用户名: 密码: 验证码:
水稻小RNA的基因组分布和分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多数真核生物都包含多种以小RNA(small RNA)为核心的基因沉默途径,其在转录或转录后水平上对基因、重复序列和病毒等进行负调控。随着实验和计算生物学技术的发展,在植物中发现了越来越多的小RNA。目前已知有2种主要的小RNA,分别是微RNA(microRNA,miRNA),小干扰RNA(small interferingRNA,siRNA),各自都具有不同的生物合成模式和基因组座位。小RNA的产生位点,尤其是产生24-nt小干扰RNA的位点,和基因组中的重复序列高度相关。在植物小RNA途径中,已发现有许多蛋白组分的参与,比如RNA依赖性RNA聚合酶(RNA-dependent RNA polymerase,RDR),类Dicer酶(Dicer-like enzyme,DCL),基因沉默抑制子(Supressor of Gene Silencing,SGS)和Argonaute(AGO)等。所有小RNA介导的基因沉默途径都需要AGO家族成员的参与。新的测序技术使得对小RNA群体有效深入的测序成为可能,在植物中已有多项小RNA测序计划开展,帮助人们发现新的小RNA种类和基因,并对小RNA的表达进行分析。虽然对小RNA的多样性,产生机制和功能的研究很多,但是对其进化过程的了解还不多。基因组倍增是进化的重要驱动力,产生了大量基因家族和新基因。多种生物,比如酵母、脊椎动物、拟南芥和禾本科均经历了古老的基因组倍增事件。最近的研究发现,倍增或复制事件在拟南芥若干miRNA家族(比如miR169和miR395)的分化和进化过程中扮演了重要角色。
     本研究利用分子生物学和计算生物学方法,主要研究了禾本科重要的模式植物,水稻的两个典型小RNA家族(TAS3和miR156)的进化过程及其小RNA在水稻基因组上的分布与表达分化。
     反式作用siRNA(trans-acting siRNA,tasiRNA)是长为21nt的植物特异性内源性siRNA,与目标位点非完全互补结合后,诱导对靶基因的剪切反应。每个tasiRNA基因座位(TAS基因)转录后被转变成dsRNA,然后以21nt为步长,进行相位(phase)式切割,生成tasiRNA,这个过程需要SGS3/RDR6/DCL4途径的参与。在tasiRNA的形成过程中,需要miRNA的参与来锚定切割的目标序列区域。已经鉴别了植物上来自4个TAS基因家族(TAS1-TAS4)的10多个TAS3基因,包括拟南芥中的TAS1-TAS4和水稻中的TAS3基因。来自TAS3家族的tasiRNA,tasiARF对编码生长素应答因子(Auxin Response Factors,ARFs),包括ARF2,ARF3和ARF4的mRNA有下调作用,并且在营养枝发育和叶极性的时序性调控中也发挥作用。TAS3家族和其他已经识别的TAS基因座位至少在两方面有所不同:(1)在双子叶(拟南芥),单子叶(水稻),甚至在裸子植物中(苔藓)中,TAS3都需要两个miR390结合位点;(2)miR390在植物界中相当保守。TAS3在水稻和拟南芥上的高度保守性,为通过计算识别的方法在其他植物上发现候选的TAS3基因提供了可能。这些基因序列可用来分析TAS3家族在禾本科以及其他植物中的进化。本研究通过数据库挖掘和PCR扩增识别了56个候选TAS3基因。系统发育分析表明,在禾本科中,TAS3基因的扩张至少经历了3次基因组/基因倍增事件,并且许多TAS3基因已经在进化中丢失。我们的结果呈现了在基因组倍增事件背景下,禾本科中TAS3家族基因在进化中频繁生灭的历史。同时,序列分析表明在tasiARF和3'miR390互补位点之间的区域上,TAS3基因序列的相位排布结构具有高度的保守性,也就是说,这个区域长度的变化遵守以21nt为单位的规则。我们还在水稻和拟南芥的miR390靶标LRR激酶基因中找到了类似TAS3的序列。在这些结果的基础上,我们对TAS3基因的起源和产生机制进行了探讨。
     miRNA是长约21-24 nt的小RNA分子,最初作为pri-miRNA(primarymiRNA)的一部分由RNA聚合酶Ⅱ转录,pri-miRNA经加工后形成具茎环结构的miRNA前体(pre-miRNA),然后由DCL进一步加工为成熟miRNA。miRNA通过介导对目标基因的降解或翻译抑制而产生转录后水平上的基因沉默功能。在水稻中,通过克隆或计算识别,也已发现了几百个miRNA。对拟南芥中含多成员的miRNA家族的进化研究发现,倍增或复制事件在这些miRNA家族的分化和进化过程中扮演了重要角色。miR156家族是植物中最早被鉴定的miRNA家族之一。这个家族在水稻中有12个成员,在45个不同的植物中均发现了miR156,且其在植物界中高度保守。研究表明,miR156的靶基因为SPL,是一种包含SBP盒的植物特异性转录因子。在位于水稻6条染色体上的12个miR156家族成员中,miR156b和miR156e基因(以下称为MIR156b/c)是位于1号染色体上的串联基因。一个全长cDNA(AK110797)同时编码这两个miRNA。miR156b的过表达导致水稻和玉米中的多分蘖和丛生性状。序列分析表明,MIR156b/c基因座位在禾本科作物中具有高度保守性,但是在双子叶植物中并不保守。同时,基因组倍增事件在miR156家族的进化过程中有重要影响。本研究对30个栽培稻和15个野生稻的MIR156b/c座位进行了测序。遗传多样性研究表明,栽培稻中MIR156b/c基因座位只保留了野生稻(Oryza rufipogon)约9%的核苷酸多样性。Tajima's JD检验以及Fu and Li's D~*和F~*检验的结果拒绝了中性假设(P<0.05),表明MIR156b/c基因座位在O.rufipogon中受到了显著的自然选择。在栽培稻中检测到强的正向选择信号,表明栽培稻也经历了显著的自然或驯化选择过程。
     为了获得水稻小RNA在基因组水平上的分布等特征,我们对前期所测定的680多万条水稻种子发育过程中产生的小RNA序列在水稻基因组上的分布和表达等进行了分析。结果表明,小RNA主要产生于重复序列和基因间隔区,且基因组不同区域上小RNA的产生量有非常大的差异,提示小RNA的产生有基因组区域上的特异性。水稻基因组倍增块之间小RNA分布的差异分析表明,基因组倍增事件在小RNA的进化过程中扮演重要的角色。
It has been known that most eukaryotes contain a diversified set of small RNA-guided pathways that negatively regulate or control genes,repeated sequences, and viruses at the transcriptional and posttranscriptional levels.Owing to the development of better experimental and computational approaches,an ever increasing number of small RNAs are uncovered in different plant genomes.There are two major classes of small RNAs that are found in the plant kingdom,namely small interfering RNAs(siRNAs),microRNAs(miRNAs),each derived from distinct modes of biogenesis and genomic loci.Small RNA-generating loci,especially those producing predominantly 24-nt siRNAs,were found to be highly correlated with