用户名: 密码: 验证码:
静脉麻醉药物作用机制的功能磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     应用BOLD-fMRI,观察不同浓度氯胺酮对机械性疼痛刺激作用脑区的影响,探讨氯胺酮镇痛作用的中枢机制。
     方法
     健康男性志愿者13名,先行预试验,靶控输注氯胺酮。分别在0、低剂量(100ng/ml)、较高剂量(200ng/ml)测定受试者在100g、300gvFFs机械性刺激时的VAS评分,并记录受试者精神副作用,判断受试者的耐受程度,预试验后1周行fMRI研究。扫描序列为:结构像+功能扫描([20s on+20s off]×6次的vFFs机械性刺激P1(100g)、P2(300g);TCI不同靶浓度的氯胺酮;重复vFFs机械性刺激P1、P2)。使用SPM2、Metlab 7.01软件进行fMRI图像分析。比较不同浓度TCI氯胺酮时,机械性疼痛刺激作用脑区的改变。
     结果
     1与清醒比较氯胺酮在疼痛刺激时抑制的脑区包括:
     100g vonfrey刺激时,氯胺酮100ng/ml未表现出对疼痛相关脑区的抑制,进一步增加浓度所抑制的脑区有额中回(同侧)、颞叶(同侧)、双侧中央后回、小脑前叶(对侧)、丘脑(对侧)。
     300g vonfrey刺激时,氯胺酮100ng/ml抑制小脑后叶以及胼胝体,当达到200ng/ml时氯胺酮未表现出进一步抑制。
     2与清醒比较氯胺酮在疼痛刺激时激活的脑区包括:
     100g vonfrey刺激时,氯胺酮100ng/ml可激活对侧的中央前回、颞上叶、中央后回、顶下小叶、小脑前叶以及岛叶,进一步增加浓度所激活的脑区额叶(以同侧为主)、颞叶(同侧)、枕叶(对侧)。
     300g vonfrey刺激时,氯胺酮100ng/ml可激活双侧扣带回、对侧额中回、顶下小叶、枕叶、以及同侧小脑后叶,当药物浓度为200ng/ml时,激活的脑区额叶(双侧)、双侧颞叶、枕叶、小脑前后叶(以对侧为主)、边缘系统包括前扣带回、海马、丘脑、胼胝体、脑干(对侧)、中脑。
     3氯胺酮在疼痛程度形成中作用的脑区
     在疼痛程度处理中,氯胺酮100ng/ml时抑制的脑区为额下回(同侧)、颞叶、中央后回(以对侧为主)、枕叶(双侧)、小脑(以同侧为主)、岛叶(对侧);当浓度升至200ng/ml时,抑制的区域为额叶(双侧)、胼胝体(对侧)。
     氯胺酮100ng/ml时激活的脑区主要是对侧颞叶;当浓度升至200ng/ml时,激活的区域是额叶(对侧)、颞叶(双侧)、顶下小叶(同侧)、枕叶(双侧)、中央前回(对侧)。
     结论
     轻度疼痛刺激可能只激活同侧的脑区,重度疼痛刺激随着躯体感觉中枢的参与,定位更加准确,更多的疼痛相关脑区也参与进来,而这些脑区可能参与疼痛程度的编码;氯胺酮对大脑既有激活又有抑制作用,以激活为主;氯胺酮可影响机械性疼痛刺激时扣带回、岛叶、脑干、丘脑等的活动;氯胺酮作用于脑功能区两侧,但以疼痛刺激对侧为主;对于疼痛程度的相关脑区,氯胺酮在低剂量时以抑制为主而在增加剂量时以激活为主,这些脑区可能是氯胺酮发挥镇痛作用的靶点。
     目的
     应用加工分离程序(PDP)和BOLD-fMRI,观察镇痛剂量氯胺酮是否具有遗忘作用,探寻其干预记忆的作用脑区。
     方法
     选择7名男性健康志愿者,靶控输注氯胺酮200ng/ml。采用心理学界广泛应用的PDP,该方法能良好的区分内隐记忆和外显记忆。扫描序列为:结构像+清醒听词扫描+麻醉听词扫描,采用组块设计:时间10min45s=45s空白+[(0.5s读词+1.5s空白)×20词+20s空白]×10遍。记录扫描期间监护仪数值。PDP成绩采用SPSS 13.0统计学软件进行处理和分析。使用SPM2,Matlab 7.01进行fMRI图像分析。
     结果
     1.给药后记忆与清醒比较无显著差异;2.在清醒听词时,激活的脑区为颞上回、颞中回、颞下回、岛叶,扣带回;3.氯胺酮抑制扣带回的激活,激活豆状核。
     结论
     氯胺酮确实作用于和记忆相关的脑区,但根据PDP成绩,靶控输注氯胺酮200ng/ml时,不会对记忆造成影响。加大输注氯胺酮浓度可能会造成记忆的破坏。
     目的
     应用加工分离程序(PDP)和BOLD-fMRI,观察咪唑安定遗忘作用在人脑中枢的敏感部位,探寻外显记忆和内隐记忆的处理脑区。
     方法
     12名男性健康志愿者随机分为2组:MOAAS 3级(浅)和MOAAS 1级(深)镇静组。先行预试验,靶控输注咪唑安定。将达到预期镇静深度的靶浓度作为该受试者的目标ESC。预试验后1~2周内进行fMRI研究。采用心理学界广泛应用的PDP,该方法能良好的区分内隐记忆和外显记忆。扫描序列为:结构像+清醒听词扫描+麻醉听词扫描,采用组块设计:时间10min45s:45s空白+[(0.5s读词+1.5s空白)×20词+20s空白]×10遍。记录扫描期间监护仪数值,以及扫描前后MOAA/S评分。PDP成绩,采用SPSS 13.0统计学软件进行处理和分析。使用SPM2,Matlab 7.01进行fMRI图像分析。
     结果
     1.浅镇静(MOAA/S 3级)组外显记忆与清醒比较显著降低(P<0.05),内隐记忆与清醒比较无显著差异。深镇静组(MOAA/S 1级)外显记忆和内隐记忆与清醒比较均显著降低(P<0.05)。2.在清醒听词时,激活的脑区为颞上回、颞中回、颞梭状回及岛叶。3.输注咪唑安定至MOAA/S 3级时,无脑区激活改变,4.当达到MOAA/S 1级时,所有清醒刺激激活的脑区都被抑制,而额中回激活。
     结论
     根据PDP成绩,咪唑安定浅镇静时,无明显外显记忆,但存在内隐记忆。深镇静时,无明显外显记忆和内隐记忆。咪唑安定镇静达到MOAA/S 1级时,内隐记忆消失,颞上回、岛叶及额中回是咪唑安定作用于脑部的主要位置,而这些区域可能参与内隐记忆的加工。
