用户名: 密码: 验证码:
胆管癌表遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆管癌是一种恶性程度很高的肿瘤性疾病,早期无特异性诊断标准,诊断明确时多已是晚期,已失去了手术时机;且目前临床常用化疗药物对胆管癌均疗效较差。因此,寻找新型的对胆管癌敏感的治疗药物具有非常重要的意义。
     表遗传学主要研究没有DNA序列改变的可遗传表达改变,即提供何时、何地和如何应用遗传学信息的指令,以确保基因适当的表达或关闭。当人类进入后基因组时代,尤其是人类表观基因组计划的提出和实施后,表遗传学引起了越来越多的关注,并逐渐成为阐明基因组功能的关键研究领域,也为研究肿瘤的治疗提出一个全新的方向。表遗传的改变主要是对基因序列的修饰,而不改变基因序列本身,因此它是可逆的,这为利用表遗传学方法治疗肿瘤提供了理论依据。
     现阶段,许多肿瘤亚型缺少染色体或者微卫星不稳定性的事实挑战了基因组不稳定在启动和维持肿瘤发生、发展上起主要作用的假说。肿瘤特异性的以表遗传学改变为基础的通过异常DNA甲基化、异常组蛋白修饰以及异常的核小体定位而导致的基因表达的改变被认可为肿瘤发生的驱动因素,其中肿瘤抑制基因的灭活和原癌基因的活化是癌变的中心事件。因此,通过表遗传药物逆转肿瘤细胞异常表遗传改变,恢复沉默抑癌基因表达,进而达到治疗肿瘤的目的,成为了我们课题组的研究方向。
     在邹声泉教授的带领下,本课题组研究证实了DNA甲基化酶抑制剂5-Aza-CdR具有在体外抑制胆管癌细胞增殖、促进细胞调亡的作用;并证实联合下调DNA甲基转移酶DNMT1和DNMT3b能使RASSF1A基因启动子区域去甲基化并诱导其重新表达,表明抑制DNA甲基转移酶可使抑癌基因启动子区去甲基化,恢复表达。近年来,研究者逐步发现,抑癌基因沉默的根本原因是染色质结构变得致密,影响了转录起始因子与DNA上相应转录起始部位的结合,而正是抑癌基因启动子区的超甲基化和组蛋白的脱乙酰化决定了染色质的变构。根据这一发现,和以前研究基础,本试验研究了DNA甲基化酶抑制剂(肼屈嗪)与组蛋白脱乙酰化酶抑制剂(丙戊酸)联用对胆管癌细胞QBC_(939)增殖、细胞侵袭转移力以及细胞中抑癌基因表达的影响。
     另外,近两年发现第三类组蛋白脱乙酰化酶Sir2家族中SIRT1蛋白在导致抑癌基因沉默以至肿瘤的发生中有非常重要的作用,为此我们专门探讨了DNA甲基化酶抑制剂、组蛋白脱乙酰化酶抑制剂与SIRT1之间的关联性。在研究中我们发现对于组蛋白脱乙酰化酶抑制剂不敏感的SIRT1在组蛋白脱乙酰化酶抑制剂与DNA甲基化酶抑制剂联合作用下表达减少。进一步研究后明确了恢复HIC1基因表达,抑制SIRT1表达是组蛋白脱乙酰化酶抑制剂与DNA甲基化酶抑制剂联合作用胆管癌细胞中抑癌基因表达的机制之一。本研究为进一步明确组蛋白脱乙酰化酶抑制剂与DNA甲基化酶抑制剂联合作用机制、明确表遗传学变化间的关系奠定了基础,并为利用表遗传学方法治疗胆管癌提供了实验依据。
     第一部分:DNMTi与HDACi对胆管癌细胞的干预效应
     论文1.DNMTi与HDACi对胆管癌细胞中抑癌基因表达的影响
     目的研究肼屈嗪与丙戊酸联合作用对于体外胆管癌细胞QBC_(939)中P16、RASSF1A、E-Cadherin等抑癌基因mRNA及蛋白表达,以及启动子区甲基化状态的影响。
     方法将胆管细胞QBC_(939)分为空白组、单用丙戊酸组、单用肼屈嗪组与两药合用组,相应给予丙戊酸、肼屈嗪以及两药联用,空白组给予等量RPIM-1640培养液,干预48h后,RT-PCR、Western-blot法检测各组细胞中P16、RASSF1A、E-Cadherin基因mRNA及其蛋白表达;MSP法检测各组细胞中P16、RASSF1A、E-Cadherin基因启动子区甲基化状态。
     结果1.空白组胆管癌细胞QBC_(939)中P16基因表达量极低,RASSF1A与E-Cadherin基因均未见表达;单用丙戊酸组细胞中P16、RASSF1A及E-Cadherin基因表达量与其空白组一致;单用肼屈嗪组细胞中P16、RASSF1A及E-Cadherin基因表达量较空白组及单用丙戊酸组增多(P<0.01);两药联用组细胞中P16、RASSF1A及E-Cadherin基因表达量较其它三组明显增高(P<0.01)。2.空白组中胆管癌细胞QBC_(939)P16蛋白表达量极低,未见RASSF1A与E-Cadherin蛋白表达;单用丙戊酸组细胞三种蛋白表达量与其空白组一致;单用肼屈嗪组细胞中三种蛋白表达量较空白组和单用丙戊酸组增多(P<0.01);两药联用组细胞中P16、RASSF1A及E-Cadherin蛋白表达量较其余三组明显增高(P<0.01)。3.空白组胆管癌细胞QBC_(939)中,P16基因启动子区呈部分去甲基化;RASSF1A、E-Cadherin基因启动子区超甲基化;单用丙戊酸组细胞RASSF1A、E-Cadherin基因启动子区仍呈超甲基化状态,P16基因启动子区仍呈部分去甲基化状态;单用肼屈嗪组细胞中三种基因启动子区均呈部分去甲基化状态;两药联组细胞中三种抑癌基因启动子区呈完全去甲基化状态。
     结论肼屈嗪与丙戊酸两药合用可诱导胆管癌细胞QBC_(939)中P16、RASSF1A、E-Cadherin三种抑癌基因启动子区完全去甲基化,并可促进三种基因mRNA及其蛋白大量恢复表达;而单用一种药物效果明显弱于两药合用。
     论文2.DNMTi与HDACi对胆管癌细胞生长与侵袭转移力的影响
     目的探讨肼屈嗪与丙戊酸联合作用对于体外胆管癌细胞QBC_(939)生长与侵袭转移力的影响。
     方法将胆管细胞QBC_(939)分为空白组、单用丙戊酸组、单用肼屈嗪组与两药合用组,相应给予丙戊酸、肼屈嗪以及两药联用,空白组给予等量RPIM-1640培养液,48h后1.流式细胞术Annexin V/PI双标法检测各组细胞的凋亡情况;2.Transwell法检测各组细胞侵袭转移力;
     结果1.空白组细胞凋亡率为(2.855±0.936)%,单用丙戊酸组细胞凋亡率为(1 1.56±1.590)%,单用肼屈嗪组细胞凋亡率为(24.65±2.330)%;两药合用组细胞凋亡率为(47.93±3.973)%。两药合用组凋亡细胞较单用药组调亡细胞数量明显增多(P<0.01)。2.计数移至微孔下层的细胞,结果显示空白组细胞侵袭转移力最强(P<0.01);肼屈嗪与丙戊酸联合作用组细胞侵袭转移力最弱(P<0.01);肼屈嗪组细胞侵袭转移力较丙戊酸组弱(P<0.01)。
     结论单用肼屈嗪与单用丙戊酸均可引起体外胆管癌细胞QBC_(939)不同程度凋亡;但两药合用致使细胞凋亡数量远多于单用一种药物;单用肼屈嗪与单用丙戊酸均可引起体外胆管癌细胞QBC_(939)侵袭转移力不同程度减弱,但两药合用效果明显强于单用一种药物。表明两药合用在致细胞凋亡及降低胆管癌细胞QBC939侵袭转移力方面有增效作用。
     第二部分:DNMTi与HDACi对胆管癌细胞中SIRT1基因表达的调节
     论文3.DNMTi与HDACi通过恢复胆管癌细胞中HIC1基因表达抑制SIRT1基因表达
     目的探讨肼屈嗪与丙戊酸对胆管癌细胞QBC_(939)中SIRT1基因表达的影响及调节机制。
     方法将正常胆管上皮细胞HIBEC-HR和胆管癌细胞QBC_(939)均分别分为空白组、单用丙戊酸组、单用肼屈嗪组及两药合用组,相应给予丙戊酸、肼屈嗪以及两药联用,空白组给予等量RPIM-1640培养液,干预48h后,RT-PCR、Westen blot法检测各组胆管癌细胞QBC_(939)中SIRT1、HIC1基因mRNA及其蛋白表达;RT-PCR法检测各组正常胆管上皮细胞HIBEC-HR中SIRT1基因mRNA及其蛋白表达;构建含HIC1基因干扰片段质粒,将胆管癌细胞QBC_(939)分为两药合用组、两药合用+阴性对照组、两药合用+干扰质粒组,两药合用+阴性对照组与两药合用+干扰质粒组内分别转染阴性质粒和干扰质粒,两药合用组转染液中不含质粒,转染完成后以两药联用干预各组细胞,48h后,RT-PCR、Westenblot法检测干扰HIC1基因后两药联用对SIRT1基因mRNA及其蛋白表达的影响