repetitive elements across the genome.It was found that there are many different components, such as RNA-dependent RNA polymerase(RDR),Dicer-like enzyme(DCL), Supressor of Gene Silencing(SGS)and Argonaute(AGO),are involved in diverse small RNA pathway in plant.All forms of silencing by small RNAs require an effector protein of the AGO family.Recent advances in technology permit practical deep sequencing of small RNA populations.Several studies applying high-throughput sequencing methods have helped on both qualitative discovery of new small RNAs or small RNA classes,as well as quantitative profiling of small RNA populations. Although our understanding of the diversity,biogenesis and function of these regulatory RNAs is growing rapidly,their evolutionary process is not well understood. Genome duplication is one of the primary accelerators of evolution.It provide a source of genetic material for mutation,drift,and selection to act upon,making new evolutionary opportunities possible.Ancient genome duplication events have been identified in diverse organisms,such as yeast,vertebrates,Arabidopsis and Poaceae (Gramineae,grass family).Recent investigations found that duplication events played an important role in the main mechanisms involved in the diversification and evolution of several Arabidopsis miRNA families,such as the miR159 and miR395 families.
     Here,we adopt the approach combining experimental and computational methods, to infer the evolution of two typical small RNA family,TAS3 and miR156 in grass family.Using the small RNA data generated from our high-throughput sequencing of small RNA populations of developing rice grain,we analyzed the distribution and expression divergence of small RNA-generating loci in rice genome.
     trans-acting siRNAs(tasiRNAs)are a plant-specific class of 21-nt endogenous siRNA.It function in a similar manner to miRNAs,cleave target mRNAs via interaction with a target site with non-perfect complementarity.Each tasiRNA locus (known as a TAS gene)produces a non-coding transcript,a portion of which is converted into dsRNA,this in turn is successively cleaved into mostly 21-nt tasiRNAs phased in a 21-nt register.The production of tasiRNAs requires SGS3/RDR6/DCL4 pathway,miRNA function is required to set the phasing register for tasiRNA production.Over ten TAS genes have been characterized to date,from one locus in rice(TAS3)to four loci in Arabidopsis(TAS1-4).Biological functions have been assigned to a TAS3 family tasiRNA,tasiARF,tasiARF downregulates mRNAs encoding Auxin Response Factors(ARFs),including ARF2,ARF3 and ARF4,and is involved in the proper timing of vegetative shoot development and establishment of leaf polarity.The TAS3 family is distinguished from other TAS loci by the dual miR390 complementary sites flanking the tasiRNA region.TAS3 loci have been reported in rice and other seed plants based on their conserved tasiARFs and dual miR390 complementary sites.Computational procedures have also been successfully used to identify small RNAs based on evolutionary conservation.In this study,56 putative TAS3 genes were identified by database mining and PCR amplification. Phylogenetic analysis indicated that at least three genome/gene duplication events have been involved in the expansion of TAS3 genes and that many TAS3 genes have been lost during evolution in the grass family.Sequence analysis reveals that a high conservation of 21-nt changes in length between tasiARF and the 3' miR390 binding site and the presence of TAS3-like loci in a miR390-targeted protein-coding gene (LRR kinase)in rice and Arabidopsis.We discussed the origin and potential mechanisms for the biogenesis of TAS3 genes in the light of these findings。