Effects of Ketamine on Functional Brain Activation Induced by Mechanical Stimuli Elucidated by fMRI
     Objective
     Using functional magnetic resonance imaging at 3.0 T,to investigate the brain regions related to the effects of ketamine on mechanical stimuli.
     Methods
     13 healthy male volunteers were enrolled in this study.Ketamine was administrated by target controlled infusion system in pilot study.Von Frey filaments of 100g,300g were used as mechanical stimuli to the center of the left foot at the plasma concentration of 0,100,200ng/ml,pain VAS scores and the psychedelic effect were evaluated.FMRI examinations were taken 1 week after pilot study as the following sequences:structure imaging and 2×functional imaging(stimulus sequence 100g,300g + ketamine sequence).stimulus sequence = 6×(20s on+20s off),this sequence was repeated after ketamine sequence.The monitoring data were recorded during the scanning.FMRI data processing is carried out with the SPM2 and Metlab 7.01 software package.
     Results
     1.Areas inhibited by ketamine under vFFs stimulus were:
     100g vonfrey:no inhibited effect was seen at 100ng/ml;middle frontal gyrus(1), temporal lobe(1),postcentral gyrus,anterior cerebellum lobe(r),thalamus(r) were inhibited at 200ng/ml.
     300g vonfrey:posterior cerebellum lobe,corpus callosum were inhibited at 100ng/ml;no more region was inhibited at 200ng/ml.
     2.Areas activated by ketamine under vFFs stimulus were:
     100g vonfrey:precentralgyrus(r),postcentralgyrus,superior temporal gyms, inferior parietal lobule,anterior cerebellum lobe,insular lobe were activated at 100ng/ml;frontal lobe(1),temporal lobe(1),occipital lobe(r) were activated at 200ng/ml.
     300g vonfrey:cingulate gyrus,middle frontal gyrus(r),inferior parietal lobule, occipital lobe,posterior cerebellum lobe(1) were actevated at 100ng/ml;frontal lobe, temporal lobe,occipital lobe,anterior cerebellum lobe,posterior cerebellum lobe, ACC,hippocampus,thalamus,corpus callosum,brain stem(r) were activated at 200ng/ml.
     3.Areas processing pain intensity affected by ketamine under vFFs stimulus were:
     Areas inhibited by ketamine were:inferior frontal gyrus(1),temporal gyrus, postcentral gyrus,occipital lobe,cerebellum lobe,insular lobe(r) at 100ng/ml;frontal lobe,corpus callosum(r) at 200ng/ml.
     Areas activared by ketamine were:temporal lobe(r) at 100ng/ml;frontal lobe(r), temporal lobe,inferior parietal lobule(1),occipital lobe,precentral gyrus(r) at 200ng/ml.
