用户名: 密码: 验证码:
新型ZnO基透明导电氧化物薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用直流磁控反应溅射金属镶嵌靶Zn/Mo和Zn/W制备了高价态差掺钼氧化锌(ZnO:Mo, ZMO)和掺钨氧化锌(ZnO:W, ZWO)透明导电薄膜,研究了掺杂浓度、氧分压、溅射电流、基板温度等制备参数对ZMO和ZWO的薄膜结构、电学和光学性能的影响;利用XRD、AFM、XPS、分光光度计、太赫兹(THz)透射谱等分析手段对薄膜进行表征与分析;制备了结晶性良好、载流子迁移率高的ZMO和ZWO薄膜。
     直流磁控反应溅射金属靶制备的ZMO透明导电薄膜为多晶的六角纤锌矿结构;获得了直流磁控溅射法制备具有良好光电特性的ZMO薄膜的最佳工艺条件;制得的ZMO薄膜的最低电阻率为7.9×10-4Ω·cm,相应载流子迁移率为27.3cm2V-1s-1,载流子浓度为3.1×1020cm-3;在可见光区(400-700 nm)的平均透射率为85%,折射率(550nm)为1.853,消光系数为7.0×10-3。研究表明,氧分压对制备薄膜的光电特性有很大影响,通过改变氧分压可以调节薄膜载流子浓度,同时禁带宽度随载流子浓度的增加由3.37eV增大到3.8eV,并测得载流子有效质量m’为0.33倍的电子质量。
     采用直流磁控反应溅射方法,通过调节氧分压在玻璃基底上制备了不同载流子浓度的ZMO透明导电薄膜。首次应用太赫兹时域光谱技术研究了ZMO导电膜的太赫兹透射性质及介电响应,得到了电导率和薄膜折射率的频谱,实验结果很好地与经典Drude模型相吻合。ZMO导电膜的太赫兹脉冲透射性质表明通过调节ZMO薄膜的载流子浓度,该导电膜可作为太赫兹频率范围的光学器件的宽带抗反射涂层。
     本文还采用直流磁控溅射法制备了ZWO薄膜。在ZWO薄膜中,W原子替代了ZnO晶格中的Zn原子的位置,没有形成新的化合物,也没有改变ZnO的六角纤锌矿晶格结构。获得的ZWO薄膜的最低电阻率为6×10-3Ω·cm,在可见光区(400-700nm)的平均透射率为86%。研究表明,ZWO多晶薄膜的电学与光学特性与掺杂量、氧分压、基底温度以及溅射电流等制备条件参数密切相关。
Transparent conductive oxide films of both ZnO:Mo (ZMO) and ZnO:W (ZWO) have been successfully fabricated by using DC reactive magnetron sputtering from metallic targets of Zn/Mo and Zn/W, respectively. The dependence of electrical, optical and structure properties of both ZMO and ZWO films on deposition parameters, such as Mo-doping content, oxygen partial pressure, and substrate temperature, have been investigated in detail. The structure, surface morphology, chemical state properties, terahertz transmission of ZMO films were studied by XRD, AFM, XPS and terahertz spectroscopy, respectively.
     ZMO transparent conductive thin films prepared by DC reactive magnetron sputtering on glass substrates from metallic targets were polycrystalline with the hexagonal crystal structure. The experimental condition of DC magnetron sputtering for ZMO films with good optical and electric properties has been established. The minimum resistivity of 7.9×10-4Ω·cm is obtained, with a carrier mobility of 27.3 cm2V-1s-1 and a carrier concentration of 3.1×1020 cm-3, and the average transmittance is about 85% in the visible light region. The refractive index and extinction coefficient at the wavelength of 550 nm are 1.853 and 7.0×10-3, respectively. The results show that oxygen partial pressure greatly effects on the photoelectricity of ZMO thin films, and the carrier concentrationgs of the films could be adjusted by controlling the oxygen partial pressure. The energy bands increase from 3.37 eV to 3.8 eV with the carrier concentrations augment and the carrier effective mass m* is 0.33 times as the electron mass.