     结果1.空白组、单用肼屈嗪组与单用丙戊酸组胆管癌细胞QBC_(939)间SIRT1基因及其蛋白表达无统计学差异(P>0.05),两药联用组胆管癌细胞QBC_(939)内SIRT1基因及蛋白的表达较其余三组明显降低(P<0.01);两药联用组内HIC1基因及其蛋白表达较单用药组以及空白组明显增高(P<0.01),空白组与单用丙戊酸组内无HIC1基因及其蛋白表达,单用肼屈嗪组中可见HIC1基因及蛋白的少量表达。2.干预后各组间正常胆管上皮细胞HIBEC-HR内SIRT1基因及蛋白表达无统计学差异(P>0.05)。3.抑制HIC1基因表达后,两药合用+干扰质粒组内细胞SIRT1基因及其蛋白表达较两药合用组和两药合用+阴性质粒组明显增强(P<0.01),而后两组间SIRT1表达无统计学差异(P>0.05)。
     结论肼屈嗪与丙戊酸联合作用通过上调HIC1基因表达降低胆管癌细胞QBC_(939)内SIRT1基因表达。
     第三部分:DNMTi与HDACi联合作用抑制胆管癌细胞中SIRT1表达恢复RASSF1A基因表达
     论文4.DNMTi与HDACi联合作用抑制胆管癌细胞中SIRT1表达恢复RASSF1A基因表达
     目的探讨SIRT1在肼屈嗪与丙戊酸联合恢复胆管癌细胞QBC_(939)RASSF1A基因表达中的作用。
     方法成功构建含HIC1基因干扰片段质粒,将培养的胆管癌细胞QBC939分为:两药合用组(H+V组);两药合用+阴性对照组(H+V+pHK组);两药合用+干扰质粒组(H+V+pSihHIC1-2组),两药合用+阴性对照组与两药合用+干扰质粒组内分别转染阴性质粒和干扰质粒,两药合用组转染液中不含质粒,转染完成后以两药联用干预各组细胞,48h后,RT-PCR、Western blot法检测各组细胞中RASSF1A基因及其蛋白表达;另取胆管癌细胞分为两组,分别为:两药合用+干扰质粒组(H+V+pSihHIC1-2组)和两药合用+干扰质粒+烟酰胺组(H+V+pSihHIC1-2+NAM组),转染含HIC1基因干扰片段质粒成功后给予相应药物干预48h后,RT-PCR、Western blot法检测各组细胞中RASSF1A基因mRNA及其蛋白表达;MSP法检测各组细胞中RASSF1A基因启动子区甲基化状态;
     结果1.RT-PCR结果显示,两药合用组与两药合用+阴性对照组中RASSF1A基因mRNA表达较两药合用+干扰质粒组强(P<0.01);Western blot结果与RT-PCR一致,两药合用组与两药合用+阴性对照组中RASSF1A蛋白表达较两药合用+干扰质粒组高(P<0.01),MSP结果显示,三组细胞RASSF1A基因启动子区甲基化状态一致,都呈完全去甲基化状态。2.RT-PCR结果显示,两药合用+干扰质粒组中RASSF1A基因mRNA表达较两药合用+干扰质粒+烟酰胺组明显减弱(P<0.01);Western blot结果显示两药合用+干扰质粒组中RASSF1A蛋白表达较两药合用+干扰质粒+烟酰胺组明显减弱(P<0.01)。3.各组细胞中RASSF1A基因启动子区均呈去甲基化状态
     结论SIRT1参与了肼屈嗪与丙戊酸恢复胆管癌细胞QBC_(939)中抑癌基因RASSF1A表达的过程;恢复HIC1表达继而抑制SIRT1表达,是肼屈嗪与丙戊酸恢复胆管癌细胞QBC_(939)中抑癌基因RASSF1A表达的机制之一。SIRT1表达改变对抑癌基因启动子区甲基化状态无影响。
     小结
     本课题从利用DNA甲基转移酶抑制剂(肼屈嗪)与组蛋白脱乙酰化酶抑制剂(丙戊酸)对体外胆管癌细胞的干预效果入手,研究了两药对于体外胆管癌细胞QBC_(939)的干预效应;并通过RNA干扰技术抑制HIC1基因表达研究了肼屈嗪与丙戊酸对于SIRT1表达的调节作用,继而研究了SIRT1基因在肼屈嗪与丙戊酸联合作用恢复体外胆管癌细胞QBC939细胞抑癌基因表达中发挥的作用。根据以上研究,得出以下结果和创新点:
     1.本课题首次研究了甲基化酶抑制剂(肼屈嗪)与组蛋白脱乙酰化酶抑制剂(丙戊酸)对于体外胆管细胞QBC_(939)的干预效应,发现两药在恢复QBC_(939)细胞中抑癌基因表达、诱导细胞调亡以及降低细胞侵袭转移力上具有增效作用,即1+1>2的作用。显示出两药合用对于胆管癌的治疗有较好的前景。
     2.同时用肼屈嗪与丙戊酸干预胆管癌细胞QBC_(939)与正常胆管上皮细胞HIBEC-HR,发现QBC_(939)细胞中SIRT1表达降低而HIBEC-HR细胞中SIRT1表达不变,表明QBC_(939)细胞中SIRT1发生了异常表达。
     3.通过构建并转染含HIC1基因干扰片段质粒到胆管癌细胞QBC_(939)中,再给予两药同时干预转染后细胞,检测SIRT1表达发现,甲基化酶抑制剂与组蛋白脱乙酰化酶抑制剂联合作用可通过恢复HIC1基因表达降低第三类组蛋白脱乙酰化酶抑制剂(Sir2)成员SIRT1的表达。
     4.通过转染含HIC1基因干扰片段质粒进QBC_(939)细胞内,同时给予肼屈嗪丙戊酸和烟酰胺干预转染后细胞,观察QBC_(939)细胞中RASSF1A基因表达变化,发现SIRT1参与了肼屈嗪与丙戊酸恢复胆管癌细胞QBC_(939)中抑癌基因RASSF1A表达的过程。这一结果表明,恢复HIC1表达继而抑制SIRT1表达,是肼屈嗪与丙戊酸联会作用恢复胆管癌细胞QBC_(939)中抑癌基因RASSF1A表达的机制之一。
     5.本试验揭示了DNA甲基转移酶、组蛋白脱乙酰化酶对SIRT1异常表达的调节作用,阐明了SIRT1在DNA甲基转移酶与组蛋白脱乙酰化酶恢复胆管癌细胞QBC939抑癌基因RASSF1A表达中的作用。同时,发现了SIRT1这一DNA甲基转移酶与组蛋白脱乙酰化酶联合作用的效应因子,为今后继续发现其他效应因子及针对效应因子研究肿瘤的治疗奠定了基础。
Bile duct carcinoma is a malignancy originating from the biliary epithelium.To datethere is no imaging techniques or molecular markers that can aid in the accurate diagnosisand evaluation of bile duct carcinoma in the early stage of the disease.So many patientspresented with unresectable diseases when the diagnosis was definite.And also Bile ductcarcinoma is an aggressive malignancy typified by and unresponsiveness to the existingchemotherapy and radiotherapy regimes in the vast majority of cases.So,it is importantto explore new drugs for the treatment of bile duct carcinoma.
     Epigenetics is a new science that studies the change of gene expression caused bynon-gene sequence alteration.It decides gene transcription and the way of gene expression.Since human being enters the post-genome era,epigeneitcs has attracted more and morescholars' attention and is becoming one of the major study fields for the function ofgenome.Epigenetics provides a brand-new research direction for the study of the tumortherapy.Epigenetics refers to alternate phenotypic states that are not based on differencesin genotype,and are potentially reversible,which provides the theoretical basis for the useof epigenetie therapy for tumors.
