom I, Brodzinsky L, et al, Phase I trial of murine monoclonal antibody L6 in breast, colon, ovarian, and lung cancer, J Clin Oncol, 1990,8(6), 1083-1092
    27 Svensson HP, Vrudhula VM, Emswiler JE, et al, In vitro and in vivo activities of a doxorubicin prodrug in combination with monoclonal antibody S-lactamase conjugates, Cancer Res, 1995, 55(11), 2357-2365
    28 Denardo SJ, Richman CM, Goldstein DS, et al, Yttrium-90/indium-111-DOTA-peptide-chimeric L6: pharmacokinetics, dosimetry and initial results in patients with incurable breast cancer, Anticancer Res,1997,17(3B), 1735-1744
    29 Kao YR, Shih JY, Wen WC, et al, Tumor-associated antigen L6 and the invasion of human lung cancer cells, Clin Cancer Res, 2003, 9(7), 2807-2816
    30 Lekishvili T, Fromm E, Mujoomdar M, et al, The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility, J Cell Sci, 2008,121(5),685-694
    31 Nehls P, Keck T, Greferath R, et al. cDNA cloning, recombinant expression and characterization of polypeptides with exceptional DNA affinity. Nucleic Acids Res, 1998, 26(5), 1160-1166
    32 Rothbarth K, Spiess E, Juodka B, et al, Induction of apoptosis by over-expression of the DNA-binding and DNA-PK-activating protein C1D, J Cell Science, 1999,112(Pt13), 2223-2232
    33 Rothbarth K, Hunziker A, Stammer H, et al, Promoter of the gene encoding the 16 kDa DNA-binding and apoptosis-inducing C1D protein, Biochim Biophys Acta, 2001,1518(3), 271-2755
    34 Rothbarth K, Stammer H, Werner D, et al, Proteasome-mediated degradation antagonizes critical levels of the apoptosis-inducing C1D protein, Cancer Cell Int,2002, 2(1), 12
    35 YavuzerU, Smith GCM, Bliss T, et al, DNA end-independent activation of DNA-PK is mediated via association with the DNA-binding protein C1D, Genes and Development,1998,12(14), 2188-2199
    36 Drexler HC, Activation of the cell death program by inhibition of proteasome function, Proc Natl Acad Sci USA,1997,94(3),855-860
    37 Maki CG, Huibregtse JM, Howley PM, In vivo ubiquitination and proteasome-mediated degradation of p53, Cancer Res, 1996, 56(11), 2649-2654
    38 Lee CW, La-Thangue NB, Promoter specificity and stability control of the p53-related protein p73, Oncogene, 1999,18(29),4171-4181