     With DC reactive magnetron sputtering method, transparent conducting molybdenum-doped ZnO thin films with different carrier concentration on glass substrate were fabricated by monitoring oxygen partial pressure. The dielectric responses of the ZMO films are characterized with terahertz time-domain spectroscopy. Frequency dependent conductivity, power absorption, and refractive index are obtained, and the experimental results can be well reproduced with classic Drude model. Our results reveal that, by adjusting the carrier concentration of ZMO film, the conducting ZMO film can serve as broadband antireflection coatings for substrates and optics in terahertz frequency range.
     ZWO films have been also successfully fabricated firstly by using DC reactive magnetron sputtering from metallic targets of Zn/W. ZWO films are polycrystalline with the hexagonal crystal structure. The lowest electrical resistivity of ZWO films was 6×10-3Ω·cm and the average visible transmittance of the ZWO film was 86%. The results show that electrical, optical and structure properties of ZWO films depend on sputtering parameters such as oxygen partial pressure, doping content, substrate temperature and sputtering current, etc.
引文
[1]姜辛,孙超,洪瑞江,戴达煌.透明导电氧化物薄膜.[M].高等教育出版社,2008
    [2]Burstein E. Anomalous optical absorption limit in InSb.[J]. Phys. Rev,1954,93:632
    [3]孟杨, 杨锡良,章壮健.新型透明导电薄膜In2O3:Mo[J].真空科学与技术,2000,20(5):331.
    [4]Jonh C. C. Fan, Frank J. Bachner, George H. Foley, et al. Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation [J]. Applied Physics Letters,1974,25(12):693.
    [5]Tadatsugu Minami. New n-type transparent conducting oxides [J]. MRS Bulletin,2000,25(8):38-44.
    [6]Tadatsugu Minami. New n-type transparent conducting oxides [J]. MRS Bulletin,2000,25(8):38-44.
    [7]X. Wu, P. Sheldon, Y. Mahathongdy, et al. CdS/CdTe thin film solar cells with a zinc stannate buffer layer [A]. 15th NCPV Photovoltaics Program Review, AIP Conference Proceedings,1998,462:37-41.
    [8]S. E. Dali, M. Jayachandran, M. J. Chockalingam. New transparent electronic conductor MgIn2O4 spinel [J]. Journal of Materials Science Letters,1999,18:915-917.
    [9]Fan J C C, Goodenough J B. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. Journal of Applied Physics.1977(8),48:3524-3531.
    [10]Bender M, Trube J, Stollenwerk J. Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology. Thin Solid Films,1999,354(1-2):100-105.
    [11]Futagami T, Shigesato Y, Yasui A. Characterization of RF-enhanced DC sputtering to deposit tin-doped indium oxide thin films. Japanese Journal of Applied Physics,1998,37 (11):6210-6214.
    [12]May C, Strumpfel J. ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing. Thin Solid Films,1999,351(1-2):48-52.
    [13]Strumpfel J, May C. Low ohm large area ITO coating by reactive magnetron sputtering in DC and MF mode. Vacuum,2000,59(2-3):500-505.
    [14]Alam M J, Cameron D C. Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process. Thin Solid Films.2000,377-378:455-459.
    [15]Kim S S, Choi S Y, Park C G, et al. Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films,1999,347(1-2):155-160.
    [16]Daoudi K. Canut B, Blanchin M G, et al. Tin-doped indium oxide thin films deposited by sol-gel dip-coating technique. Materials Science and Engineering:C.2002,21(1-2):313-317.
    [17]Su C, Sheu T K, Chang Y T, et al. Preparation of ITO Thin Films by Sol-Gel Process and Their Characterizations. Synthetic Metals.2005,153(1-3):9-12.
    [18]Bae J W. Kim J S. Yeom G Y. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2001,178(1-4):311-314.
    [19]Coutal C. Azema A, Roustan J C. Fabrication and characterization of ITO thin films deposited by excimer laser evaporation. Thin Solid Films.1996,288(1-2):248-253.