     Conclusion
     Light mechanical stimuli activate the ipsilateral brain region while strong mechanical stimuli activate the contralateral brain regions which may participate in the modulation of pain intensity;ketamine can both activates and inhibites the pain related brain region activity at the same time,activative effect was the primary effect; the cingulate gyrus,insula lobe,brain stem,thalamus were target region of ketamine; ketamine acts both on the ipsilateral and the contralateral side of pain related brain region,especialy on the contralateral side.Ketamine shows inhibitory effect at 100ng/ml,but activating effect at 200ng/ml on the pain intensity process.
     Effect of analgesic dose of ketamine on memory:Process dissociation procedure and functional magnetic resonance imaging study
     Objectives To quantitatively investigate the effect of ketamine on explicit and implicit memory and to explore the possible target brain areas associated with the memory processing and the action of ketamine through combined use of PDP and BOLD-fMRI 3.0T.
     Methods 7 volunteers were enrolled in this study.On their first visit,volunteers were given a ketamine infusion to test the tolerance of ketamine and to familiarize the volunteers with the method of auditory stimulus.The second visit was a scanning session.Each volunteer was given the first auditory stimulus before sedation.Then they received the second auditory stimulus after the target level of sedation had been reached.Imaging response was measured in 4 different time: before and during the first auditory stimulus、ketamine infusion and during the second auditory stimulus accompanied with continuous ketamine infusion.4 h later,the inclusion test and exclusion test were performed outside the scanner.The process dissociation procedure combined with word stem completion was used to estimate the scores of explicit and implicit memory.
     Results There are no significant differences between awake and ketamine infusion state in explicit memory scores and Implicit memory scores(P>0.05);the superior temporal gyrus,middle temporal gyrus,inferior temporal gyrus,ACC, insula are significantly activated during auditory stimulus;ketamine inhibites the activation of ACC but activates the lentiform nucleus.
     Conclusions Analgesic dose of ketamine inhibited the activation of ACC, activatesd the activation of lentiform nucleus,but no change of memory score was found through PDP.No damage of the memory maybe due to the low concentration of ketamine.
     Effect of Midazolam on memory:Process dissociation procedure and functional magnetic resonance imaging study
     Objectives To quantitatively investigate the effect of midazolam on explicit and implicit memory and to explore the possible target brain areas associated with the memory processing and the action of midazolam through combined use of PDP and BOLD-fMRI 3.0T.
     Methods 12 volunteers were equally divided into 2 groups according to the Modified Observer's Assessment of Alertness/Sedation Score:M3,level 3 and M1, level 1.On their first visit,volunteers were given a midazolam infusion to individually predict the needed plasma concentration of each volunteer,to test for tolerance of midazolam sedation and to familiarize the volunteers with the method of auditory stimulus and sedation scoring.The second visit was a scanning session. Each volunteers were given the first auditory stimulus before sedation.Then they received the second auditory stimulus after the target level of sedation had been reached.Imaging response was measured in 4 different time:before and during the first auditory stimulus、midazoalm sedation and during the second auditory stimulus accompanied with continuous midazolam sedation.2 h later,the inclusion test and exclusion test were performed outside the scanner.The process dissociation procedure combined with word stem completion was used to estimate the scores of explicit and implicit memory.
     Results There are no significant differences between explicit memory scores and zero(P>0.05) in 2 groups.Implicit memory scores were statistically greater than zero(P<0.05) during midazolam sedation in M3 but not in M1.The superior temporal gyms,middle temporal gyrus,,temporal fusiform gyrus and insula lobe are significantly activated during auditory stimulus.Midazolam in M3 did not change the activation og memory related brain region.Midazolam in M1 inhibit all the activated brain areas,while activate the middle frontal gyrus.However compared M1 with M3,no significant activated brain areas are found.
     Conclusions Midazolam does not impair the implicit memory until the depth of sedation increases to the level 1 of MOAA/S score according to PDP.The superior temporal gyrus,insula lobe and middle frontal gyrus may be the target areas of midazolam in brain and they might be more closely related to the memory processing.
引文
[1]Casey,K.L.,et al.,Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli[J].Journal of neurophysiology,1994.71(2):p.802-7.
    [2]Coghill,R.C.,et al.,Distributed processing of pain and vibration by the human brain[J].The Journal of neuroscience,1994.14(7):p.4095-108.
    [3]Jones,A.K.,et al.,Sites of action of morphine in the brain[J].Lancet,1991.338(8770):p.825.
    [4]London,E.D.,et al.,Morphine-induced metabolic changes in human brain.Studies with positron emission tomography and[fluorine 18]fluorodeoxyglucose[J].Archives of general psychiatry,1990.47(1):p.73-81.