    39 Cayrol C, Ducommun B, Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21, Oncogene, 1998,12(19), 2437-2444.
    40 Han S, Park K, Kim HY, et al, Reduced expression of p27Kip1 protein is associated with poor clinical outcome of breast cancer patients treated with systemic chemotherapy and is linked to cell proliferation and differentiation, Breast Cancer Res Treat, 1999, 55(2), 161-167
    41 Zhang XM, Lin H, Chen C, et al, Inhibition of ubiquitin-proteasome pathway activates a caspase-3-like protease and induces Bcl-2 cleavage in human M-O7e leukaemic cells, Biochem J, 1999, 340(Pt1),127-133
    42 Schilders G, Van DE, Pruijn GJ, et al, C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing, Nucleic Acids Res, 2007, 35 (8), 2564-2572
    43 Schilders G, Egberts WV, Raijmaker R, et al, C1D is a major autoantibody target in patients with the polymyositis-scleroderma overlap syndrome, Arthritis Rheum, 2007,56(7),2449-2454
    44 Shin JN, Kim I, Lee JS, et al, A novel zinc finger protein that inhibits ostoclastogenesis and the function of tumor necrosis factor receptor-associated factor 6, J Biol Chem, 2002, 277(10), 8346- 8353
    45 Siomi h, siomi MC, Nussbaum RL, et al, The protein product of the fragile X gene, FMR1 has characteristics of an RNA-binding protein, Cell, 1993, 74(2), 291-298
    46 Siomi MC, Zhang Y, Siomi H, et al, Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them, Mol Cell Biol, 1996,16(7), 3825-3832
    47 Vasudevan S, Steitz JA, AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2, Cell, 2007, 128(6), 1105-1118
    48 Tamanini F, Willemsen R, Unen LV, et al, Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis, Hum Mol Genet, 1997,6(8), 1315-1322
    49 Bolivar J, Guelman S, Iglesias C, et al, The fragile-X-related gene FXR1 is a human autoantigen processed during apoptosis, J Bio Chem, 1998, 273, 17122-17127
    50 Casciola-Rosen L A, Anhalt G J, Rosen A, DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis, J Exp Med, 1995,182(6), 1625-1634
    51 Comtesse N, Keller A, Diesinger I, et al, Frequent Overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinoma of the lung, Int J Cancer, 2007, 120(12), 2538-2544
    1 Scanlan M J,Chen Y T,Williamson B,et al,Characterization of human colon cancer antigens recognized by autologous antibodies,Int J Cancer,1998,76(5),652-658.
    2 Naora H,Yang Y,Montz F J,et al,Aserologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells,Proc Natl Acad Sci USA,2001,98(7),4060-4065
    1 Wacker M,Linton D,Hitchen P G,et al,N-Linked Glycosylation inCampylobacter jejuniand its Functional Transfer into E.coil,Science,2002,298(5599),1790-1793
    2 Flores S,de Anda-Herrera R,Gosset G,et al,Growth-rate recovery of Escherichia colicultures carrying a multicopy plasmid,by engineering of the pentose-phosphate pathway,Biotechnol Bioeng,2004,87(4),485
    3 Lan CB,Protein expression in yeast as an approach to production of recombinant malaria antigens,Am J Trop Med Hyg 1994,50(4),Suppl,20-26
    4 Hasslacher M,Schall M,Hayn M,et al,High-level intracllular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts,Protein Expr Purif,1997,11(1),61-71
    5 Rosenfeld SA,Nadeau D,Tirado J,et al,Production and purification of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris,Protein Expr Purif,1996,8(4),476-482
    6 朱剑昆,许志祥,黄伟达,等,人重组白细胞介素11在毕氏酵母系统中的表达及纯化,中国医学科学院学报,2001,23(2),12
    7 Wang W, Sun YH, Wang YP, et al, Expression of grass carp growth hormone in the yeast Pichia pastoris, Acta Genetica Sinica, 2003, 30(4), 301-306
    8 Fidler AE, Lin JS, Chie WN, et al, Production of biologically active tethered ovine FSH beta alpha by the methylotrophic yeast Pichia pastoris, J Mol Endocrinol.2003,30 (2), 213-225