    [20]George J. Menon C S. Electrical and optical properties of electron beam evaporated ITO thin films. Surface and Coatings Technology.2000,132(1):45-48.
    [21]Granqvist C G. Hultaker A. Transparent and conducting ITO films:new developments and applications. Thin Solid Films.2002,411:1-5.
    [22]Rogozin A. Shevchenko N. Vinnichenko M. et al.Real-time evolution of the indium tin oxide film properties and structure during annealing in vacuum. Applied Physics Letters.2004,85(1):212-214.
    [23]Wu W F. Chiou B S. Effect of annealing on electrical and optical-properties of RF magnetron-sputtered indium tin oxide-films. Applied surface science,1993.68(4):497-504.
    [24]Baia I. Quintela M. Mendes L. et al. Performances exhibited by large area ITO layers produced by rf magnetron sputtering. Thin Solid Films.1999.337(1-2):171-175.
    [25]Higuchi M. Uekusa S. NakanoR. et al. Postdeposition annealing influence on sputtered indium tin oxide film characteristics. Japanese Journal of Applied Physics.1994.33(1 A):302-306.
    [26]Lee C H. Kuo C V. Lee C L. Effects of heat treatment and ion doping of indium oxide. Thin Solid Films,1989, 173(1):59-66.
    [27]Ohta H. Orita M. Hirano M, et al. Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia(100) by pulsed-laser deposition. Applied Physics Letters.2000,76(19): 2740-2742.
    [28]Kim H, Horwitz J S, Kushto G P, et al. Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes. Applied Physics Letters.2001,78(8):1050-1052.
    [29]van Hest M F A M, Dabney M S, Perkins J D, et al. Titanium-doped indium oxide:A high-mobility transparent conductor. Applied Physics Letters.2005,87:032111.
    [30]Meng Y, Yang XL, Chen HX, et al. A new transparent conductive thin film In2O3:Mo. Thin Solid Films,2001, 394 (1-2):218-222.
    [31]Meng Y, Yang XL, Chen HX, et al. Molybdenum-doped indium oxide transparent conductive thin films. Journal of Vacuum Science & Technology A.2002,20(1):288-290.
    [32]Y. Yoshida, T. A. Gessert, C. L. Perkins, et al. Development of radio-frequency magnetron sputtered indium molybdenum oxide. Journal of Vacuum Science & Technology A.2003,21(4):1092-1097.
    [33]Warmsingh C, Yoshida Y, Readey D W, et al. High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition. Journal of Applied Physics.2004,95:3831-3833.
    [34]Sun S-Y, Huang J-L, Lii D-F. Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation. Journal of Vacuum Science & Technology A.2004,22(4):1235-1241.
    [35]28 Sun S-Y, Huang J-L, Lii D-F. Effects of H2 in indium-molybdenum oxide films during high density plasma evaporation at room temperature. Thin Solid Films.2004,469-470:6-10.
    [36]Yoshida Y, Wood D M, Gessert T A, et al. High-mobility, sputtered films of indium oxide doped with molybdenum. Applied Physics Letters.2004,84(12):2097-2099.
    [37]Dong J S, Sun H P. Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis. Physica B.2005,357:420-427.
    [38]Li X F, Miao W N, Zhang Q, et al. Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering, Journal Materials Research.2005,20(6):1404-1408.
    [39]Li X F, Miao W N, Zhang Q, et al. The electrical and optical properties of molybdenum-doped indium oxide films grown at room temperature from metallic target, Semiconductor Science and Technology.2005,20: 823-828.
    [40]Huang L, Li X-f, Zhang Q, Miao W-n, et al. Properties of transparent conductive In2O3:Mo thin films deposited by Channel Spark Ablation, Journal of Vacuum Science & Technology A.2005,23(5):1350-1353.