     Nowadays,the fact that subsets of many cancers lack chromosomal or microsatelliteinstability argues against the hypothesis that genomic instability plays an essential role inthe initiation and maintenance of oncogenesis.Cancer-specific,epigenetically-basedchanges in gene expression caused by abnormalities in DNA methylation,histonemodifications,and nucleosome positioning are gaining recognition as driving events intumorigenesis,in which the epigenetic gene silencing is considered to be a key event.Soour research focuses on reversing the abnormal epigenetic pattern of tumor cells,especiallyreactivating the silent tumor suppressor gene by epigenetic drugs.
     In our previous studies,we observed the cell cycle alteration of human biliary tractcarcinoma cell line QBC_(939) after treatment with DNMTs inhibitor 5-Aza-CdR and foundthat 5-Aza-CdR could suppress the growth and proliferation of QBC_(939) in vivo and in vitro and induce apoptosis,we also found that using antisense RNA technology to down-regulateDNMT1 and DNMT3b expression levels in human biliary tract carcinoma cell line QBC_(939)could make the promoter region of the RASSF1A gene to be demethylated and couldreactivate it.These experimental results suggested that DNA methyltransferases might playan important role in re-expressing tumor suppressor gene of QBC_(939) cells.In recent years,advances in research of chromatin structure,histone modification,transcriptional activityand DNA methylation have resulted in an increasingly integrated view of epigenetics.It isconfirmed that aberrant gene transcription resulting from epigenetic changes are frequentevents in the molecular pathogenesis of malignant transformation.DNA hypermethylationand histone deacetylation are critical for determining a closed chromatin structureresponsible for or related with aberrant gene transcription in malignancies.Based on suchobservations,in this research we focus on the effect of DNA methylationinhibitors(hydralazine) and histone deacetylase inhibitors(valproate) on the proliferationand invasiveness of the QBC_(939) cells and the expression of tumor suppressor gene of thecells.
     In addition,it is reported that SIRT1,a member of silentin formation regulator 2family,plays an important role in the remodeling of chromatin and tumorigenesis.And inour research,we also found that using hydralazine and valproate in combination coulddown-regulate the SIRT1 expression of QBC939 cells,which was insensitive to histonedeacetylase inhibitors.So we further explored the mechanism of the effect of hydralazineand valproate on SIRT1 gene,and the role of SIRT1 gene in re-expressing RASSF1A byusing hydralazine and valproate in combination.This research may lay a foundation for theepigenetic therapy of bile duct carcinoma and clarify the mechanism of the effect of DNAmethylation inhibitors and histone deacetylase inhibitors on tumor cells.
     PartⅠIntervention effect of DNMTi and HDACi on cells of humanbile duct carcinoma in vitro
     Paper 1 The effect of DNMTi and HDACi on the expression of tumorsuppressor genes of QBC_(939) cells in vitro
     Objective To investigate the effects of hydralazine and valproate on P16,RASSIF1A andE-cardherin gene of QBC_(939) cells in vitro.
     Methods The QBC_(939) cells were divided into four groups.The experimental groups weretreated separately with hydralazine and valproate either alone or combined(the finalconcentration was 10mmol/L),and the control group was added with RPIM-1640 culturemedium.After 48hours,the expression of the mRNA and the protein of the three genes wasevaluated by reverse transcription-polymerase chain reaction and Western blot assay,andthe methylation status of promoter region of the three genes was detected byMSP(mehtylation specific PCR).
     Results It was found that the promoter regions of P16,RASSIF 1A and E-cardherin gene ofQBC_(939) cells were hypermethylated;valproate alone could not contribute to demethyaltionof the three genes,while hydralazine could make them to be partially demethylated.However,the methylation status of the three genes could be thoroughly reversed by usingvalproate and hydralazine in combination.It was comfirmed that the three genes of QBC_(939)cells could not be transcriptionally reactivated by valproate alone,while hydralazine alonecould induce minimal re-expression of the three genes.However,using valproate andhydralazine in combination ccould result in robust re-expression of the threegenes(P<0.01).
     Conclusion The two drugs can synergistically reactivate the P16,RASSF1A andE-cardherin gene of QBC_(939) cells and make the promoter region of the three genes to bedemethylated.
     Paper 2 The effect of DNMTi and HDACi on the growth and invasion ofQBC_(939) cells in vitro
     Objective To investigate the effect of hydralazine and valproate on the growth and invasionof QBC_(939) cells in vitro
     Methods The QBC_(939) cells were divided into four groups.The experimental groups weretreated separately with hydralazine and valproate either alone or combined(the finalconcentration was 10mmol/L),and the control group was added with RPIM-1640 culturemedium.After 48hours,the apoptosis of treated cells was detected by flow cytometry withAnnexin V/PI staining,and the in vitro invassiveness of the treated cells was detected byTranswell permeable assays.
     Results 1.The flow cytometry assays showed that the treated cells were induced toapoptosis in different degree,but the number of apoptotic cells in both drugs group wasmuch higher than that of the other two groups(P<0.01).It also showed that usinghydralazine alone could induce more cells to apoptosis than valproate could(P<0.01).
     2.The Transwell assays demonstrated that the invasiveness of treated cells wasreduced in different extent,but a combination of two drugs worked better than either drugalone(P<0.01).It was also found that hydralazine worked better than valproate on reducingthe invasiveness of QBC_(939) cells.Conclusion The two drugs have synergy effect on reducing the growth and invasiveness ofthe QBC_(939) cells.
     PartⅡMechanism of the effect of hydralazine and valproate onSIRT1 gene of QBC_(939) cells
     Paper3 DNMTi and HDACi decrease the expression of SIRT1 viare-expressing the HIC 1 gene
     Objective To investigate the mechanism of the effect of hydralazine and valproate onSIRT1 gene of QBC_(939).
     Methods 1.The QBC_(939) cells were divided into four groups,and HIBEC-HR cells weretreated identically.Both of them were treated separately with hydralazine and valproateeither alone or combined(the final concentration was 10mmol/L),and the control groupwas added with RPIM-1640 culture medium.After 48hours,the expression of SIRT1 andHIC1 gene of the treated cells and cells in the contral group were detected with RT-PCRand Western blot.
     2.One pair of HIC1 target sequence-specific small interfering RNA (siRNA) was designedand synthesized,then siRNA/liposome complex was used to transfect QBC cells.Aftertreating the transfected cells with hydralazine and valproate inhibitors for 48 hours,theexpression of SIRT1 and HIC1 gene of these cells was detected with RT-PCR and Westernblot.
     Results The expression of SIRT1 gene was detected to be decreased only when the cellswere treated with hydralazine and valproate in combination(P<0.01);the inhibition ofhydralazine and valproate on SIRT1 gene was weakened when HIC1 gene wasslieneed(P<0.01).
     Conclusion Hydralazine and valproate decrease the expression of SIRT1 via re-expressingthe HIC1 gene.
     PartⅢUsing hydralazine and valproate in combination toreactivate the RASSF1A gene by repressing the SIRT1 gene ofQBC_(939) cells
     Paper4 Using hydralazine and valproate in combination to reactivate theRASSF1A gene by repressing the SIRT1 gene of QBC_(939) cells
     Objective To investigate the role of SIRT1 gene in re-expressing RASSF1A of QBC_(939)cells by using hydralazine and valproate in combination.
     Methods a batch of QBC_(939) cells were divided into three groups,then siRNA/liposomecomplex was used to transfect one group of QBC_(939) cells,the other two groups of cellswere transfected with pHK or none.After treating the transfected cells with hydralazine andvalproate for 48 hours,the expression of RASSF1A was evaluated by reversetranscription-PCR and western blot.Another batch of QBC_(939) cells were divided into twogroups,After siRNA/liposome complex was used to transfect these cells,hydralazine andvalproate were added into the cells.Then one group of cells were added with nicotinamide,the other group were added with RPIM-1640.48h later,the expression of RASSF1A wasevaluated by reverse transcription-PCR and western blot.Finally the promoter regionmethylation status of RASSF1A of the five groups of cells was detected withMSP(mehtylation specific PCR).
     Results In the first batch of QBC_(939) cells,the expression of RASSF1A of the group whichwas transfected with siRNA was much weaker than that of the other two groups(P<0.01).In the other batch of QBC_(939) cells the expression of RASSF1A of the group which wastreated with nicotinamide was much higher than that of the other group(P<0.01).The statusof the promoter region of RASSF1A of the five groups was demethlated.
     Conclusion Hydralazine and valproate reactivate the RASSF1A gene of QBC_(939) cells insome extent via repressing the expression of SIRT1.