    9 Li YH, Bai JJ, Jian Q, et al, Expression of common carp growth hormone in the yeast Pichia pastoris and growth stimulation of juvenile tilapia (Oreochromis niloticus), Aquaculture, 2003, 216 (1-4), 329-341
    10 Bei JL, Wang JW, Wang XZ, et al, High expression of LIP1 in Pichia pastoris, Acta Biochimica et Biophysica Sinica, 2003, 35(4), 366-370
    11 Cereghino JL, Cregg JM, Heterologous protein expression in themethylotrophic yeast Pichia pastoris, FEMS Microbiol Rev, 2000, 24(1), 45-66
    12 Panagiotidis CA, Silverstein SJ.PALEX a dual-tag prokaryotic expression, vector for the pnrification of full-length proteins ,Gene 1995, 164(1): 45-47
    13 Love CA , et al, Gene, 1996, 176(1-2),49
    14 Kim CS, Lee EK, et al. Effects of operating parameters in vitro renaturation of a fusion proterin of human growth hormone and glutathione S transferase from inclusion body , Process Biochemistry, 2000, 36(6), 111-117
    15 Lin YC, Shih JW, Hsu CL, et al. Renaturation and Stabilization of the Telomere-Binding Aetivity of Saeeharomyees Cdel3) 451-93) p by L-Arginine, Anal Bioehem, 2001, 294(4),44-47
    16 Goa YG, Guan YX, Yao SJ, et al, Lysozyme refolding at high concertration by dilution and size-exclusion chromatography, J Zhejiang Univ Sci, 2003,4(2), 136-141
    1 Sreekumar A,Laxman B,Rhodes DR,et al,Humoral immune response to alpha-methylacyl-CoA racemase and prostate cancer,J Natl Cancer Inst,2004,96(11),834-843
    2 Gretzer MB,Partin A W,PSA markers in prostate cancer detection,Urol Clin North Am,2003,30(4),677-686
    3 Crawford NP,Colliver DW,Galandiuk S,Tumor markers and colorectal cancer:utility in management,J Surg Oncol,2003,84(4)239-248
    4 Cheung KL,Robertson FR,Objective measurement of remission and progression in metastatic breast cancer by the use of serum tumour markers,Minerva Chir,2003,58(3),297-303
    5 Trompetas V,Panagopoulos E,Priovolou-Papaevangelou M,et al,benign true cyst of the spleen.with high serum level of CA 19-9, Eur J Gastroenterol Hepatol, 2002,14(1),85-88
    6 Anderiesz C, Quinn MA, Screening for ovarian cancer, Med J Aust, 2003, 178 (12), 655-656
    7 Scanlan MJ, Gout I, Gordon CM, et al, Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression, Cancer Immun ,2001, 1,4
    8 Ferna'ndez-Madrid F, Tang N, Alansari H, et al, Autoantibodies to annexin XIA and other autoantigens in the diagnosis of breast cancer, Cancer Res, 2004,64 (1), 5089 - 5096
    9 Montenarh M, Humoral immune response against the growth suppressor p53 in human malignancies in: Shoenfeld Y, Gershwin (Eds.) ME, Cancer and Autoimmunity, Elsevier, Amsterdam, NY, 2000, 193-203
    10 Neumann F, Wagner C, Stevanovic S, et al, Identification of an HLADR-restricted peptide epitope with a promiscuous bindingpattern derived from the cancer testis antigen HOM-MEL- 40/SSX2, Int J Cancer, 2004,112 (4), 661-668
    11 Minenkova O, Pucci A, Pavoni E, et al, Identification of tumorassociated antigens by screening phage-displayed human cDNA libraries with sera from tumor patients, Int J Cancer, 2003,106(4) ,534-544
    12 Wang X, Yu J, Sreekumar A, et al, Autoantibody signatures in prostate cancer, N Engl J Med, 2005, 353(12), 1224-1235
    13 Tureci O, Mack U, Luxemburger U, et al, Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1, Cancer Letters, 2006, 236(1), 64-71
    14 Nesterova M, Johnson N, Cheadle C, et al, Autoantibody biomarker opens a new gateway for cancer diagnosis, Biochim Biophys Acta, 2006,1762(4), 398-403
    15 Disis ML, Pupa SM, Gralow JR, et al, High titer HER-2/neu protein-specific antibody can be detected in patients with early stage breast cancer, J Clin Oncol,1997,15(11), 3363-3367
    16 Takahashi M, Chen W, Byrd DR, et al, Antibody to ras proteins in patients with colon cancer, Clin Cancer Res, 1995, 1(10), 1071-1077