    [41]Li X F, Miao W N, Zhang Q, et al. Development of novel tungsten-doped high mobility transparent conductive In2O3 thin films, Journal of Vacuum Science & Technology A.2006,24(5):1866-1869
    [42]Veluchamy P, Tsuji M, Nishio T, et al. A pyrosol process to deposit large-area SnO2:F thin films and its use as a transparent conducting substrate for CdTe solar cells. Solar Energy Materials and Solar Cells,2001,67(1-4): 179-185.
    [43]Gordillo G. Paez B, Jacome C, et al. Characterization of SnO2 thin films through thermoelectric power measurements. Thin Solid Films,1999,342(1-2):160-166.
    [44]Dutta J. Perrin J, Emeraud T, et al. Pyrosol deposition of fluorine doped tin dioxide thin-films. Journal of Materials Science.1995,30(1):53-62.
    [45]Acosta D R. Estrada W, Castanedo R, et al. Structural and surface studies of tin oxide films doped with fluorine. Thin Solid Films.2000,375(1-2):147-150.
    [46]Niklasson G A. Ronnow D. Mattsson M S. et al. Surface roughness of pyrolytic tin dioxide films evaluated by different methods. Thin Solid Films.2000,359(2):203-209.
    [47]Rakhshani A E. Makdisi Y. Ramazaniyan H A. Electronic and optical properties of fluorine-doped tin oxide films. Journal of Applied Physics.1998.83 (2):1049-1057.
    [48]Gamard A, Babot O, Jousseaume B, et al. Conductive F-doped Tin Dioxide Sol-Gel Materials from Fluorinated β-Diketonate Tin(Ⅳ) Complexes. Characterization and Thermolytic Behavior. Chemistry of Materials.2000.12(11):3419-3426.
    [49]Mwamburi M, Wackelgard E, Roos A. Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces. Thin Solid Films.2000.374(1):1-9.
    [50]Proscia J, Gordon R G. Properties of flurine-doped tin oxide-films produced by atmospheric-pressure chemical vapor-deposition from tetramethyltin, bromotrifluoromethane and oxygen. Thin Solid Films.1992, 214(2):175-187.
    [51]Suh S G, Zhang Z H, Chu W K, et al. Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films. Thin Solid Films.1999,345(2):240-243.
    [52]Lewis B L, Paine D C. Applications and processing of transparent conducting oxides. MRS Bulletin.2000, 25(8):22-27.
    [53]Gordon RG. Criteria for choosing transparent conductors. MRS Bulletin.2000,25(8):52-57.
    [54]Hoflund GB. Characterization study of oxidized polycrystalline tin oxide surfaces before and after reduction in H2. Chemistry of Materials.1994,6(4):562-568.
    [55]Karzel H, Potzel W, Kofferlein M, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressure. Physical Review B.1996,53:11425-11438.
    [56]Kaidashev E M, Lorenz M, von Wenckstern H, et al. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters.2003,82(22):3901-3903.
    [57]Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Physical Review B.2000,61:15019-15027.
    [58]Look D C, Hemsky J W, Sizelove J R. Residual Native Shallow Donor in ZnO. Physical Review Letters.1999, 82:2552-2555.
    [59]Van de Walle C G. Defect analysis and engineering in ZnO. Physica B:Condensed Matter.2001,308-310: 899-903.
    [60]Van de Walle C G. Hydrogen as a Cause of Doping in Zinc Oxide. Physical Review Letters.2000,85: 1012-1015.
    [61]Minami T. New n-type transparent conducting oxides. MRS Bulletin.2000,25 (8):38-44.
    [62]Haug F J, Geller Z S, Zogg H, et al. Influence of deposition conditions on the thermal stability of ZnO:Al films grown by rf magnetron sputtering. Journal of vacuum science & technology A.2001,19(1):171-174.
    [63]Demerchant J, Cocivera M. Preparation and doping of zinc-oxide using spray-pyrolysis. Chemistry of Material.1995,7(9):1742-1749.
    [64]W. W. Wenas, A. Yamada, K. Takahashi, M. Yoshino, M. Konagai. J. Appl. Phys.70,7119(1991).
    [65]B. J. Lokhandea, P. S. Patila, M. D. Uplaneb. Physica B 302-303,59(2001).