     Our research focused on the the effect of DNMTi and HDACi on the expression oftumor suppressor genes of QBC_(939) cells in vitro.Then we studied the mechanism of theeffect of hydralazine and valproate on SIRT1 gene of QBC_(939) cells by utilizing siRNAtechnology to knockdown HIC 1 expression.Finally we explored the the role of SIRT 1 genein re-expressing RASSF1A of QBC_(939) cells by using hydralazine and valproate incombination.According to the experimental results,we summarized the conclusions andingenuities as follows:
     1.It is the first research that explored the effect of DNMTi and HDACi on QBC_(939)cells lines in vitro.The results of the experiment demonstrated that the two drugs cansynergistically reactivate the P16,RASSF1A and E-cardherin gene of QBC_(939) cells andmake the promoter region of the three genes to be demethylated,and the two drugs havesynergy effect on reducing the growth and invasiveness of the QBC_(939) cells.
     2.Human bile duct carcinoma cell line QBC_(939) cells and human normal biliaryepithelial cell line HIBEC-HR cells were both treated with hydralazine and valproate.Theresult showed that the expression of SIRT1 of QBC_(939) cells was suppressed,while that ofHIBEC-HR cells did not change,which suggested that the expression of SIRT1 in QBC_(939)cells was abnormal.
     3.QBC_(939) cells were transfected with siRNA/liposome complex.After treating thetransfected cells with hydralazine and valproate inhibitors for 48 hours,the expression ofSIRT1 and HIC1 gene of these cells was detected.Then it was found that hydralazine andvalproate decreased the expression of SIRT1 via re-expressing the HIC 1 gene.
     4.QBC_(939) cells were transfected with siRNA/liposome complex.After treating thetransfected cells with hydralazine and valproate inhibitors and SIRTl-specific inhibitor for48 hours,the expression of RASSF1A gene of these cells was detected.The result of theexperiment demonstrated that hydralazine and valproate reactivated the RASSF1A gene ofQBC_(939) cells in some extent via repressing the expression of SIRT1.
     5.This research revealed that DNA methylation and histone deacetylase inhibitorscould regulate the SIRT1 abnormal expression in QBC939 cells.At the same time,SIRT1was found to be the effector of DNMTi and HDACi,which would provide the fundamentalfor the further exploring new factors,and for epigenetic-therapy.
引文
1.Albert B,Lowenfels,Patrick Maisonneuve.Epidemiology of biliary tract cancer:what is unknown? Billiary Tract Cancer International Workshop,2005:12
    2.Zou SQ,Zhang L,Zen GZ.Clinical epidemiologic characteristics of 430 cases of gallbladder cancer[J].Chin Med J,1998,111 (5):391-393
    3.Zou SQ,Zhang L.Relative risk factors analysis of 3922 cases of gallbladder cancer[J].China JSurg,2000,38(11):805-808.
    4.黄志强。临床研究与新世纪胆道外科。第11届全国胆道外科学术会议论文汇编,2004,17-19.
    5.McKenna ES,Robert,CW.Epigenetics and cancer without genomic instability.Cell Cycle,2009,8(1):23-6.
    6.唐启彬,孙华文,邹声泉.甲基化抑制剂5-氮-2-脱氧胞苷对胆管癌细胞株生长周期及凋亡影响的研究.华中科技大学学报(医学版),2004,33(1):34-36.
    7.Tang QB,Sun HW,Zou SQ.Inhibitory effect of methylation inhibitor 5-aza-2-deoxycytidine on bile duct cancer cell line in vivo and in vitro[J].Hepatobiliary Pancreat Dis Int,2004,3(1):124-128.
    8.ZUO Shi,ChEN Yongjun,ZOU Shengquan.Re-expression of RASSF1A by 5-Aza-CdR Induced Demethylation of the Promoter Region in Human Biliary Tract Carcinoma Cells[J]. Journal of Huazhong University of Science and Techology, 2007,27(3)281-4.
    9. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia:pathophysiology and therapeutic implications[J]. Ann Intern Med. 2001,134(7):573-86.
    10. Primeau M, Gagnon J, Momparler RL. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2'-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells[J]. Int J Cancer, 2003,103(2): 177-84.
    11. Gagnon J, Shaker S, Primeau M, et al.Interaction of 5-aza-2'-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells[J].Anticancer Drugs, 2003, 14(3):193-202.
    12. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase[J]. Nature, 2000,403(6771): 795-800
    13. Vaquero A, Scher M, Lee D, et al. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Mol Cell, 2004, 16(1): 93-105.
    14. Senawong T, Peterson VJ, Avram D, et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression[J]. J Biol Chem,2003,278,43041-50
    15. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress [J]. Cell, 2001,107(2):137-48
    16. Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses[J]. Cell, 2005, 123(3):437-48.
    1.ZUO Shi ,CHEN Yongjun ZOU Shengquan et al.Re-expression of RASSF1A by 5-Aza-CdR Induced Demethylation of the Promoter Region in Human Biliary Tract Carcinoma Cells[J].Journal of Huazhong University of Science and Technology,2007,27 (3):281-4.
    2.陈勇军,唐启彬,邹声泉。散发性肝外胆管癌中RASSF1A基因启动子甲基化状态的研究[J]。中华实验外科杂志,2004,21(12):1430-3.
    3.李强,王剑明,邹声泉等。aPKC-τ和E-cadherin在胆管癌组织中的表达及意义[J].癌症,2007,26(7):715-718.
    4.Bin Yang,Michael G House,Mingzhou Guo,et al.Promoter methylation profiles of tumorsuppressor genes in intrahepatic and extrahepatic cholangiocarcinoma[J].Mod Pathol.2005,18(3):412-20.
    5. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia:pathophysiology and therapeutic implications[J]. Ann Intern Med. 2001,134(7):573-86.
    6. Zhu WG, Otterson GA. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells[J]. Curr Med Chem Anticancer Agents.2003, 3(3): 187-99
    7. Blanca Segura-Pacheco, Catalina Trejo-Becerril, Enrique Perez-Cardenas, et al.Reactivation of Tumor Suppressor Genes by the Cardiovascular Drugs Hydralazine and Procainamide and Their Potential Use in Cancer Therapy[J]. Clin Cancer Res.2003,9(5): 1596-603.
    8. Alma Chavez-Bianco, Carlos Perez-Plasencia, Enrique Perez-Cardenas et al.Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines[J]. Cancer Cell Int.2006, 6:2
    9. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc Natl Acad Sci USA, 1996,93(18):9821-6.
    10. J"urgen R. Fischer, Ute Ohnmacht, Norman Rieger, et al. Prognostic significance of RASSF1A promoter methylation on survival of non-small cell lung cancer patients treated with gemcitabine[J]. Lung Cancer, 2007, 56(1 ):115-23.
    11. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia:pathophysiology and therapeutic implications[J]. Ann Intern Med, 2001,134(7):573-86.
    12. Li L, Shi H, Yiannoutsos C, et al. Epigenetic hypothesis tests for methylation and acetylation in a triple microarray system[J]. J Comput Biol, 2005, 12(3):370-90.
    13. Primeau M, Gagnon J, Momparler RL. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2'-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells[J]. Int J Cancer, 2003, 103(2): 177-84.
    14. Gagnon J, Shaker S, Primeau M, et al.Interaction of 5-aza-2'-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells [J].Anticancer Drugs, 2003, 14(3): 193-202.
    15. Okamoto A, Demetrick DJ, Spillare EA, et al. Mutations and altered expression of pl6INK4 in human cancer[J]. Proc Natl Acad Sci U S A . 1994, 91(23): 11045-9.
    16. Vos MD, Ellis CA, Bell A, et al. Ras uses the novel tumor suppressor RASSFl as an effector to mediate apoptosis[J]. J Biol Chem, 2000,275:35669-72.
    17. Janzen V, Forkert R, Fleming HE, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor pl6INK4a[J]. Nature. 2006,443(7110):421-6.
    18. Vos MD, Ellis CA, Bell A, et al. Ras uses the novel tumor suppressor RASSFl as an effector to mediate apoptosis[J]. J Biol Chem, 2000,275(46):35669-72.
    19. Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3[J]. Nat Genet,2000, 25(3):315-9.
    20. Hirohashi, S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers[J]. Am J Pathol. 1998; 153(2): 333-9.
    21. Mareel, M., Bracke, M. and Van Roy, F. Cancer metastasis: negative regulation by an invasion-suppressor complex[J]. Cancer Detect. Prev,1995,19(5): 451-64
    22. Sharma D, Blum J, Yang X, et al. Release of methyl CpG binding proteins and histone deacetylase 1 from the Estrogen receptor alpha (ER) promoter upon reactivation in ER-negative human breast cancer cells[J]. Mol Endocrinol, 2005,19(7): 1740-51.