    [5]Oldfield,R.C.,The assessment and analysis of handedness:the Edinburgh inventory[J].Neuropsychologia,1971.9(1):p.97-113.
    [6]Hawksley,H.,Pain assessment using a visual analogue scale[J].Professional nurse(London,England),2000.15(9):p.593-7.
    [7]Katz,J.and R.Melzack,Measurement of pain.The Surgical clinics of North America[J].1999.79(2):p.231-52.
    [8]Edelman,R.R.,et al.,Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency[J].Radiology,1994.192(2):p.513-20.
    [9]Goodyear,B.G and R.S.Menon,Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI[J].Human brain mapping,2001.14(4):p.210-7.
    [10]Budinger,T.F.,PET instrumentation:what are the limits[J]?Seminars in nuclear medicine,1998.28(3):p.247-67.
    [11]Kwong,K.K.,et al.,Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation[J].Proceedings of the National Academy of Sciences of the United States of America,1992.89(12):p.5675-9.
    [12]Davis,K.D.,et al.,Functional MRI study of thalamic and cortical activations evoked by cutaneous heat,cold,and tactile stimuli[J].Journal of neurophysiology,1998.80(3):p.1533-46.
    [13]Davis,K.D.,et al.,Functional MRI of pain-and attention-related activations in the human cingulate cortex[J].Journal of neurophysiology,1997.77(6):p.3370-80.
    [14]Jones,A.K.,et al.,Cortical and subcortical localization of response to pain in man using positron emission tomography[J].Proceedings,1991.244(1309):p.39-44.
    [15]Duncan,GH.,et al.,Pain and activation in the thalamus[J].Trends in neurosciences,1992.15(7):p.252-3.
    [16]Talbot,J.D.,et al.,Multiple representations of pain in human cerebral cortex[J].Science(New York,N.Y,1991.251(4999):p.1355-8.
    [17]Porro,C.A.,et al.,Temporal and intensity coding of pain in human cortex[J].Journal of neurophysiology,1998.80(6):p.3312-20.
    [18]Derbyshire,S.W.and A.K.Jones,Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography[J].Pain,1998.76(1-2):p.127-35.
    [19]Xu,X.,et al.,Functional localization of pain perception in the human brain studied by PET[J].Neuroreport,1997.8(2):p.555-9.
    [20]Rainville,P.,et al.,Pain affect encoded in human anterior cingulate but not somatosensory cortex[J].Science(New York,N.Y,1997.277(5328):p.968-71.
    [21]Craig,A.D.,et al.,Functional imaging of an illusion of pain[J].Nature,1996.384(6606):p.258-60.
    [22]Casey,K.L.,et al.,Comparison of human cerebral activation pattern during cutaneous warmth,heat pain,and deep cold pain[J].Journal of neurophysiology,1996.76(1):p.571-81.
    [23]Peyron,R.,B.Laurent,and L.Garcia-Larrea,Functional imaging of brain responses to pain.A review and meta-analysis(2000)[J].Neurophysiologie clinique=Clinical neurophysiology,2000.30(5):p.263-88.
    [24]Vaccarino AL,Melzack R.Analgesia produced by injection of lidocaine into the anterior cingulum bundle of the rat[J].Pain.1989 Nov;39(2):213-9.
    [25]Pardo JV,Pardo PJ,Janer KW,Raichle ME.The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm[J].Proc Natl Acad Sci U S A.1990 Jan;87(1):256-9.
    [26]Hsieh J 1995.Central processing of painrfunctional imaging studies of pain[R],Thesis,Karolinska Institut,Stockholm,ppl-128
    [27]Vogt BA,Derbyshire S,Jones AK.Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging[J].Eur J Neurosci.1996 Jul;8(7):1461-73
    [28]Derbyshire SW,Vogt BA,Jones AK.Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex[J].Exp Brain Res.1998 Jan;118(1):52-60.
    [29]Coghill RC,Morin C,Evans AC et al.Cerebral blood flow(CBF)during tonic pain in amn[J].Society of Neuroscience Abstracts 1993 19:1573
    [30]Casey KL,Minoshima S,Berger KL,Koeppe RA,Morrow TJ,Frey KA.Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli[J].J Neurophysiol.1994 Feb;71(2):802-7
    [31]Vogt BA,Sikes RW,Vogt LJ Anterior cingulate cortex and the medial pain system[A].In:Vogt BA,Gabriel[M]Neurobiology of cingulate cortex and limbic thalamus[M].Birkhauser,Boston,1993
    [32]Talbot JD,Marrett S,Evans AC,Meyer E,Bushnell MC,DuncanGH.Multiple representations of pain in human cerebral cortex[J].Science.1991 Mar 15;251(4999):1355-8
    [33]Rainville P,Duncan GH,Price DD,Carrier B,Bushnell MC.Pain affect encoded in human anterior cingulate but not somatosensory cortex[J].Science.1997 Aug 15;277(5328):968-71.