    17 Covini G, Chan E K, Nishioka M, et alm, Immune response to cyclin B1 in hepatocellular carcinoma, Hepatology, 1997, 25(1), 75-80
    18 Kotera Y, Fontenot JD, Pecher G, et al, Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic and colon cancer patients, Cancer Res, 1994, 54(11), 2856-2860
    19 Sahin U, Tureci O, Pfreundschuh M, Serological identification of human tumor antigens,Curr Opin Immunol, 1997, 9(5), 709-716
    20 Tureci O, Sahin U, Koslowski M, et al, A novel tumour associated leucine zipper protein targeting to sites of gene transcription and splicing. Oncogene, 2002, 21 (24),3879-3888
    21 Mack U, Ukena D, Montenarh M, et al, Serum anti-p53 antibodies in patients with lung cancer, Oncol Rep, 2000, 7(3), 669-674
    22 Disis ML, Pupa SM, Gralow JR, et al, High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer, J Clin Oncol, 1997,15(11), 3363-3367
    23 Fernandez-Madrid F, Tang N, Alansari H, et al, Autoantibodies to Annexin XI-A and Other Autoantigens in the Diagnosis of Breast Cancer, Cancer Res, 2004 ,64(15), 5089-5096
    24 Gadducci A, Ferdeghini M, Buttitta F, et al, Assessment of the prognostic relevance of serum anti-p53 antibodies in epithelial ovarian cancer, Gynecol Oncol, 1999,72(1),76-81
    25 Tang R, Ko MC, Wang JY, et al, Humoral response to p53 in human colorectal tumors: a prospective study of 1,209 patients, Int J Cancer, 2001,94(6), 859-863
    26 Lubin R, Serum p53 antibodies as early markers of lung cancer, Nat Med, 1995, 1(7), 701-702
    27 Tan EM, Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis, J Clin Invest, 2001, 108(10), 1411-1415
    28 Zhang JY, Casiano CA, Peng XX,et al, Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens, Cancer Epidemiol Biomarkers Prev, 2003, 12(2), 136-143
    29 Soussi T, p53 Antibodies in the sera of patients with various types of cancer: a review, Cancer Res, 2000, 60(7), 1777-1788
    1 Siomi MC,Zhang Y,Siomi H,et al,Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among tham,Mol Cell Biol,1996,16(7),3825-3832
    2 Bolivar J,Guelman S,Iglesias C,et al,The fragile-X-related gene FXR1 is a human autoantigen processed during apoptosis,J Bio Chem,1998,273,17122-17127
    3 Casciola-Rosen L A,Anhalt G J,Rosen A,DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis,J Exp Med,1995,182(6),1625-1634
    4 Comtesse N,Keller A,Diesinger I,et al,Frequent overexpression of the genes FXR1,CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinoma of the lung,Int J Cancer,2007,120(12),2538-2544
    1 Fire A,Xu AQ,Montgomerym K,et al,Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,Nature,1998,391,806-811
    2 Yang G,Thompson JA,Fang B,et al,Silencing of H-ras geneexpression by retrovirus-mediated siRNA decreases transformationefficiency and turnorgrowth in a model of human ovarian cancer,Oncogene,2003,22(36),5694-5701
    3 Mei FC,Young TW,Liu J,et al,RAS-mediated epigenetic inactivation of OPCML in oncogenic transformation of human ovariansurface epithelial cells,FASEBJ,2006,20(3),497-499
    4 TsuchiyaA,SakamotoM,Yasuda J,etal,Identification of hepatocyte nuclear factor-1b as amolecularmarker and a possiblemolecular target for therapy of ovary clear cell carcinoma,American Journal of Pathology,2003,163, 2503-2512
    5 Yang G, Cai KQ, Thompson-Lanza JA, et al, Inhibition of breast andovarian tumor growth through multiple signaling pathways by usingretrovirus-mediated small interfering RNA against Her-2/neu geneexpression, J Biol Chem, 2004,279 (6), 4339-4345
    6 Zhang L, Yang N, Mohamed H A, et al,Vector-BasedRNAi, a novel tool for isoform-specific knock-down of VEGFand anti-angiogenesis gene therapy of cancer, BiochemBiophys Res Commun, 2003, 303(4),1169-1178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700