用户名: 密码: 验证码:
阻抗渐变型水泥基复合吸波材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电子科技技术的飞速发展,电子设备高频化、数字化,电磁辐射所带来的危害越来越严重。为了防止外部的电磁干扰和电磁信号的泄漏,削减电磁波对人体的伤害以及电磁波对建筑物的探测能力,研究具有优良吸波效能的水泥基复合材料在国防、民用,乃至保护人体健康方面都具有重要意义。
     阻抗渐变型水泥基复合吸波材料是一种多功能建筑结构材料,它能有效地将电磁波转化为电能、热能或其他形式能量,使电磁波达到衰减,在吸收电磁波的同时还具有优良的隔热保温性能。本文主要针对目前国内外民用、军用建筑对电磁防护的迫切性与水泥基吸波材料存在的问题,提出了具有优良吸波功能的阻抗渐变型水泥基复合材料的设计思路与方法,对水泥基复合吸波材料的组成、结构与性能进行了系统的研究,为高性能水泥基吸波材料的设计、研究、制备提供了理论基础。
     本文开展的主要工作及取得的成果有:
     依据电磁波传播规律及阻抗匹配原理,结合水泥基材料自身的特点,通过对水泥基材料基体组分、匹配层及损耗层优化设计,提出了具有不同阻抗结构的层状水泥基复合材料(匹配层+损耗层)的设计思路和方法。通过复合高电磁参数的钢渣、粉煤灰、高钛重矿渣等矿物掺合料,改善基体材料的介电损耗性能,系统研究了矿物掺合料种类及掺量、聚合物表面改性对水泥基复合吸波材料基体吸波性能的影响规律。结果表明掺入10%橡胶微粉和30%的钢渣,可以改善介质材料表面的阻抗匹配及材料内部对电磁波的损耗能力。在优化基体上系统研究了闭孔膨胀珍珠岩、玄武岩纤维和石墨微粉作为吸波组分对水泥基复合材料对吸波性能的影响规律。结果表明,珍珠岩作为低电磁参数多闭孔材料,具有优良的电磁损耗特性,最佳掺量为50vol%-60vol%;玄武岩纤维本身含有一定的介电损耗物质,内部结构多孔,具有一定的吸波功能,掺入0.5%-1.0%左右最佳;石墨作为电阻损耗型吸波剂,掺量控制在0.2%-0.4%为宜。
     在水泥基复合材料基体及吸波性能影响因素研究的基础上,研究制备了具有阻抗渐变结构的双层水泥基复合吸波材料:以石墨复合珍珠岩等作为损耗层吸波组分;以橡胶微粉复合珍珠岩等作为匹配层填充材料。通过调整匹配层填充材料的比例来调整介质材料材料表面的电磁参数,使材料表面的输入阻抗与自由空间的波阻抗匹配;通过调整损耗层吸波组分含量及制备工艺,使吸波剂均匀分布于透波骨料形成的电磁波传输通道上,实现对电磁波的有效损耗。结果显示:匹配层填充60%珍珠岩、10%橡胶微粉和损耗层填充0.4%石墨、60%珍珠岩、0.5%纤维的试样,在测试频段8-18GHz内,反射率都低于-10dB,最小反射率达到-23.35dB,表现了优良的吸波性能。
     闭孔膨胀珍珠岩保证了水泥基复合材料的高气孔率,减小了空气的对流,同时玄武岩纤维绝缘性好,复合两者提高了材料的保温隔热性能,实现了水泥基复合材料功能的多样化。
With rapid development of modern electronic science and technology, the harm due to electromagnetic radiation which result in electronic equipment with high frequency and digitization is more and more serious. In order to prevent external electromagnetic interference and electromagnetic signals leak and reduce the harm of electromagnetic wave on human body and detecting ability on buildings, the study on cement-based composite materials with excellent absorbing property has important significance in defense, civil, and protecting human health.