    [34]Craig AD,Reiman EM,Evans A,Bushnell MC.Functional imaging of an illusion of pain[J].Nature.1996 Nov 21;384(6606):258-60.
    [35]Petrovic P,Ghatan P,Petersson K,Ingvar M Cognition alters pain related activityin the lateral pain system[J].NeoroImage1998 7:S437
    [36]Craig AD,Bushnell MC,Zhang ET,Blomqvist A.A thalamic nucleus specific for pain and temperature sensation[J].Nature.1994 Dec 22-29;372(6508):770-3.
    [37]Coghill RC,Talbot JD,Evans AC,Meyer E,Gjedde A,Bushnell MC,Duncan GH.Distributed processing of pain and vibration by the human brain[J].J Neurosci.1994 Jul;14(7):4095-108
    [38]Iadarola MJ,Berman KF,Zeffiro TA,Byas-Smith MG,Gracely RH,Max MB,Bennett GJ.Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET[J].Brain.1998 May;121(Pt 5):931-47
    [39]Vogt BA,Sikes RW,Vogt LJ.Ante rior cingulate cortex and the medial pain system[A].In:Vogt BA,Gabriel Neurobiology of cingulate cortex and limbic thalamus[M].Birkhauser,Boston,1993
    [40]Di Piero V,Fiacco F,Tombari D,Pantano P.Tonic pain:a SPET study in normal subjects and cluster headache patients[J].Pain.1997 Apr;70(2-3):185-91
    [41]Iadarola MJ,Max MB,Berman KF,Byas-Smith MG,Coghill RC,Gracely RH,Bennett GJ.Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain[J].Pain.1995 Oct;63(1):55-64.
    [42]Greenspan JD,Winfield JA.Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum[J].Pain.1992 Jul;50(1):29-39.
    [43]Coghill RC,Talbot JD,Evans AC,Meyer E,Gjedde A,Bushnell MC,Duncan GH.Distributed processing of pain and vibration by the human brain[J].J Neurosci.1994 Jul;14(7):4095-108
    [44]Duncan GH,Morin C,Coghill RC.Using psychophisical ratings tomap the humen brain:regression of regional cerebral blood flow(rCBF)to tonic pain perception[J].Society of Neuroscience abstractsl994 20:1672
    [45]Hsieh JC,Stahle-Backdahl M,Hagermark O,Stone-Elander S,Rosenquist G,Ingvar M.Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray:a positron emission tomography study[J].Pain.1996 Feb;64(2):303-14.
    [46]Andersson JL,Lilja A,Hartvig P,Langstrom B,Gordh T,Handwerker H,Torebjork E.Somatotopic organization along the central sulcus,for pain localization in humans,as revealed by positron emission tomography[J].Exp Brain Res.1997 Nov;117(2):192-9.
    [47]Tarkka IM,Treede RD.Distributed processing of pain and vibration by the human brain[J].Journal of Neuroscience 1994 14:4095-4108
    [48]Petersson KM,Elfgren C,Ingvar M.A dynamic role of the medial temporal lobe during retrieval of declarative memory in man[J].Neuroimage.1997 Jul;6(1):1-11.
    [49]Shallice T.Specific impairments of planning[J].Philos Trans R Soc Lond B Biol Sci.1982 Jun 25;298(1089):199-209
    [50]Ingvar DH.“Memory of the future”:an essay on the temporal organization of conscious awareness[J].Hum Neurobiol.1985;4(3):127-36.Review
    [51]Paus T,Petrides M,Evans AC,Meyer E.Role of the human anterior cingulate cortex in the control of oculomotor,manual,and speech responses:a positron emission tomography study[J].J Neurophysiol.1993 Aug;70(2):453-69.
    [52]Bouckoms AJ.Limbic surgery for pain.in:Wall PD Textbook of pain.Churchill Livingstone,Edinburgh,1994 1171-1187
    [53]Hsieh JC,Hagermark O,Stahle-Backdahl M,Ericson K,Eriksson L,Stone-Elander S,Ingvar M.Urge to scratch represented in the human cerebral cortex during itch[J].J Neurophysiol.1994 Dec;72(6):3004-8.
    [54]George MS,Ketter TA,Parekh PI et al.Regional brain activitywith selecting a response despite interference:an H2150.PET study of the stroop and an emotional stroop[J].Human Brain Mapping 1:194-209
    [55]Peyron R,Garcia-Larrea L,Gregoire MC,Convers P,Lavenne F,Veyre L,Froment JC,Mauguiere F,Michel D,Laurent B.Allodynia after lateral-medullary (Wallenberg) infarct.A PET study[J].Brain.1998 Feb;121(Pt 2):345-56..