     miRNAs are~21-24 nt long.They derive from hairpin structured miRNA precursors(pre-miRNAs)that are processed by DCL1 from primary miRNAs (pri-miRNAs)transcribed by RNA polymeraseⅡ.miRNAs post-transcriptionally down-regulate gene expression by cleavage or translational repression of target mRNAs.In rice,hundreds of miRNAs have been identified by cloning or computational prediction.It was found that duplication was also one of the main mechanisms involved in the evolution of several miRNA families in Arabidopsis.The miR156 family was one of the first characterized miRNA families in plants,and has 12 members in rice.It is highly conserved in the plant kingdom and has been identified in 45 different plant species,miR156 has been demonstrated to target SPL genes,which are plant specific transcription factors containing an SBP box.Of 12 miR156 family members located on six chromosomes in rice genome,miR156b and miR156c gene(MIR156b/c hereafter)are tandem genes on chromosome 1.A full-length cDNA(AK110797)encodes both miRNAs.Over-expression of miR156b resulted in multiple-tillers and bushy phenotype in maize and flee.MIR156b/c locus was highly conserved among cereals,but not in dicots.Genome duplication events played an important role in the evolution of the miR156 family.We performed sequencing on the miR156b/c loci from 45 diverse Oryza accessions,with 15 accessions of O.rufipogon and 30 domesticated lines of O.sativa(15 indica and 15 japonica cultivars).Genetic diversity investigation at the locus indicated that only~9%of nucleotide diversity observed in wild rice(O.rufigogon)was maintained in the cultivated rice and the neutral model was rejected(P<0.05)based on Tajima's D and Fu and Li's D~* and F~* tests.These results indicated that the MIR156b/c locus experienced strong natural selection in O.rufipogon,and natural and/or domestication selection in the cultivated rice.
     To study the distribution and expression divergence of small RNA-generating loci in rice genome,we analyzed the small RNA data generated from our high-throughput sequencing of small RNA populations in developing rice grain.Our results showed that small RNA-generating loci from the repeat associated and intergenic region are most abundant and highly active.Scrolling-window analysis along each chromosome showed that some regions spawn relatively high numbers of small RNA.The significant distribution difference of small RNA populations between duplicated segmental pairs in rice genome was found.It suggested that duplication events played an important role in diversification and evolution of small RNA.
引文
Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H. 2002. Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31:100-105.
    Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V. 2005. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 75:78-91.
    Adenot X. 2006. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. CurrBiol 16:927-932.
    Allen E, Xie Z, Gustafson AM, Carrington JC. 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207-221.
    Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC. 2004. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genet 55:1282-1290.
    