    [66]H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. kafafi, D. B. Chrisey. Appl. Phys. Lett.76,259(2000).
    [67]M. Gabss, S. Gota, J. Ramon, R. Barrado, M. Sanchez, N. T. Barrett, J. Avila, M. Sacchi. Appl. Phys. Lett.86, 042104(2005).
    [68]J. G. Lu. Z. Z. Ye. Y. J. Zeng. L. P. Zhu, L. Wang, J. Yuan, B. H. Zhao, Q. L. Liang, J. Appl. Phys.100, 072714(2006).
    [69]J. G. Lu. S. Fujita. T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye. Y. J. Zeng, Y. Z. Zhang, L. P. Zhu. H. P. He, B. H. Zhao. J. Appl. Phys.101.083705 (2007).
    [70]S. Yoshioka. F. Oba, R. Huang, I. Tanaka, T. Mizoguchi, T. Yamamoto. J. Appl. Phys.103,014309(2008).
    [71]Q. B. Ma. Z. Z. Ye, H. P. He. L. P. Zhu. W. C. Liu, Y. F. Yang, L. Gong. J. Y. Huang, Y. Z. Zhang, B. H. Zhao. J. Phys. D:Appl. Phys.41,055302(2008).
    [72]Q. B. Ma. Z. Z. Ye. H. P. He. J. R. Wang. L. P. Zhu.B. H. Zhao. Vacuum 82,9(2008).
    [73]Q. B. Ma. Z. Z. Ye. H. P. He. J. R. Wang, L. P. Zhu.B. H. Zhao. Mater. Lett.61,2460(2007).
    [74]C. Lee. K. Lim. J. Song. Sol. Energy Mater. Sol. Cells 43,37(1996).
    [75]H. Hara, T. Hanada, T. Shiro. T. Yatabe. J. Vac. Sol. Technol. A 22,1726(2004).
    [76]N. Ito,Y. Sato.P. K. Song, A. Kaijio, K. Inoue, Y. Shigesato. Thin Solid Films 496,99(2006).
    [77]K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi. Vacuum 66,505(2002)
    [78]T. Minami, T. Yamamoto, T. Miyata. Thin Solid Films 366,63(2000).
    [79]Q. J. Yu, W. Y. Fu, C. L. Yu, H. B. Yang, R. H. Wei, Y. M. Sui, S. K. Liu, et al. J. Phys. D:Appl. Phys. 40,5592(2007).
    [80]T.Minami, H. Sato, H. Nanto, S. Takata. Jpn. J. Appl. Phys.25, L776(1986).
    [81]R. P. Wang, L. L. H. King, and A. W. Sleight, J. Mater. Res.11,1659(1996).
    [82]B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, M. R. Rabadanov. J. Cryst. Growth 1222(2009):198-199.
    [83]J. L. Chung, J. C. Chen, C. J. Tseng. Appl. Surf. Sci.254,2615(2008).
    [84]H. Kim, J. S. Horwitz, W. H. Kim, S. B. Qadri, Z. H. Kafafi. Appl. Phys. Lett.83,3809(2003).
    [85]M. de la L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, D. R. Acosta. Thin Solid Films 394,242(2001).
    [86]J. Hu, R. G. Gordon. Solar Cells 30,437(1991).
    [87]J. M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, R. Triboulet. J. Cryst. Growth 207,30(1999).
    [88]Wang S P, Shen J, Zhang Z J et al.2008 Chinese J. Vac. Sci. Technol.(in Chinese)[王三坡,沈杰,章壮健等. 2008 真空科学与技术281]
    [89]X W Xiu, Z Y Pang et al.2007 Appl. Surf. Sci.253 3345.
    [90]朱雷波.全球平板显示器件用玻璃的发展[A].见:玻璃新技术报告文集[C].2004玻璃工业技术论坛.北京:中国硅酸盐学会,2004:16-26.