    [56]Dong WK,Salonen LD,Kawakami Y,Shiwaku T,Kaukoranta EM,Martin RF.Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys[J].Brain Res.1989 Apr 10;484(1-2):314-24
    [57]Posner MI,Raichle ME[M].Images of mind.Scientific American Library,New York,1994 153-180
    [58]Ito M.Movement and thought:identical control mechanisms by the cerebellum[J].Trends Neurosci.1993 Nov;16(11):448-50;discussion 453-4.
    [59]Sikes,R.W and B.A.Vogt,Nociceptive neurons in area 24 of rabbit cingulate cortex[J].Journal of neurophysiology,1992.68(5):p.1720-32.
    [60]Greifenstein FE,DeVault M,Yoshitake J,Gajewski JE.A study of a 1-aryl cyclo hexyl amine for anesthesia[J].Anesth Analg 37:283-294,1958.
    [61]Johnstone M,Evans V,Baigel S.Sernyl(CI-395) in clinical anaesthesia[J].Br J Anaesth 31:433-439,1959.
    [62]Lear E,Suntay R,Pallin I.Cyclohexamine(CI-400):A new intravenous agent[J].Anesthesiology 20:330-335,1959.
    [63]Corssen G,Domino EF.Dissociative anesthesia:Further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581[J].Anesth Analg 45:29-40,1966.
    [64]White PF,Way WL,Trevor AJ.Ketamine—its pharmacology and therapeutic uses[J].Anesthesiology 56:119-136,1982.
    [65]Nimmo W,Clements J:Ketamine.In Prys-Robert CH(ed):Pharmacokinetics of Anesthesia.Boston,Blackwell,1984,p 235.
    [66]Chapman V,Dickenson AH.The combination of NMDA antagonism and morphine produces profound antinociception in the rat dorsal horn[J].Brain Res 573:321-323,1992.
    [67]Kissin I,Bright CA,Bradley EL Jr.The effect of ketamine on opioid-induced acute tolerance:Can it explain reduction of opioid consumption with ketamine-opioid analgesic combinations[J]?Anesth Analg 91:1483-1488,2000.
    [68]Menigaux C,Fletcher D,Dupont X,et al.The benefits of intraoperative small-dose ketamine on postoperative pain after anterior cruciate ligament repair[J].Anesth Analg 90:129-135,2000.
    [69]Miyasaka M,Domino E.Neural mechanisms of ketamine-induced anesthesia[J]. Int J Neuropharmacol 7:557-573,1968.
    [70]Massopust LC Jr,Wolin LR,Albin MS.Electrophysiologic and behavioral responses to ketamine hydrochloride in the Rhesus monkey[J].Anesth Analg 51:329-341,1972.
    [71]Sparks DL,Corssen G,Aizenman B,Black J.Further studies of the neural mechanisms of ketamine-induced anesthesia in the rhesus monkey[J].Anesth Analg 54:189-195,1975.
    [72]Ohtani M,Kikuchi H,Kitahata LM,et al.Effects of keta-mine on nociceptive cells in the medial medullary reticular formation of the cat[J].Anesthesiology 51:414-417,1979.
    [73]Finck A,Ngai S.A possible mechanism of ketamine-induced analgesia[J].Anesthesiology 51:S34,1979.
    [74]Fratta W,Casu M,Balestrieri A,et al.Failure of ketamine to interact with opiate receptors[J].Eur J Pharmacol 61:389-391,1980.
    [75]Frenkel C,Urban BW.Molecular actions of racemic ketamine on human CNS sodium channels[J].Br J Anaesth 69:292-297,1992.
    [76]Nagasaka H,Nagasaka I,Sato I,et al.The effects of keta-mine on the excitation and inhibition of dorsal horn WDR neuronal activity induced by bradykinin injection into the femoral artery in cats after spinal cord transection[J].Anesthesiology 78:722-732,1993.
    [77]Jones,A.K.,et al.Sites of action of morphine in the brain[J].Lancet,1991.338(8770):p.825.
    [78]Adler,L.J.,et al.Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography[J].Anesthesia and analgesia,1997.84(1):p.120-6.
    [79]Petrovic,R,et al.Placebo and opioid analgesia--imaging a shared neuronal network[J].Science(New York,N.Y,2002.295(5560):p.1737-40.
    [80]Firestone,L.L,et al.,Human brain activity response to fentanyl imaged by positron emission tomography[J].Anesthesia and analgesia,1996.82(6):p.1247-51.
    [81]Wagner,K.J,et al.Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans:a positron emission tomography study[J].Anesthesiology,2001.94(5):p.732-9.
    [82]MacDonald JF,Bartlett MC,Mody I,Pahapill P,Reynolds JN,Salter MW,Schneiderman JH,Pennefather PS.Action of ketamine,phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones[J].J Physiol 1991;432:483-508.