    Almeida R, Allshire RC. 2005. RNA silencing and genome regulation. Trends Cell Biol 15:251-258.
    Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 405:796-815.
    Axtell MJ, Jan C, Rajagopalan R, Bartel DP. 2006. A two-hit trigger for siRNA biogenesis in plants. Cell 727:565-577.
    Axtell MJ, Snyder JA, Bartel DP. 2007. Common functions for diverse small RNAs of land plants. Plant Cell 19:1750-1769.
    
    Bartel B. 2005. MicroRNAs directing siRNA biogenesis. Nat Struct Mol Biol 72:569-571.
    Baumberger N, Baulcombe DC. 2005. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 702:11928-11933.
    Bernstein E, Allis CD. 2005. RNA meets chromatin. Genes Dev 79:1635-1655.
    Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W et al. 1998. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 597:485-488.
    Blanc G, Barakat A, Guyot R, Cooke R, Delseny M. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 72:1093-1101.
    Blanc G, Hokamp K, Wolfe KH. 2003. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 75:137-144.
    Bonnet E, Van de Peer Y, Rouze P. 2006. The small RNA world of plants. The New Phytologist 777:451-468.
    Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. 2005. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 725:1279-1291.
    Bowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433-438.
    Brodersen P, Voinnet O. 2006. The diversity of RNA silencing pathways in plants. Trends Genet 22:268-280.
    Chapman EJ, Carrington JC. 2007. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 5:884-896.
    Chen HM, Li YH, Wu SH. 2007. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA 704:3318-3323.
    Chen M, SanMiguel P, de Oliveira AC, Woo SS, Zhang H, Wing RA, Bennetzen JL. 1997. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A 94:3431-3435.
    Chuck G, Cigan AM, Saeteurn K, Hake S. 2007. The heterochronic maize mutant Corngrassl results from Overexpression of a tandem microRNA. Nat Genet 59:544-549.
    Cooke R, Raynal M, Laudie M, Grellet F, Delseny M, Morris PC, Guerrier D, Giraudat J, Quigley F, Clabault G et al. 1996. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J 9:101-124.
    Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188-1190.
    Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A et al. 2006. Widespread genome duplications throughout the history of flowering plants. Genome Res 76:738-749.
    Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC. 2000. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 707:543-553.
    Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 375:68-71.
    Devos KM. 2005. Updating the 'crop circle'. Curr Opin Plant Biol 5:155-162.
    Devos KM, Gale MD. 1997. Comparative genetics in the grasses. Plant Mol Biol 35:3-15.
    Doebley J. 2006. Plant science. Unfallen grains: how ancient farmers turned weeds into crops. Science 572:1318-1319.
    Dorsett Y, Tuschl T. 2004. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318-329.
    Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 79:11-15.
    Du T, Zamore PD. 2005. microPrimer: the biogenesis and function of microRNA. Development 752:4645-4652.
    Dunoyer P, Himber C, Voinnet O. 2005. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genet 37:13 56-1360.
    Dunoyer P, Voinnet O. 2005. The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8: 415-423.
    
    Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755-763.
    Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL et al. 2007. High-throughput sequencing of Arabidopsis microRNAs:
    
    evidence for frequent birth and death of miRNA genes. PLoS ONE 2:e219.
    Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. 2006. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939-944.
    Fu YX, Li WH. 1993. Statistical tests of neutrality of mutations. Genetics 133:693-709.
    Gale MD, Devos KM. 1998. Plant comparative genetics after 10 years. Science 282:656-659.
    Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P. 2007. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683-693.
    Garcia D, Collier SA, Byrne ME, Martienssen RA. 2006. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16:933-938.
    Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 769:1631-1638.
    Gasciolli V, Mallory AC, Bartel DP, Vaucheret H. 2005. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 75:1494-1500.
    
    Gaut BS. 2002. Evolutionary dynamics of grass genomes. New Phytologist 154:15-28.
    Gaut BS, Doebley JF. 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94:6809-6814.
    Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100.
    
    Grant V. 1981. Plant Speciation. New York: Columbia University Press.
    Gu X, Wang Y, Gu J. 2002. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 37:205-209.
    Guddeti S, Zhang DC, Li AL, Leseberg CH, Kang H, Li XG, Zhai WX, Johns MA, Mao L. 2005. Molecular evolution of the rice miR395 gene family. Cell Res 75:631-638.
    Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696-704.
    Guo X, Xu G, Zhang Y, Wen X, Hu W, Fan L. 2006. Incongruent evolution of chromosomal size in rice. Genet Mol Res 5:373-389.
    Guyot R, Keller B. 2004. Ancestral genome duplication in rice. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada 47:610-614.
    Hall TM. 2005. Structure and function of argonaute proteins. Structure 13:1403-1408.
    Hammond SM. 2005. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822-5829.
    Han MH, Goud S, Song L, Fedoroff N. 2004. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc NatI Acad Sci USA 101:1093-1098.
    Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE. 2006. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genet 38:721-725.
    
    Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. 2005. RNA polymerase IV directs silencing of endogenous DNA. Science 308:118-120.
    Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T. 2005. Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 5 7:173-188.
    Hofte H, Desprez T, Amselem J, Chiapello H, Rouze P, Caboche M, Moisan A, Jourjon MF, Charpenteau JL, Berthomieu P et al. 1993. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J 4:1051-1061.
    Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC. 2007. Genome-wide analysis of the RNA-DEPENDENT RNA
    
    POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926-942.
    Hunter C, Willmann M, Wu G, Yoshikawa M, de la Luz Gutierrez-Nava M, Poethig S. 2006. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973-2981.
    Ilic K, SanMiguel PJ, Bennetzen JL. 2003. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci U S A 100:12265-12270.
    International rice genome sequencing project I. 2005. The map-based sequence of the rice genome. Nature 436:793-800.
    Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. 2005. Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23-47.
    Jiang D, Yin C, Yu A, Zhou X, Liang W, Yuan Z, Xu Y, Yu Q, Wen T, Zhang D. 2006. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res 16:507-518.
    Johnson C, Bowman L, Adai AT, Vance V, Sundaresan V. 2007. CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res 35:D829-833.
    Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular cell 14:787-799.
    Jones-Rhoades MW, Bartel DP, Bartel B. 2006. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19-53.
    Jurka J. 2000. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16:418-420.
    Kasschau KD, Fahlgren N, Chapman E, Sullivan C, Cumbie J, Givan S, Carrington J. 2007. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:e57.
    Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205-217.
    Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511-518.
    
    Khush GS. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25-34.
    Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K. 1994. Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theoretical and Applied Genetics 88:722-726.
    Kobe B, Deisenhofer J. 1994. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415-421.
    Kobe B, Kajava AV. 2001. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725-732.
    Kowalski SP, Lan TH, Feldmann KA, Paterson AH. 1994. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499-510.
    Kumar S, Tamura K, Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150-163.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
    