     Cement based materials with resistance gradual changing structure are a kind of functional building materials. It can effectively will electromagnetic wave into electrical energy, heat or other forms of electromagnetic energy, which reached the electromagnetic wave absorbing attenuation, and also has excellent heat insulation performance. The article mainly aims at civil and military buildings at home and abroad for the urgency of electromagnetic protection and current cement base absorbing material existent problem, put forward with excellent the impedance gradient absorbing function of type cement base composite materials. Relative disciplines of composition, structure and performances were mastered, high-performance cement-based materials were designed and produced that were wave absorption, splitting resistance, heat preservation, durability and environmental protection. Significant basement and theoretical guidance were provided for designing, production and application of the materials.
     In this article, the main tasks and achievements are as below:
     According to the electromagnetic wave propagation law and impedance matching theory, combined with the characteristics of cement-based material itself, through optimization design on cement base material composition, matched layer and depletion layer, the design idea and method that the structure with different impedance layered cement matrix composites (matched layer+depletion layer) was put forward.
     Electromagnetic parameters change rule of matrix cementitious material was studied through adding steel slag, fly ash, high titanium heavy slag, etc.. Then dielectric and magnetic loss mechanism on electromagnetic wave of the matrix cementitious material was proved up. The article systematically analyzed the influence law of absorbing properties, which due to the mineral admixture and surface modification of polymer on matrix composite. Results showed that adding 10% mass fraction of rubber micro-powder and 30% mass fraction of steel slag could improve matching impedance of surface material and electromagnetic waves loss ability of internal material. On the basis of optimizing matrix, the influences of obturator perlite, basalt fiber and graphite powder as the absorbing losses components mixed in cement-based composites to absorbing properties were studied systematically. The results showed that, as the obturator materials with low electromagnetic parameters, perlite has excellent electromagnetic loss characteristics, whose optimal dosage from 50vol % to 60vol % (volume dosage); basalt fiber contains some dielectric loss substances, its internal structure is porous and it has microwave transparency function, adding about 0.5% to 1.0% will be best; as the resistance loss type absorbing agent, Graphite dosage should be controlled in 0.2% to 0.4%.
     On the basis of research on cement base composites matrix and absorbing performance factors, double-layer absorbing materials with resistance gradual changing structure were designed and produced:Graphite composite perlite as loss layer absorbing components; rubber micro-powder composite perlite as matched layer fillers. Through adjusting matched layer materials filled ratio to adjust material surface electromagnetic parameters, which make the input impedance on material surface and the wave impedance in free space matching. Through adjusting depletion layer absorbing component content and preparation technology, make absorbing agent evenly distributed in electromagnetic wave transmission channel formed by wave-permeating aggregate, this will realize the effective loss of electromagnetic wave. The result shows:filling the matched layer with 60% expanded pearlite and filling the depletion layer with 0.4% graphite,60% expanded pearlite and 0.5% basalt fibre, in test frequency within 8 to 18GHz, reflectivity will all below -10dB, the minimum reflectivity reach -23.35 dB, which have showed excellent absorbing performance.
     Combined with cement base composite insulation performance testing, reveals the lottery wave-aggregate obturator rate, high polymer modification and fiber disorderly to distribution form three-dimensional interpenetrating networks structure on the influence mechanism insulation materials, realized the cement base composite materials multifunction change.
引文
[1]张彦文,余争平.电磁辐射对神经行为和生物电的影响[J].环境与健康.2003,20(1):53~56.
    [2]徐鹏,张建春.电磁辐射对人的危害与防护[J].中国个体防护装备.2001(5):16~19.
    [3]孙燕.电磁辐射的危害与防护[J].安全.2010(3):48~50.
    [4]殷海昌,明弢文.威胁人类健康的第四大污染-电磁污染[J].解放军健康.2001(2):32~35.
    [5]刘顺华,郭辉进.电磁屏蔽与吸波材料[J].功能材料与器件学报.2002,8(3):213~216.
    [6]赵九鹏,李垚,吴佩莲.新型吸波材料研究研究动态[J].材料科学与工艺.2002,10(2):119~125.
    [7]周克省,黄可龙,孔德明等.吸波材料的物理机制及其设计[J].中南工业大学学报.2001,32(6):617~620.