    [83]Mayer ML,Westbrook GL,Vyklicky L.Sites of antagonist action on N-methyl-D-aspartate acid receptors studied using fluctuation analysis and a rapid perfusion technique[J].J Neurophysiol 1988;60:645-63.
    [84]Irfune M,Shimizu,Nomoto M,Fukuda T.Ketamine-induced anesthesia involves the N-methyl-D-aspartate-channel complex inmic[J]e.Brain Res 1992;596:1-9.
    [85]Reich D,Silvay G.Ketamine:An update on the first twenty-five years of clinical experienc[J]e.Can J Anaesth 1989;36:186-97.
    [86]Breier A,Malhotra AK,Pinals DA,Weisenfeld NI,Pickar D.Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers[J].Am J Psychiatry 1997;154:805-11
    [87]Abel KM,Allin MP,Kucharska-Pietura K,Andrew C,Williams S,David AS,Phillips ML.Ketamine and fMRI BOLD signal:Distinguishing between effectsmediated by change in blood flow versus change in cognitive stat[J]e.Hum BrainMapp 2003;18:135-45
    [88]Posse,S.,et al.Effect of graded hypo-and hypercapnia on fMRI contrast in visual cortex:quantification of T(*)(2) changes by multiecho EPI[J].Magnetic resonance in medicine,2001.46(2):p.264-71.
    [89]Kastrup,A,et al.Regional variability of cerebral blood oxygenation response to hypercapnia[J].Neurolmage,1999.10(6):p.675-81.
    [1]Jacoby LL.A process dissociation framework:Separating automatic from intentional uses of memory[J].J Mem Lang,1991,30:513-541
    [2]Lubke GH,Kerssens C,Phaf H,et al.Dependence of explicit and implicit memory on hypnotic state in trauma patients[J].Anesthesiology,1999,90:670-680
    [3]Stapleton CL,Andrade J.An investigation of learning during propofol sedation and anesthesia using the process dissociation procedure[J].Anesthesiology,2000,93:1418-1425
    [4]Bowdle TA,Radant AD,Cowley DS,et al.Psychedelic effects of ketamine in healthy volunteers:relationship to steady-state plasma concentrations [J].Anesthesiology,1998,88(1):82-88.
    [5]Oldfield RC.The assessment and analysis of handedness:the Edinburgh inventory[J].Neuropsychologia,1971,9:97-113
    [6]Aldrete JA.The post-anesthesia recovery score revisited[J].J Clin Anesth,1995,7:89-91
    [7]Wang Y,Yue Y,Sun YH,et al.Can bispectral index or auditory evoked potential index predict implicit memory during propofol-induced sedation[J].Chin Med J,2006,119:894-898
    [8]Kerssens C,Takashi O,Peter S,et al.No Evidence of Memory Function during Anesthesia with Propofol or Isoflurane with Close Control of Hypnotic State[J].Anesthesiology,2005,102:57-62
    [9]Kerssens C,Lubke GH,Klein J,et al.Memory function during propofol and alfentanil anesthesia:predictive value of individual differences[J].Anesthesiology,2002,97:382-389
    [10]Kerssens C,Sebel PS.BIS and memory function during anesthesia,Awareness during aensthesia.Edited by Ghoneim MM.Wobum,MA,Butterworth-Heinemann,2001,p 103-116
    [11]Emi Takahashi,Kenichi Ohki,Dae-Shik Kim.Diffusion Tensor Studies Dissociated Two Fronto-Temporal Pathways in the Human Memory System[J].Neuroimage.2007 January 15;34(2):827-838.
    [12]D.Tomasi,L.Chang,E.C.Caparelli.Different activation patterns for working memory load and visualattention load[J].Brain Res.2007 February 9;1132(1):158-165
    [13]Emmette R.Hutchison,Sheila E.Blumstein,Emily B.Myers.An Event-Related fMRI Investigation of Voice-Onset Time Discrimination[J].Neuroimage.2008 March 1;40(1):342-352
    [14]岳云.麻醉与记忆[J].临床麻醉学杂志,2001,17:228-223
    [15]Peter Soros,Jonathan Marmurek,Fred Tam.Functional MRI of working memory and selective attention in vibrotactile frequency discrimination[J].BMC Neuroscience 2007,8:48
    [16]Dagmar Zeithamova,W.Todd Maddox,David M.Schnyer.Dissociable Prototype Learning Systems:Evidence from Brain Imaging and Behavior[J].J Neurosci.2008 December 3;28(49)
    [17]Ashby FG,O'Brien JB.Category learning and multiple memory systems[J].Trends Cogn Sci 2005;9:83-89.