    Li A, Mao L. 2007. Evolution of plant microRNA gene families. Cell Res 17:212-218.
    Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761-768.
    Lippman Z, Martienssen R. 2004. The role of RNA interference in heterochromatic silencing. Nature 431:364-370.
    Lippman Z, May B, Yordan C, Singer T, Martienssen R. 2003. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1:E67.
    Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X et al. 2007. Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705-2718.
    Llave C, Kasschau KD, Rector MA, Carrington JC. 2002. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605-1619.
    Lu C, Jeong DH, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher SR, Maher C, Zhang L, Ware D et al. 2008. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105:4951-4956.
    Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ. 2005. Elucidation of the small RNA component of the transcriptome. Science 309:1567-1569.
    Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH. 2006. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111-5116.
    Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151-1155.
    Maher C, Stein L, Ware D. 2006. Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16:510-519.
    Mallory AC, Vaucheret H. 2006. Functions of microRNAs and related small RNAs in plants. Nat Genet 38 Suppl:S31-36.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380.
    Masterson J. 1994. Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms. Science 264:421-424.
    Mateos-Hernandez M, Singh RP, Hulbert SH, Bowden RL, Huerta-Espino J, Gill BS, Brown-Guedira G. 2006. Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with rice. Funct Integr Genomics 6:122-131.
    Mayer K, Schuller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Dusterhoft A, Stiekema W, Entian KD, Terryn N et al. 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769-777.
    McLysaght A, Hokamp K, Wolfe KH. 2002. Extensive genomic duplication during early chordate evolution. Nat Genet 31:200-204.
    Meister G, Tuschl T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431:343-349.
    Messing J, Dooner HK. 2006. Organization and variability of the maize genome. Curr Opin Plant Biol 9:157-163.
    Mette MF, van der Winden J, Matzke M, Matzke AJ. 2002. Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6-9.
    Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC. 2007. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126-1129.
    Moore G, Devos KM, Wang Z, Gale MD. 1995. Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737-739.
    Morel JB, Godon C, Mourrain P, Beclin C, Boutet S. 2002. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629-639.
    Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ. 2008. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571-584.
    Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N et al. 2000. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533-542.
    Nagamura Y, Inoue T, Antonio B, Shimano T, Kajiya H, Shomura A, Lin SY, Kuboki Y, Harushima Y, Kurata N. 1995. Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Science 45:373-376.
    Nobuta K, Venu RC, Lu C, Belo A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang GL et al 2007. An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473-477.
    Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205-217.
    Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS. 2005. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613-622.
    
    Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu Rev Genet 34:401-437.
    Ouyang S, Buell CR. 2004. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360-363.
    Park W, Li J, Song R, Messing J, Chen X. 2002. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484-1495.
    Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R et al. 2000. Comparative genomics of plant chromosomes. Plant Cell 12:1523-1540.
    Paterson AH, Bowers JE, Chapman BA. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903-9908.
    Paterson AH, Lan TH, Reischmann KP, Chang C, Lin YR, Liu SC, Burow MD, Kowalski SP, Katsar CS, DelMonte TA et al. 1996. Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet 14:380-382.
    Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. 2004. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368-2379.
    Pontes O, Li CF, Nunes PC, Haag J, Ream T. 2006. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79-92.
    Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J. 2005. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19:2030-2040.
    Qi Y, He X, Wang XJ, Kohany O, Jurka J. 2006. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:1008-1012.
    Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. 2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407-3425.
    Ramakrishna W, Emberton J, SanMiguel P, Ogden M, Llaca V, Messing J, Bennetzen JL. 2002. Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex. Plant Physiology 130:1728-1738.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. MicroRNAs in plants. Genes Dev 16:1616-1626.
    
    Retief JD. 2000. Phylogenetic analysis using PHYLIP. Methods in Molecular Biology 732:243-258.
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. 2002. Prediction of plant microRNA targets. Cell 770:513-520.
    Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 79:2496-2497.
    Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132:365-386.
    Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C. 2008. Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution. Plant Cell 20:11 -24.
    Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y. 2002. The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci U S A 99:13627-13632.
    Smit AFA, Hubley R, Green P. 2004. RepeatMasker Open-3.0.
    