    1.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell 2000;100(1):57-70.
    2.Santini V,Kantarjian HM,Issa JP.Changes in DNA methylation in neoplasia:pathophysiology and therapeutic implications.Ann Intern Med,2001,134(7):573-86,.
    3.Okamoto A,Demetrick D J,Spillare EA,et al.Mutations and altered expression of p16INK4 in human cancer[J].Proc NatlAcadSci USA.1994,91(23):11045-9.
    4.Vos MD,Ellis CA,Bell A,et al.Ras uses the novel tumor suppressor RASSFI as an effector to mediate apoptosis[J].JBiol Chem,2000,275:35669-72.
    5.Hirohashi,S.Inactivation of the E-cadherin-mediated cell adhesion system in human cancers[J].Am J Pathol.1998;153(2):333-9.
    6.邹声泉.胆管癌外科治疗的现状与展望[J].中国普外基础与临床杂志,2008;15(2):77.
    7.Serrano M,Hannon G J,Beach D.A new regulatory motif in cell-cycle control causing specific inhibition of eyclin D/CDK4[J].Nature,1993,366(6456):704-7
    8.Hunter T,Pines J.Cyclins and cancer.II:Cyclin D and CDK inhibitors come of age. Cell, 1994, 79(4): 573-82.
    9. Resnitzky D, Gossen M, Bujard H, et al. Acceleration of the Gl/S phase transition by expression of cyclins Dl and E with an inducible system[J]. Mol Cell Biol, 1994,14(3): 1669-79
    10. Okamoto A, Demetrick DJ, Spillare EA, et al.Mutations and altered expression of pl6INK4 in human cancer[J]. Proc NatlAcadSci USA, 1994, 91(23):11045-9.
    11. Shivakumar L, Minna J, Sakamaki T, et al. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin Dl accumulation [J]. Mol Cell Biol, 2002,22(12):4309-18.
    12. Vos MD, Ellis CA, Bell A, et al. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis[J]. J Biol Chem, 2000, 275(46):35669-72.
    13. Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3[J]. Nat Genet,2000, 25(3):315-9.
    14. Burbee DG, Forgacs E, Zochbauer-Muller S, et al. Epigenetic inactivation of RASSFIA in lung and breast cancers and malignant phenotype suppression [J]. J Natl Cancer Inst, 2001, 93(9):691-9.
    15. Berx G, Cleton-Jansen AM, Nollet F, et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers[J]. EMBO J, 1995 Dec 15;14(24):6107-15
    16. 10. Vleminckx K, Vakaet L Jr, Mareel M, et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role[J], cell 1991 Jul 12;66(l):107-19
    17. Hirohashi, S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers[J].Am. J. Pathol. 1998; 153(2): 333-9
    18. Mareel, M., Bracke, M. and Van Roy, F. Cancer metastasis: negative regulation by an invasion-suppressor complex[J]. Cancer Detect. Prev;19(5)19(5): 451-64
    19. Tetuo M, Makoto S, Hiroyuki M, Nobuyuki Y, et al. Significant Correlations of E-Cadherin, Catenin, and CD44 Variant Form Expression With Carcinoma Cell Differentiation and Prognosis of Extrahepatic Bile Duct Carcinomas[J]. Am J Clin Pathol.2001 Sep;116(3):369-76
    20. Asayama Y, Taguchi Ki K, Aishima Si S, Nishi H, Masuda K, Tsuneyoshi M. The mode of tumour progression in combined hepatocellular carcinoma and cholangiocarcinoma: an immunohistochemical analysis of E-cadherin, alpha-catenin and beta-catenin[J]. Liver. 2002 Feb;22(l):43-50
    21. De Schepper S, Bruwiere H, Verhulst T, et al. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin[J]. J Pharmacol Exp Ther, 2003, 304:881-8.
    1.Vaquero A,Scher M,Lee D et al.Human SirT1 interacts with histone H1 and promotes formation of faeultative heterochromatin[J].Mol Cell.2004,16(1):93-105
    2.Frye RA.Phylogenetie classification of prokaryotic and eukaryotic Sir2-1ike proteins.Biochem Biophys Res Commun.2000,273(2):793-8.
    3.Blander G and Guarente L.The Sir2 family of protein deacetylases.Annu Rev Biochem 73:417-435,2004.
    4.Brachmann CB,Sherman JM,Devine SE,et al.The SIR2 gene family,conserved from bacteria to humans,functions in silencing,cell cycle progression,and chromosome stability[J].Genes Dev,1995,9(23):2888-902.
    5.Anastasiou D,Krek W.SIRT1:linking adaptive cellular responses to aging-associated changes in organismal physiology.Physiology (Bethesda),2006,21:404-10.
    6.Chen WY,Wang DH,Yen RC,et al.Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses[J].Cell,2005,123(3):437-48.
    7. Denu JM. The Sir 2 family of protein deacetyIases[J].Curr Opin Chem Biol, 2005, 9(5):431-40
    8. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity prontein Sir2 is a NAD-dependent histone deacetylase[J]. Nature, 2000,403(6771):795-800.
    9. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2 alpha promotes cell survival under stress [J]. Cell, 2001, 107(2): 137-48.
    10. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRTl) functions as an NAD-dependent p53 deacetylase [J]. Cell, 2001,107(2): 149-59.
    11 Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotesmammalian cell survival by inducing the SIRT1 deacetylase[J]. Science, 2004, 305(5682): 390-2. 12.Senawong T, Peterson VJ, Avram D, et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression[J]. J Biol Chem,2003,278, 43041-50
    13 Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses[J]. Cell, 2005, 123(3):437-48.
    14 Saunders, L.R. and Verdin, E. (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489-5504
    15. Fleuriel C, Toukaa M, Boulay G, et al. HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors[J]. Int J Biochem Cell Biol, 2009, 41(l):26-33.
    1.Brachmann CB,Sherman JM,Devine SE,et al.1995.The SIR2 gene family,conserved from bacteria to humans,functions in silencing,eellcycle progression,and chromosome stability[J].Genes & Dev,1995,9(23):2888-902.
    2.Frye RA.Phylogenetie classification of prokaryotic and eukaryotic Sir2-1ike proteins[J].Biochem Biophys Res Commun.2000 Jul 5;273(2):793-8
    3.Denu JM.The Sir 2 family of protein deacetylases[J].Curr Opin Chem Biol.2005,9(5):431-40.
    4.Anastasiou D,Krek W.SIRT1:Linking Adaptive Cellular Responses to Aging-Associated Changes in Organismal Physiology[J].physiology(Bethesda),2006,21:404-10.
    5.Herman JG,Graff JR,Myohanen S,et al.Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands[J].Proc Natl Acad Sci USA,1996,93(18):9821-26.
    6. Barger JL, Walford RL, Weindruch R. The retardation of aging by caloric restriction:its significance in the transgenic era[J]. Exp Gerontol, 2003, 38(11-12): 1343-51.
    7. Bordone L, Guarente L .Calorie restriction, SIRT1 and metabolism: understanding longevity[J]. Nat Rev Mol Cell Biol, 2005, 6(4):298-305
    8. Denu JM. Linking chroma tin function with metabolic networks: Sir2 family of NAD-dependent deacetylases[J].Trends Biochem Sci, 2003, 28(l):41-8.
    9. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress [ J ]. Cell, 2001, 107 (2): 137-48.
    10. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2 ( SIRT1) functions as an NAD-dependent p53 deacetylase [ J ]. Cell, 2001, 107 (2): 149-59.
    11. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotesmammalian cell survival by inducing the SIRT1 deacetylase [J]. Science, 2004, 305(5682): 390-92.
    12. Chen WY, Wang DH, Yen RC,et al. Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage Responses [J].Cell, 2005,123(3):437-48.
    13. Senawong T, Peterson VJ, Avram D, et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression[J]. J Biol Chem,2003,278(44):43041-50.
    14. Vaquero A, Scher M, Lee D et al. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Mol Cell. 2004 Oct 8;16(l):93-105
    15. Imai S, Armstrong CM, Kaeberlein M, and Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase[J]. Nature, 2000 403(6771): 795-800.
    16. Lim CS.Human SIRT1: a potential biomarker for tumorigenesis?[J] Cell Biol Int,2007,31(6):636-7.
    17.Pruitt K,Zinn RL,Ohm JE,et al.Inhibition of SIRT1 Reactivates Silenced Cancer Genes without Loss of Promoter DNA Hypermethylation[J].Plos Genet,2006,2(3):e40
    18.Sharma D,Blum J,Yang X,et al.Release of Methyl CpG Binding Proteins and Histone Deacetylase 1 from the Estrogen Receptor_ (ER) Promoter upon Reactivation in ER-Negative Human Breast Cancer Cells [J].Mol Endocrinol,2005,19(7):1740-51.