    [91]Shewchun, J. Dubow, A. Myszkowski, et al. The operation of the semiconductor-insulator-semiconductor (SIS) solar cell:Theory [J]. J. Appl. Phys.1978,49(2):855-864.
    [92]J. B. DuBow, D. E. Burk, J. R. Sites. Efficient photovoltaic heterojunctions of indium tin oxides on silicon [J]. Applied Physics Letters,1976,29(8):494-496.
    [93]A. K. Ghosh, C.Fishman and T.Feng. SnO2/Si solar cells-Heterostructure or Schottky-barrier or MIS-type device [J]. J. Appl. Phys.,1978,49(6):3490-3498.
    [94]Tom Feng, Amal K. Ghosh and Charles Fishman. Spray-deposited high-efficiency SnO2/n-Si solar cells [J]. Applied Physics Letters,1979,35(3):266-268.
    [95]J. K. Rath. Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications [J]. Solar Energy Materials & Solar Cells,2003,76:431-487.
    [96]Joachim Muller, Bernd Rech, Jiri Springer, et al. TCO and light trapping in silicon thin film solar cells [J]. Solar Energy,2004,77:917-930.
    [97]J. Morris, R. R. Arya, O'Dowd, et al. Absorption enhancement in hydrogenated amorphous silicon based solar cells [J].J. Appl. Phys.,1990,67(2):1079-1990.
    [98]Meier, J., Dubail, S., Fluckiger, R., et al. Intrinsic microcrystalline silicon (μc-Si:H)-a promising new thin film solar cell material [A]. In:Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA.1994:409-412.
    [99]Pellaton Vaucher, N., Nagel, J.-L., Platz, et al. Light management in tandem cells by an intermediate reflector layer [A]. In:Schmid, J., Ossenbrink, H. A., Helm, P., Ehmann, H., Dunlop, E.D., (Eds.), Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria. 1998:728-731.
    [100]Yamamoto, K., Nakajima, A., Yoshimi, et al. High efficiency thin film silicon solar cell and module [A]. In:Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, USA. 2002:1110-1113.
    [101]申功烈.电色smart窗[J].真空科学与技术学报,1995,4:252-261.
    [102]章俞之, 胡行方.新型节能材料——电致变色材料及器件[A].2003年中国太阳能学会学术年会.上 海:中国太阳能学会,2003:360-364.
    [103]冯博学,陈冲,何毓阳等.电致变色材料及器件的研究进展[J].功能材料,2004,2:145-150.
    [104]P. E. Gerhardinger and R. J. McCurdy. In:Thin Films for Photovoltaic and Related Device Applications, edited by D. Ginley, A. Catalano, H. W. Schock, et al. (Mater. Res. Soc. Symp. Proc. Pittsburgh,1966, 426:399.
    [105]林永昌, 卢维强, 光学薄膜原理[M].国防工业出版社,1984.
    [106]J C C Fan, J B Goodenough,1977 J. Appl. Phys.48 3524.
    [107]S M Park, Tomoaki Ikegami, Kenji Ebihara 2006 Thin Solid Films 51390.
    [108]J F Chang, W C Lin, M H Hon 2001 Appl. Surf. Sci.183 18.
    [109]K E Lee, M S Wang, E J Kim, S H Hahn.2009 Curr. Appl. Phys.9 683.
    [110]M N Islam, T B Ghosh, K L Chopra, H N Acharya 1996 Thin Solid Films 280 20
    [111]Sunu S S, Prabhu E, Jayaraman V, Gnanasekar K I, Seshagiri T K and Gnanasekaran T 2004 Sensors Actuators B 101 161
    [112]Minami T. New n-type transparent conducting oxides. MRS Bulletin,2000,25(8):38~44
    [113]Sawada M, Higuchi M.Electrical properties of ITO films prepared by tin ion implantation in In2O3 film.Thin Solid Films,1998,317:157~160
    [114]Kim H, Gilmore C M, Pique A et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices.Journal of Applied Physics,1999,86:6451~6461
    [115]唐沪军,沈杰,陈华仙,等.真空科学与技术,1997,17(6):417-427
    [116]刘明,魏玮,曲盛威,等.无机材料学报,2008,23(6):1096-1100
    [117]Burstein E. Phys.Rev.,1954,93(3):632-633
    [118]Coutts T J, Young D L,Li X N. MRS Bulletin,2000,25(8):58-65
    [119]Physics of Ⅱ-Ⅵ and Ⅰ-Ⅶ Compounds, Semimagnetic Semiconductors, edited by O. Madelung (Springer, Berlin,1982), Chap.3.