    [8]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [9]江家京,王春芳,孟海乐等.吸波建筑材料的研究及应用进展[J].科技情报开发与经济.2005,15(1):132-133.
    [10]廖海军,张超灿,赵清荣.防电磁辐射水泥基复合材料的性能与应用[J].房材与应用,2004,32(2):6-8.
    [11]王锦成.电磁屏蔽材料的屏蔽原理及研究现状[J].化工新型材料.2002,30(7):16~18.
    [12]陈抗生.电磁场与电磁波[M].北京:高等教育出版社.2003,88-98.
    [13]Jin Au Kong,译者:吴季等.电磁波理论[M].北京:电子工业出版社.2003,452-453.
    [14]M. J. Ptikethly. Radar absorbing materials and their potential absorbers and scatters[J]. IEEE Colloquium on. UK:London.1992:71~72.
    [15]D.A.Halls, S.G.Rooney. Controlling the Tempest Adaptive Management in Advanced ATM Control Architectures[J]. IEEE Journal on Volume.1998, (3):414~423.
    [16]赵玉峰,肖瑞,赵东平等.电磁辐射的抑制技术[M].北京:中国铁道出版社.1980:10-19.
    [17]孙宇新.电磁辐射对环境的污染及防护措施[J].工业安全与环保.2001,27(12).
    [18]钟克煌,李中怡.屏蔽电磁波干扰的涂料[J].化工新型材料.1989,17(3):33~35.
    [19]Sherman RD, Middleman LM, Jacobs SM. Polymer Engineering and Science[J].1983, 23(1):36~39.
    [20]杜仕国.屏蔽电磁波干扰塑料及其开发动向[J].塑料科技.1995,(2):1-4.
    [21]代梦艳.天然雾对电磁波干扰的研究进展及其军事应用[J].激光与红外.2006,36(2).
    [22]薛晓春,王雪华.隐身与反隐身技术的发展研究[M].北京:北京理工大学出版社,2002.
    [23]孙福昌.微波辐射对人体的危害及防护[J].内蒙古广播与电视技术.1994,(2):180~183.
    [24]方玮.电磁辐射对人体的危害[J].日用电器,2004(4):30~33.
    [25]董银平,侯巧珍.电磁波对人体危害的研究[J].内江科技,2008,29(12).
    [26]杜奔新.电磁辐射对人体的危害[J].安全.2007(8):60-63.
    [27]陈国璋,陈惠晓.谈谈生物电磁学研究热点—非热效应[J].物理.1998,27(3):151~55.
    [28]单国栋,戴英霞,王航.计算机电磁信息泄露与防护措施[J].电子技术应用.2002(4):6-8.
    [29]张淑琴,张彭.电磁辐射的危害与防护[J].工业安全与环保.2008(3):51~54.
    [30]步文博,徐洁,丘泰等.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报.2001,15(5):14~19.
    [31]Wang Qun, Zhang Xiaoning, Mao Qianjin. Preparation of Modified Textiles Possessed of Absorbing and Shielding Characterizations[C].The 3rd International Symposium on Electromagnetic Compatibility, Beijing,2002:589~594.
    [32]李小莉.多晶铁纤维雷达波吸收性能的研究[D].大连:太原理工大学,2004.
    [33]娄明连,阚涛.铁氧体多层结构电波吸收体的研究[J].安徽大学学报,1999,23(2):34~38.
    [34]童国秀,官建国,张五一等.纳米铁纤维与羰基铁粉共混制备轻质宽带吸波涂层材料[J].ACTAMETALLURGICA SINICA.2008,44(8).
    [35]Hertfelder, B.J.Kummerer. Classical Analogs of Quasifree Quantum Stochastic Processes Given by Stochastic States of the Quantized Electromagnetic Field[J]. Mathematical Phys.2001, (42):1006~1017
    [36]江家京,王春芳,孟海乐等.吸波建筑材料的研究及应用进展[J].科技情报开发与经济.2005,15(1):132-133.