    1.Ordway JM,Curran T.Methylation matters:modeling a manageable genome[J].Cell Growth Differ,2002,13(4):149-62.
    2.Freiman RN,Tjian R.Regulating the regulators:lysine modifications make their mark[J].Cell,2003,112(1):11-7.
    3.Felsenfeld G,Groudine M.Controlling the double helix[J].Nature,2003,421(6921):448-53.
    4.Jaenisch R,Bird A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J].Nat Genet,2003,33 Suppl:245-54.
    5.Jones PA,Laird PW.Cancer epigenetics comes of age[J].Nat Genet,1999,21(2):163-67.
    6.Herman JG,Baylin SB.Gene silencing in cancer in association with promoter hypermethylation[J].NEngl JMed,2003,349(21):2042-54.
    7.Esteller M.CpG island hypermethylation and tumor suppressor genes:a booming present,a brighter future[J].Oncogene,2002,21(35):5427-40.
    8.Bird AP.The relationship of DNA methylation to cancer[J].Cancer Surv,1996,28:87-101.
    9.Jones PA,Baylin SB.The fundamental role of epigenetie events in cancer[J].Nat Rev Genet,2002,3(6):415-28.
    10.Lund AH,van Lohuizen M.Epigenetics and cancer[J].Genes Dev,2004,18(19):2315-35.
    11.Doerfler W.DNA methylation and gene activity[J].Annu Rev Biochern,1983,52:93-124.
    12.Riggs AD,Jones PA.5-Methylcytosine,gene regulation,and cancer[J].Adv Cancer Res,1983,40:1-30.
    13.Gardiner-Garden M,Frommer M.CpG islands in vertebrate genomes[J].J Mol Biol,1987,196(2):261-82.
    14.Takai D,Jones PA.Comprehensive analysis of CpG islands in human chromosomes 21 and 22[J].Proc Natl Acad Sci USA,2002,99(6):3740-45.
    15.Lander ES,Linton LM,Birren B.Initial sequencing and analysis of the human genome[J].Nature,2001,409(6822):860-921.
    16.Antequera F,Bird A.Number of CpG islands and genes in human and mouse[J].Proc Natl Acad Sci USA,1993,90(24):11995-9.
    17.Bird A.DNA methylation patterns and epigenetic memory[J].Genes,2002,16(1):6-21.
    18.Bird,A.,Taggart,M.,Frommer,M,et al.A fraction of the mouse genome that is derived from islands of nonmethylated,CpG-rich DNA[J].Cell,1985,40(1):91-9.
    19.Goto T,Monk M.Regulation of X-chromosome inactivation in development in mice and humans[J].Microbiol Mol Biol Rev 1998,62(2):362-78.
    20.Tycko B.DNA methylation in genomic imprinting[J].Mutat Res,1997,386(2):131-40.
    21 .Issa JP.CpG-island methylation in aging and cancer[J].Curr Top Microbiol Immunol,2000,249:101-18.
    22.Razin A,Riggs AD.DNA methylation and gene function[J].Science,1980, 210(4470):604-10.
    23. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin[J]. Cell 1997; 88(4):471- 81.
    24. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription[J]. Nat Genet, 1998, 19(2): 187-91.
    25. Bestor TH. Gene silencing. Methylation meets acetylation[J]. Nature 1998;393(6683):311-2.
    26. Bird AP. CpG-rich islands and the function of DNA methylation [J]. Nature 1986;321(6067):209-13.
    27. Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia[J]. Adv Cancer Res 1998, 72:141-96.
    28. Jones PA. The DNA methylation paradox[J]. Trends Genet, 1999;15(l):34-7.
    29. Tycko B. Epigenetic gene silencing in cancer. J Clin Invest, 2000, 105(4):401-7.
    30. Zardo G, Caiafa P. The unmethylated state of CpG islands in mouse fibroblasts depends on the poly(ADP-ribosyl) ation process[J]. J Biol Chem, 1998,273(26):16517-20.
    31. Brandeis M, Frank D, Keshet I, et al. Spl elements protect a CpG island from de novo methylation[J]. Nature, 1994, 371(6496):435-8.
    32. Mummaneni P, Yates P, Simpson J, et al. The primary function of a redundant Spl binding site in the mouse aprt gene promoter is to block epigenetic gene inactivation[J]. Nucleic Acids Res, 1998, 26(22):5163-9.
    33. MarinM, Karis A, Visser P, et al. Transcription factor Spl is essential for early embryonic development but dispensable for cell growth and differentiation [J]. Cell,1997, 89(4):619-28.
    34. Zardo G, Derme M, Reale A, et al. Does poly(ADP-ribosyl)ation regulate the DNA methylation pattern[J]? Biochemistry, 1997, 36(26):7937-43.
    35. Zardo G,Marenzi S, Caiafa P.H1 histone as a trans-acting factor involved in protecting genomic DNA from full methylation[J]. Biol Chem, 1998, 379(6):647-54.
    36.Zardo G, Marenzi S, Perilli M, Caiafa P. Inhibition of poly(ADP-ribosyI)ation introduces an anomalous methylation pattern in transfected foreign DNA[J]. FASEB J 1999,13(12):1518-22.
    37.Wu JJ, Issa JP, Herman J, et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of Nih-3t3 cells[J]. Proc Natl Acad Sci USA 1993, 90(19):8891-5.
    38.Vertino PM, Yen RW, Gao J, et al. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase[J]. Mol Cell Biol, 1996, 16(8):4555-65.
    39.Macleod AR, Szyf M. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis[J]. J Biol Chem,1995;270(14):8037-43.
    40.Yan PS, Perry MR, Laux DE, et al. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer [J]. Clin Cancer Res, 2000,6(4): 1432-8.
    41.Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts [J]. Nature, 1983, 301(5895): 89-92.
    42.Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions of the human prostate[J]. Cancer Res, 1987,47(20): 5274-6.
    43.Tsujiuchi T, Tsutsumi M, Sasaki Y,et al. Hypomethylation of CpG sites and c-myc gene overexpression in hepatocellular carcinomas, but not hyperplastic nodules,induced by a choline-deficient L-amino acid-defined diet in rats[J]. Jpn J Cancer Res,1999,90(9): 909-13.
    44.Bernardino J, Roux C, Almeida A, et al. DNA hypomethylation in breast cancer: an independent parameter of tumor progression[J]? Cancer Genet Cytogenet, 1997, 97(2): 83-9.
    45. Kim YI., Giuliano A, Hatch KD, et al. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma[J]. Cancer, 1994,74(3): 893-9.
    46. Gamma-Sosa MA, Slagel VA, Trewyn RW, et al. The 5-methylcytosine content of DNA from human tumors[J]. Nucleic Acids Res, 1983, 11(19): 6883-94.
    47. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites[J].7rends Genet, 1997,13(8):335-40.
    48. Brannan CI, Bartolomei MS. Mechanisms of genomic imprinting. Curr Opin Genet Deve, 1999, 9(2): 164-70.
    49. Feinberg AP, Tycko B.The history of cancer epigenetics. Nat Rev Cancer, 2004,4(2):143-53.
    50. Ehrilch M. Expression of various genes is controlled by DNA methylation during mammalian development[J]. J Cell Biochem, 2003, 88(5): 899-910.
    51. Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers[J]. Biochem Biophys Res Commun. 1983, 11 l(l):47-54.
    52. Chen RZ, Pettersson U, Beard C, et al. DNA hypomethylation leads to elevated mutation rates[J]. Nature, 1998, 395(6697):89-93.
    53. Saito Y, Kanai Y, Sakamoto M, et al. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis[J].Heparology, 2001, 33(3): 561-8.
    54. Ehrlich M, Jiang G, Fiala E, et al. Hypomethylation and hypermethylation of DNA in Wilms tumors[J]. Oncogene, 2002, 21(43): 6694-702.
    55. Finch JT, Lutter LC, Rhodes D, et al. Structure of nucleosome core particles of chromatin[J]Nature, 1977, 269(5623): 29-36.
    56. Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature, 2000, 406(6796):593-9.
    57. Gregory RI, Khosla S, Feil R, et al. Probing chromatin structure with nuclease sensitivity assays[J]. Methods Mol Biol, 2001,181:269-84.
    58. Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases[J], Trends Cell Biol. 2001, 11(6):266-73.