    [120]Abul K. Azad, Jiaguang Han, and Weili Zhang. Appl. Phys. Lett.88,021103 (2006)
    [121]David S. Ginley and Clark Bright. MRS Bulletin,2000,25(8):15-18
    [122]W. S. Baer. Phys. Rev.,1967,154:785-789
    [123]T I Jeon, D Grischkowsky 1997 Phys. Rev. Lett.78 1106
    [124]W Zhang, A K Azad, and D Grischkowsky 2003 Appl. Phys. Lett.82 2841
    [125]F Theberge, M Chateauneuf, and J Dubois 2008 Appl. Phys. Lett.92 183501
    [126]Sun H Q, Yang G Z, Zhang C L et al.2008 Acta Phys. Sin.57 790(in Chinese)[孙红起,杨国桢,张存林等2008物理学报57790]
    [127]Ling F R, Liu J S, Sun B et al.2009 Acta Phys. Sin.581745(in Chinese)[凌福日,刘劲松,孙博等2009物理学报58 1745]
    [128]Zhang Y H and Wang C 2006 Chin. Phys.15 649
    [129]Meng T H, Zhang C L, Zhao G Z et al.2008 Acta Phys. Sin.57 3846(in Chinese)[孟田华,张存林,赵国忠等2008物理学报573846]
    [130]W L Barnes, A Dereux, T W Ebbesen 2003 Nature 424 824
    [131]A K Azad, Y Zhao, W Zhang 2006 Appl. Phys. Lett.86 141102
    [132]E Hendry, F J Garcia-Vidal, L Martin-Moreno, J Gomez Rivas, M Bonn, A P Hibbins, and M J Lockyear 2008 Phys. Rev. Lett.100 123901
    [133]K J Darmo, and K Unterrainer 2007 Opt. Express 15 6552
    [134]A Thoman, A Kern, H Helm, and M Walther 2008 Phys. Rev. B 77 195405
    [135]M Walther, D G Cooke, C Sherstan. M Hajar, M R Freeman, and F A Hegmann 2007 Phys. Rev. B.76 125408
    [136]N Naftaly and R E Miles 2005 J. Non-Cryst. Solids 3512 3341
    [137]S Kojima, H Kitahara. S Nishizawa. Y S Yang, and M Wada Takeda 2005 J.Mol. Struct.744 243
    [138]Xu J Z, Zhang X C 2007 Terahertz Science and Technology and Applications (Beijing:Peking University Press)p98-p104 (in Chinese)[许景周、张希成2007太赫兹科学技术和应用,第1版(北京:北京大学出版社) 98-104]
    [139]W.S. Baer 1967 Phys. Rev.154 785
    [140]A K Azad, J Han, W Zhang 2006 Appl. Phys. Lett.88 021103
    [141]N Katzenllenbogen, and D Grischkowsky 1992 Appl. Phys. Lett.61 840
    [142]T I Jeon, and D Grishchkowsky 1998 Appl. Phys. Lett.72 3032
    [143]Xifeng Li,Qun Zhang. Transparent conductive oxide thin films of tungsten-doped indium oxide. Thin Solid Films,2006,515(4):2471~2474
    [144]一种高功函数透明导电氧化物薄膜电极及其制备方法.张群,李喜峰,缪维娜,黄丽,章壮健.发明专利受理号:200510027788.6
    [145]一种新型的高功函数In2O3:Pt,W/IWO透明导电薄膜.TFC'05全国薄膜技术研讨会,大连,大连理工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700