    [37]Morimoto M, Kanda K, Hada H, et al. Development of electromagnetic absorbing board for wireless communication environment. In Proceedings of the Conference of Architectural Institute of Japan.1998, D-1:1069~1070.
    [38]Oda M. Radio wave absorptive building materials for depressing multipath indoors. Electromagnetic Compatibility,1999 International Symposium Japan:Tokyo.1999:492-495.
    [39]陈兵,张东.新型水泥基复合材料的研究与应用.新型建筑材料.2000,(4):28~30.
    [40]唐明,陈勇.论混凝土材料的高功能化.混凝土.2001,(3):14~18.
    [41]张雄,刁志臻.建筑吸波材料及其开发利用前景[[J].建筑材料学报.2003,6(1):72~75.
    [42]Otsuka, Hiroshi, Haga, et al. Magnetic concrete having electromagnetic shielding effect. Japan. Kokai Tokkyo Koho JP 2001302318 A231 Oct 2001,8pp.
    [43]Gaze ME,Crammond NJ.The formation of thaumasite in a cement:lime:sand mortar exposed to cold magnesium and potassium sulfate solutions[J].Cement and Concrete Composites. 2000, (22):209~220.
    [44]Morimoto M, Kanda K, Hada H, et al. Development of electromagnetic absorbing board for wireless communication environment[C]. In Proceedings of the Coryerence of Architectural Institute of Japan.1998, D-1:1069~1070.
    [45]Jingyao Cao, D.D.L. Chung. Colloidalhite as an admixture in cement and as a coating on cement for electromagnetic interference shielding[J]. Cement and Concrete Research,2003, 33(12):1737~1740.
    [46]Jingyao Cao, D.D.L. Chung. Coke powder as an admixture in cement for electromagnetic interference shielding[J]. Letters to the Editor Carbon.2003,41:2433~2436.
    [47]许卫东,张豹山等.铁氧体水泥基微波吸收复合材料的初步研究[J].兵器材料科学与工程,2003,26(6):6-9.
    [48]熊国宣,邓敏,徐玲玲等.水泥基复合材料的吸波性能[J].硅酸盐学报.2004,32(10):1281-1284.
    [49]熊国宣,陈阳如,李坚利等.纳米TiO2与水泥复合材料的吸波机理探讨[J].功能材料,2007,5.836~838.
    [50]熊国宣,徐玲玲,邓敏等.掺杂TiO2水泥的吸波性能与力学性能研究[J].功能材料与器件学报.2005,11(1):87~91.
    [51]谭宏斌,薛丽皎,林友军等.石墨、不锈钢纤维、焦炭对水泥基材料电磁屏蔽效能的影响[J].混凝土与水泥制品.2007,(5):43~45.
    [52]杨海燕,李劲,叶齐政等.钢纤维混凝土的吸波性能研究[J].功能材料,2002,33(3):341~343.
    [53]戴银所陆春华,倪亚茹等.水泥吸波性能的研究[J].建筑材料学报,2009,12(5):528~531.
    [54]戴银所,陆春华,倪亚茹等.粉煤灰在水泥基材料中吸波性能的探索[J].材料导报,2009,23(5):62~65.
    [55]戴银所,陆春华,倪亚茹等.掺钢渣水泥基复合材料的吸波性能[J].硅酸盐学报,2009,37(12):2097~2099.
    [56]戴银所,陆春华,倪亚茹等.波浪型钢纤维水泥砂浆吸波性能的研究[J].新型建筑材料,2009,36(12):27~31.
    [57]赵彦波,刘顺华,管洪涛等.水泥基多孔复合材料吸波性能[J].硅酸盐学报,2006,2.225~228.
    [58]管洪涛,刘顺华,段玉平等.EPS水泥复合材料的吸波性能与抗压性能研究[J].材料科学与工程学报,2006,8.524~527.
    [59]H.Guan, S. Liu, Y. Duan, et al.Cement based electromagnetic shielding and absorbing building materials[J].Cement&Concrete Composites.2006,28(5):468-467.