    59. Wade PA, Pruss D, Wolffe AP. Histone acetylation: chromatin in action[J]. Trends Biochem Sci, 1997,22(4):128-32.
    60. Wade PA, Wolffe AP. Histone acetyltransferases in control[J].Curr Biol, 1997, 7(2):R82-4.
    61. Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001,293(5532): 1074-80.
    62. Winston F, Allis CD. The bromodomain: a chromatin-targeting module[J]? Nat Struct Biol, 1999, 6(7):601-4.
    63. Dhalluin C, Carlson JE, Zeng L, et al. Structure and ligand of a histone acetyltransferase bromodomain[J]. Nature, 1999, 399(6735):491-6.
    64. Hassig CA, Schreiber SL. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs[J]. Curr Opin Chem Biol, 1997,l(3):300-8.
    65. LeeDY, Haves JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcriptional factor access to nucleosomal DNA[J]. Cell, 1993, 72(1): 73-84.
    66. Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation[J]. BioEssays, 1998, 20(8): 615-26.
    67. Hansen JC. Conformational dynamics of the chromatin fiber in solution:determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct, 2002, 31:361-92.
    68. Razin A, Cedar H. Distribution of 5-methylcytosine in chromatin[J]. Proc Natl Acad Sci U S A, 1977, 74(7): 2725-8.
    69. Tsukiyama T, Wu C. Chromatin remodeling and transcription[J]. Curr Opin Genet Dev,1997,7(2):182-91.
    70.Logie C,Tse C,Hansen JC,Peterson CL.The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes[J].Biochemistry,1999,38(8):2514-22.
    71.Feng Q,Zhang Y.The MeCP1 complex represses transcription through preferential binding,remodeling and deacetylating methylated nucleosomes[J].Genes Dev,2001,15(7):827-32.
    72.Issa JP.Epigenetic variation and human disease.JNutr,2002;132 (SSuppl):2388S-2392S.
    73.Zelent A,Waxman S,Carducci M,et al.State of the translational science:summary of Baltimore workshop on gene re-expression as a therapeutic target in cancer January 2003[J].Clin Cancer Res,2004;10(14):4622-9.
    74.Miyamoto K,Ushijima T.Diagnostic and therapeutic applications of epigenitics.Jpn J Clin Oncol,2005;35(6):293-301.
    75.Gilbert J,Gore SD,Herman JG,Carducci MA.The clinical application of targeting cancer through histone acetylation and hypomethylation.Clin Cancer Res,2004,10(14):4589-96.
    76.唐启彬,孙华文,邹声泉.甲基化抑制剂5-氮-2-脱氧胞苷对胆管癌细胞株生长周期及凋亡影响的研究.华中科技大学学报(医学版),2004,33(1):34-36.
    77.Tang QB,Sun HW,Zou SQ.Inhibitory effect of methylation inhibitor 5-aza-2-deoxycytidine on bile duct cancer cell line in vivo and in vitro[J].Hepatobiliary Pancreat Dis Int,2004,3(1):124-128.
    78.ZUO Shi,ChEN Yongjun,ZOU Shengquan.Re-expression of RASSF1A by 5-Aza-CdR Induced Demethylation of the Promoter Region in Human Biliary Tract Carcinoma Cells[J].Journal of Huazhong University of Science and Techology,2007,27(3)281-4.
    79.Yoo CB,Cheng JC,Jones PA.Zebularine:a new drug for epigenetic therapy.Biochem Soc Trans, 2004, 32(Pt6):910-2.
    80. Arce C, Segura-Pacheco B, Perez-Cardenas E, et al. Hydralazine target: from blood vessels to the epigenome[J], J Transl Med 2006,4:10.
    81. Zambrano P, Segura-Pacheco B, Perez-Cardenas E, et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes [J]. BMC, Cancer 2005, 5:44
    82. Jones PA. Overview of cancer epigenetics. Semin Hematol, 2005,42(3 Suppl 2): S3-8.
    83. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990): 457-63.
    84. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia:pathophysiology and therapeutic implications. Ann Intern Med 2001; 134(7): 573-86.
    85. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N EnglJMed 2003, 349(21): 2042-54.
    86. Brueckner B, Lyko F. DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharmacol Sci 2004; 25(11): 551-4.
    87. Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptoralpha (ER) in ER-negative human breast cancer cell Iines[J]. Cancer Biol Ther,2003,2(5): 552-6.
    88. Marks PA, Miller T, Richon VM. Histone deacetylases.Curr Opin Pharmacol, 2003,3(4): 344-51.
    89. Zhu WG, Otterson GA: The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anti-Cancer Agents, 2003, 3(3):187-99.
    90. Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy[J]. Clin Cancer Res, 2003, 9(5): 1596-603.
    91. Chavez-Bianco A, Perez-Plasencia C, Perez-Cardenas E, et al. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines[J]. Cancer Cell Int, 2006, 6:2.
    92. Li L, Shi H, Yiannoutsos C, Huang TH, Nephew KP. Epigenetic hypothesis tests for methylation and acetylation in a triple microarray system[J]. J Comput Biol, 2005,12(3):370-90.
    93. Primeau M, Gagnon J, Momparler RL. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2'-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells[J]. Int J Cancer, 2003,103(2): 177-84.
    94. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA: DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors [J]. Cancer Res,2001,61(4):1327-33.
    95. Klisovic MI, Maghraby EA, Parthun MR, Guimond M, Sklenar AR. Depsipeptide (FR901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AMLl/ETO-positive leukemic cells[J]. Leukemia 2003, 17(2):350-58.
    96. Gagnon J, Shaker S, Primeau M, Hurtubise A, Momparler RL. Interaction of 5-aza-2'-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells[J]. Anticancer Drugs, 2003,14(3):193-202.
    97. Bovenzi V, Momparler RL. Antineoplastic action of 5-aza-2'-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells[J]. Cancer Chemother Pharmacol, 2001, 48(l):71-6.
    98. Cameron EE, Bachman KE, My(?)h(?)nen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer[j]. Nat Genet, 1999, 21(1): 103-7.
    99. Belinsky SA, Klinge DM, Stidley CA, et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer[J]. Cancer Res 2003;63(21):7089-93.
    l00. Sato N, Maitra A, Fukushima N, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res, 2003, 63(14):4158-66.
    101. Burgers WA, Blanchon L, Pradhan S, et al. Viral oncoproteins target the DNA methyltransferases[J]. Oncogene, 2007, 26(11): 1650-5.
    102. de la Cruz-Hernandez E, Perez-Cardenas E, Contreras-Paredes A, et al. The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study[J]. VirolJ, 2007,4:18.
    103. Sharma D, Blum J, Yang X, et al. Release of Methyl CpG Binding Proteins and Histone Deacetylase 1 from the Estrogen Receptor_ (ER) Promoter upon Reactivation in ER-Negative Human Breast Cancer Cells[J]. Mol Endocrinol, 2005,19(7): 1740-51.
    104. EI-Osta A, Kantharidis P, Zalcberq JR, Wolffe AP. Precipitous Release of Methyl-CpG Binding Protein 2 and Histone Deacetylase 1 from the Methylated Human Multidrug Resistance Gene (MDRl) on Activation [J]. Mol Cell Biol, 2002,22(6): 1844-57.
    1.Denu JM.Linking chromatin function with metabolic networks:Sir2 family of NAD~+-dependent deacetylases [J].Trends Biochem Sci,2003,28(1):41-48
    2.Gasser SM,Cockell MM.The molecular biology of the SIR proteins.Gene,2001,279:1-16
    3.Imai S,Armstrong CM,Kaeberlein M,Guarente L.Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase[J].Nature,2000,403(6771):795-800
    4.Landry J,Sutton A,Tafrov ST,et al.The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases[J].Proc Natl Acad Sci U S A,2000,97(11):5807-11
    5.Smith JS,Brachmann CB,Celic I,et al.A phylogenetically conserved NAD-dependent protein deacetylase activity in the Sir2 protein family[J].Proc Natl Acad Sci USA,2000,97(12):6658-63.
    6.Blander G,Guarente L.The Sir2 family of protein deacetylases[J].Annu Rev Biochem,2004,73:417-35.
    7.Liszt G,Ford E,Kurtev M,Guarente L.Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase[J].J Biol Chem,2005,280(22):21313-20.
    8.North B J,Verdin E.Sirtuins:Sir2-related NAD-dependent protein deacetylases[J].Genome Biol,2004,5(5):224
    9.Cress WD,Seto E.Histone deacetylases,transcriptional control,and cancer[J].J Cell Physiol,2000,184(1):1-16.
    10.Denu JM.The Sir 2 family of protein deaeetylases[J].Curr Opin Chem Biol,2005,9(5):431-40.