    Soltis DE, Soltis PS. 1999. Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14: 348-352.
    Song R, Llaca V, Messing J. 2002. Mosaic organization of orthologous sequences in grass genomes. Genome Res 72:1549-1555.
    Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A et al. 2002. The generic genome browser: a building block for a model organism system database. Genome Res 12:1599-1610.
    Sunkar R, Girke T, Jain PK, Zhu JK. 2005. Cloning and characterization of microRNAs from rice. Plant Cell 17:1397-1411.
    Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. 2008. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology 8:25.
    Tajima F. 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437-460.
    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.
    Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T. 2006. Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48:511-521.
    Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.
    Terryn N, Heijnen L, De Keyser A, Van Asseldonck M, De Clercq R, Verbakel H, Gielen J, Zabeau M, Villarroel R, Jesse T et al. 1999. Evidence for an ancient chromosomal duplication in Arabidopsis thaliana by sequencing and analyzing a 400-kb contig at the APETALA2 locus on chromosome 4. FEBS Letters 445:237-245.
    
    Tomari Y, Zamore PD. 2005. Perspective: machines for RNAi. Genes & development 19:517-529.
    Tornero P, Mayda E, Gomez MD, Canas L, Conejero V, Vera P. 1996. Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant J 10:315-330.
    Tusher VG, Tibshirani R, Chu G 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116-5121.
    Vaucheret H. 2006. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759-771.
    Vaucheret H, Vazquez F, Crete P, Bartel DP. 2004. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 15:1187-1197.
    Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P. 2004. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Molecular Cell 16:69-79.
    Vision TJ, Brown DG, Tanksley SD. 2000. The origins of genomic duplications in Arabidopsis. Science 290:2114-2117.
    Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH. 2004. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Research 32:1688-1695.
    
    Wang P, Liu KD, Zhang QF. 2000. Segmental duplications are common in rice genome. Acta Bot Sin 42:1150-1155.
    Wang X, Shi X, Hao B, Ge S, Luo J. 2005. Duplication and DNA segmental loss in the rice genome: implications for diploidization. The New Phytologist 165:937-946.
    Watterson GA. 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7:256-276.
    
    Wendel JF. 2000. Genome evolution in polyploids. Plant Molecular Biology 42:225-249.
    Williams L, Carles CC, Osmont KS, Fletcher JC. 2005. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 702:9703-9708.
    Willmann MR, Poethig RS. 2005. Time to grow up: the temporal role of smallRNAs in plants. Current Opinion in Plant Biology 5:548-552.
    Willmann MR, Poethig RS. 2007. Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology 70:503-511.
    Xie K, Wu C, Xiong L. 2006. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA 156 in rice. Plant Physiology 142:280-293.
    Xie Z, Allen E, Wilken A, Carrington JC. 2005. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 702:12984-12989.
    Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biology 2:E104.
    Xie Z, Kasschau KD, Carrington JC. 2003. Negative feedback regulation of Dicer-Like 1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 73:784-789.
    Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD. 2005. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859-2872.
    Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586-1591.
    Yoshikawa M, Peragine A, Park MY, Poethig RS. 2005. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164-2175.
    Yu D, Fan B, MacFarlane SA, Chen Z. 2003. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant Microbe Interact 16:206-216.
    Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92.
    Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al. 2005. The Genomes of Oryza sativa: a history of duplications. PLoS Biology 3:e38.
    Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA. 2006. Conservation and divergence of plant microRNA genes. Plant J 46:243-259.
    Zhang Y, Xu GH, Guo XY, Fan LJ. 2005. Two ancient rounds of Polyploidy in rice genome. Journal of Zhejiang University Science 6:87-90.
    Zhao T.2007.A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii.Genes Dev 21:1190-1203.
    Zhu Q,Zheng X,Luo J,Gaut BS,Ge S.2007.Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives:severe bottleneck during domestication of rice.Molecular Biology and Evolution 24:875-888.
    Zhu QH,Spriggs A,Matthew L,Fan LJ,Kennedy G,Gubler F,Helliwell C.2008.A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains.Genome Research(In press).
    Zilberman D,Cao X,Jacobsen SE.2003.ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and historic methylation.Science 299:716-719.
    Zuker M.2003.Mfold web server for nucleic acid folding and hybridization prediction.Nucleic acids research 31:3406-3415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700