    [60]H.T.Gnan, S.H.Liu, Y.B.Zhao, et al.Electromagnetic characteristics of nanometer manganese dioxide composite materials[J].Journal ofElectronic Materials.2006,35(5):892~896.
    [61]杜纪柱,刘顺华.炭包EPS空心导电球吸波机理讨论[J].材料科学与工程学报.2007,25(1).
    [62]李宝毅,刘顺华等.复合吸波剂填充水泥基材料吸波性能研究[J].功能材料,2007,3075~3077.
    [63]Hu S.G.,Tian K., Ding Q.J. Design and test of new cement based microwave absorbing materials[C]. The 8th International Symposium on Antennas, Propagation and EM Theory Proceedings.2008:956~959,
    [64]田焜,丁庆军,胡曙光.新型水泥基吸波材料的研究[J].建筑材料学报,2010,13(3):20-25.
    [65]Hu S.G, Tian K., Ding Q.J. Study of Electromagnetic Properties of Polymer Modified Cementious Composite Materials. The 7th international symposium on cement & concrete. Ji'nan, China,2010:935~938.
    [66]廖海军,张超灿,赵清荣.防电磁辐射水泥基复合材料的性能与应用[J].房材与应用,2004,32(2):68.
    [67]J.A斯特莱顿.电磁理论[M].科学出版社.1992,459.
    [68]科夫涅里斯特,拉扎列娃,拉瓦耶夫著.蔡德录,刘承钧译.微波吸收材料[M].北京:科学出版社.1985.
    [69]吴晓光,车哗秋编译.国外微波吸收材料[M].长沙:国防科技大学出版社.1992.
    [70]严坤.铁基纳米晶—聚合物复合屏蔽材料的制备[D].广州:华南理工大学,2006.
    [71]廖海星,刘祖黎,喻克雄等.掺杂聚苯胺复合材料电磁参数及吸波性能研究[J].华中师范大学学报.2004,38(3)
    [72]李永军.碳纳米管/钡铁氧体复合材料的制备、表征与电磁参数研究[D].上海:上海交通大学,2008.
    [73]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,1989,16~82.
    [74]邓龙江,周佩珩,翁小龙.磁性电磁吸波材料的研究现状与进展[J].2005功能材料学术年会论文集.
    [75]丁世敬,葛德彪,黄刘宏.电磁吸波材料中的阻抗匹配条件[J].电波科学学报.2009,24(6):1104~1108.
    [76]邱琴,张晏清,张雄.电磁吸波材料研究进展[J].电子元件与材料,2009,28(8):78~81.
    [77]Yamane T, Numata S, Mizumoto T, etal. Development of wide-band ferrite fin electromagnetic wave absorber panel for building wall[C]. Electromagnetic Compatibility,2002 International Symposium on Minnesota:Minneapolis.2002, vol.2:799~804.
    [78]张雄,刁志臻.建筑吸波材料及其开发利用前景[[J].建筑材料学报.2003,6(1):72~75.
    [79]Oda.M. Radio wave absorptive building materials for depressing multipath indoors. Electromagnetic Compatibility[C]. International Symposium. Japan:Tokyo.1999:492~495.
    [80]韩兆芳.氯化丁基橡胶基压电阻尼复合材料的研究[D].西安:西安电子科技大学,2005.
    [81]张秀芝,孙伟.铁氧体复合吸波剂对水泥基复合材料吸波性能的影响[J].硅酸盐学报.2010,38(4):590~594.
    [82]张秀芝,孙伟,赵俊峰.单/双层水泥基平板的微波吸收性能[J].硅酸盐学报.2009,37(7):1218~1222.
    [83]黄煜镔,钱觉时,张建业等.高铁粉煤灰建筑吸波材料研究[J].煤炭学报.2010,35(1):135~138.
    [84]黄煜镔,钱觉时,张建业等.高铁粉煤灰对水泥基材料吸波特性的影响[J].功能材料.1786~1789.
    [85]胡显奇,申屠年.连续玄武岩纤维在军工及民用领域的应用[J].高科技纤维与应用.2005,30(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700