    11.Frye RA.Phylogenetic classification of prokaryotie and eukaryotie Sir2-1ike proteins[J].Biochem Biophys Res Commun,2000,273(2):793-8.
    12.Dali-Youcef N,Lagouge M,Froelich S,et al.Sirtuins:the ‘magnificent seven’, function, metabolism and longevity[J]. Ann Med, 2007, 39(5): 335-45.
    13. Sauve AA., Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem, 2006,75:435-65.
    14. Vaquero A, Scher M, Lee D, et al. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Mol Cell, 2004, 16(1): 93-105.
    15. Senawong T, Peterson VJ, Avram D, et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor(COUP-TF)-interacting protein 2-mediated transcriptional repression[J]. J Biol Chem,2003,278,43041-50
    16. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress [J]. Cell, 2001, 107(2):137-48
    17. Kuzmichev A, Margueron R, Vaquero A, et al.Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation [J]. Proc NatlAcad Sci U S A, 2005,102(6): 1859-64,.
    18. Harvey AC, Downs JA. What functions do linker histones provide[J]? Mol Microbiol,2004, 53(3): 771-5.
    19. Stunkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J, 2007, 2(11):1360-8.
    20. Jones PA, Baylin SB. The fundamental role of pigenetic events in cancer. Nat Rev Genet, 2002, 3(6): 15-28.
    21. Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation[J].PZoS Genet, 2006, 2(3): e40.
    22. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys l6 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer[J]. Nat Genet, 2005,37(4): 391-400.
    23. Stankovic-Valentin N, Deltour S, Seeler J, et al. An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HICl regulates transcriptional repression activity[J]. Mol Cell Biol, 2007,27(7): 2661-75.
    24. Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HICl directly regulates SIRT1 to modulate p53-dependent DNA-damage responses[J]. Cell, 2005, 123(3):437-48.
    25. Chen W, Cooper TK, Zahnow CA, et al. Epigenetic and genetic loss of Hicl function accentuates the role of p53 in tumorigenesis[J]. Cancer Cell 2004, 6(4): 387-98.
    26. Cohen HY, Lavu S, Bitterman KJ, et al.Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis[J]. Mol Cell, 2004,13(5): 627-38.
    27. Chu F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdrl and cancer resistance to chemotherapy by the longevity gene sirt1[J]. Cancer Res, 2005,65(22): 10183-7.
    28. Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth[J]. PloS ONE, 2008, 3(4): e2020.
    29. Anastasiou D, Krek W. SIRT1: linking adaptive cellular responses to aging-associated changes in organismal physiology. Physiology (Bethesda), 2006, 21:404-10.
    30. Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging,and calorie restriction. Genes Dev, 2006, 20(21): 2913-21
    31. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev, 1999, 13(19):2570-80.
    32. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence[J]. EMBO J, 2002, 21(10): 2383-96.
    33. Chua KF, Mostoslavsky R, Lombard DB, et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress[J]. Cell Metab, 2005, 2(1): 67-76.
    34. Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell, 2005, 120(4): 473-82.
    35. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae[J]. Science, 2000,289(5487):2126-8.
    36. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction[J]. Proc Natl Acad Sci U S A, 2004, 101 (45): 15998-16003.
    37. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans[J]. Nature, 2001, 410(6825): 227-30
    38. Wang Y, Tissenbaum HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO[J]. Mech Ageing Dev, 2006, 127(1): 48-56.
    39. Baur JA, Pearson KJ, Price NL. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature, 2006,444(7117): 337^2.
    40. Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirtl[J]. Science, 2005, 310(5754): 1641.
    41. Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes[J]. Nature, 2007, 450(7170):712-6.
    42. Kaeberlein M, Kirkland KT, Field S. Sir2-independent life span extension by calorie restriction in yeast[J]. PLoS Biol, 2004, 2(9): E296.
    43. Kaeberlein M, Hu D, Kerr EO, et al. Increased life span due to calorie restriction in respiratory-deficient yeast[J]. PLoS Genet, 2005, 1(5): e69
    44. Fabrizio P, Gattazzo C, Battistella L, et al. Sir2 blocks extreme life-span extension[J].Cell, 2005, 123(4): 655-67.
    45. Luchsinger JA. A work in progress: the metabolic syndrome. Sci Aging Knowledge Environ 2006(10): pe l9.
    46. Moller N, Gormsen L, Fuglsang J, Gjedsted J. Effects of ageing on insulin secretion and action.Horm Res, 2003, 60(Suppl): 102-4.
    47. de Luca C, Olefsky JM. Stressed out about obesity and insulin resistance [J]. Nat Med, 2006,12(1): 41-42; discussion 42.
    48. Bordone L, Motta MC, Picard F, et al. Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells[J]. PLoS Biol, 2005,4(2): e31.
    49. Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice[J]. Cell Metab, 2005, 2(2): 105-17.
    50. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis.Nature, 2000, 404(6778): 652-60,
    51. Kitamura YI, Kitamura T, Kruse JP, et al. FoxOl protects against pancreatic beta cell failure through NeuroD and MafA induction[J]. Cell Metab, 2005, 2(3): 153-63.
    52. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1[J]. Nature, 2005,434(7029): 113-8.
    53. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRTl deacetylase[J]. Science, 2004,305(5682):390-2.
    54. Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of Enos[J]. Science, 2005,310(5746):314-7.
    55. Qin W, Yang T, Ho L, et al. Neuronal SIRTl activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction[J]. J Biol Chem, 2006, 281(31): 21745-54.
    56. Firestein R, Blander G, Michan S, et al. The SIRTl deacetylase suppresses intestinal tumorigenesis and colon cancer growth[J]. PLoS One, 2008, 3(4): e2020
    57. Civitarese AE, Carling S, Heibronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans[J]. PLoS Med, 2007, 4(3):e76.
    58. Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRTl by calorie restriction [J]. Genes Dev, 2008, 22(13):1753-7.
    59. Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulinresistant conditions by repressing PTP1B[J]. Cell Metab, 2007, 6(4):307-19.
    60. Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell,2004,116(2): 337-50.
    61. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue[J]. Science, 2003, 299(5606): 572-4.
    62. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R,Leid M, McBumey MW, and Guarente L. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 2004, 429(): 771-6,.
    63. Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med, 2007, 4, e76.
    64. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding Iongevity[J]. Nat Rev Mol Cell Biol, 2005, 6(4): 298-305.
    65. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-la[J]. Cell, 2006,127(6): 1109-22.
    66. Nemoto S, Ferqusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway[J]. Science, 2004, 306(5704): 2105-8.
    67. Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endotheliumdependent vascular relaxation by activating endothelial nitric oxide synthase[J]. Proc Natl Acad Sci U S A, 2007, 104(37): 14855-60.
    68. Shang L, Zhou H, Xia Y, et al. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner[J]. J Cell Mol Med, 2008, Aug 9.
    69. Fraser M, Chan SL, Chan SS, et al. Regulation of p53 and suppression of apoptosis by the soluble guanylyl cyclase/cGMP pathway in human ovarian cancer cells[J].Oncogene, 2006, 25(15): 2203-12.
    70. Vaziri H, Dessain SK, Nq Eaton E, et al. hSIR2SIRTl functions as an NAD-dependent p53 deacetylase[J]. Cell, 2001,107(2): 149-59.
    71. Sakamoto J, Miura T, Shimamoto K, Horio Y.Predominant expression of Sir2alpha, an NADdependent histone deacetylase, in the embryonic mouse heart and brain[j]. FEBS Lett, 2004,556(1-3): 281-6.
    72. Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[J]. Proc Natl Acad Sci USA,2003,100(19): 10794-9.
    73. Alcendor RR, Kirshenbaum LA, Imai S, et al. Silent information regulator 2alpha, a longevity factor and class Ⅲ histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes[J]. Circ Res, 2004,95(10): 971-80.
    74. Crow MT. Sir-viving cardiac stress: cardioprotection mediated by a longevity gene[J]. Circ Res, 2004, 95(10): 953-6,
    75. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state[J]. Mol Cell, 2003,12(1): 51-62.
    76. Zhao X, Sternsdorf T, Bolger TA, et al. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications[J]. Mol Cell Biol, 2005,25(19):8456-64.
    77. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J]. Science, 2004, 305(5686): 1010-3.
    78. Neugebauer RC, Sipple W, Junq M. Inhibitors of NAD+ dependent histone deacetylases (sirtuins). Curr Pharm Des, 2008,14(6):562-73.
    79. Lain S, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator[J]. Cancer Cell, 2008,13(5): 454-63.
    80. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature, 2006,444(7117): 337-42.
    81. Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes [J|. Nature, 2007,450(7170): 712-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700