    [18]Corbetta M,Miezin F M,Dobmeyer S,et al.Selective and divided attention during visual discriminations of shape,colour and speed:Functional anatomy by positron emission tomography[J].Journal of Neuroscience,1991,13:1202-1226
    [19]Raichle M E,Fiez J A,Videen T O,et al.Practice-related changes in human brain functional anatomy during non-motor learning[J].Cerebral Cortex,1994,4:8~26
    [20]Posner M I.Attention:The mechanisms of consciousness[J].Proceedings of National Academy of USA,1994,91:7398~7403
    [21]Pepe J.Hernandez,Matthew E.Andrzejewski,Kenneth Sadeghian.AMPA/kainate,NMDA,and dopamine D1 receptor function in the nucleus accumbens core:A context-limited role in the encoding and consolidation of instrumental memory[J].Learning & Memory,2005,12:285-295
    [22]Kevin B.Baker,Jeansok J.Kim.Effects of Stress and HippocampalNMDA Receptor Antagonism on Recognition Memory in Rats[J].Learning & Memory,2002,9:58-65
    [23]Kaori Takehara-Nishiuchi,Shigenori Kawahara,Yutaka Kirino.NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace,but not delay eyeblink conditioning[J].Learning & Memory,2005,12:606-614
    [24]Jianrong Tang,Shanelle Ko,Hoi-Ki Ding.Pavlovian fear memory induced by activation in the anterior cingulate cortex[J].Mol Pain,2005,1:6.
    [25]Snyder A Z,Abdullaev Y G,Posner M I,et al.Scalp electrical potentials reflect regional cerebral blood flow responses during processing of written words[J].Proceedings of National Academy of USA,1995,92:1689~1693
    [26]Buckner RL,Koutstaal W.Functional neuroimaging studies of encoding,priming,and explicit memory retrieval[J].Proc Natl Acad Sci USA,1998,95:891-898.Review
    [27]Bear MF CBW,Paradiso MA.Neuroscience:Exploring the Brain.2nd Edition.Maryland:Lippincott Williams & Wilkins,2001.749-773.
    [28]Brugge JF,Volkov IO,Garell PC,Reale RA,3rd HMA.Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans[J].J Neurophysiol.2003.90(6):3750-63.
    [29]Takayama Y,Kinomoto K,Nakamura K.Selective impairment of the auditory-verbal short-term memory due to a lesion of the superior temporal gyrus[J].Eur Neurol.2004.51(2):115-7.
    [30]Reale RA,Calvert GA,Thesen T,et al.Auditory-visual processing represented in the human superior temporal gyrus[J].Neuroscience.2007.145(1):162-84.
    [31]Yagishita S,Watanabe T,Asari T,et al.Role of left superior temporal gyrus during name recall process:an event-related fMRI study[J].Neuroimage.2008.41(3):1142-53.
    [32]Wang Q,Wang Z,Zhu P,Jiang J.Effects of subconvulsive electrical stimulation to the hippocampus on emotionality and spatial learning and memory in rats[J].Chin Med J(Engl).2003.116(9):1361-5.
    [33]Yassa MA,Stark CE.A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe[J].Neuroimage.2009.44(2):319-27.
    [1]Jacoby LL.A process dissociation framework:Separating automatic from intentional uses of memory[J].J Mem Lang,1991,30:513-541
    [2]Lubke GH,Kerssens C,Phaf H,et al.Dependence of explicit and implicit memory on hypnotic state in trauma patients[J].Anesthesiology,1999,90:670-680
    [3]Stapleton CL,Andrade J.An investigation of learning during propofol sedation and anesthesia using the process dissociation procedure[J].Anesthesiology,2000,93:1418-1425
    [4]Wang Y,Yue Y,Sun YH,et al.Can bispectral index or auditory evoked potential index predict implicit memory during propofol-induced sedation[J].Chin Med J,2006,119:894-898
    [5]Aldrete JA.The post-anesthesia recovery score revisited[J].J Clin Anesth,1995,7:89-91
    [6]Kerssens C,Takashi O,Peter S,et al.No Evidence of Memory Function during Anesthesia with Propofol or Isoflurane with Close Control of Hypnotic State[J].Anesthesiology,2005,102:57-62
    [7]Kerssens C,Lubke GH,Klein J,et al.Memory function during propofol and alfentanil anesthesia:predictive value of individual differences[J].Anesthesiology,2002,97:382-389
    [8]Kerssens C,Sebel PS.BIS and memory function during anesthesia,Awareness during aensthesia.Edited by Ghoneim MM.Woburn,MA,Butterworth-Heinemann,2001,p 103-116
    [9]岳云.麻醉与记忆[J].临床麻醉学杂志,2001,17:228-223
    [10]Buckner RL,Koutstaal W.Functional neuroimaging studies of encoding,priming,and explicit memory retrieval[J].Proc Natl Acad Sci USA,1998,95:891-898.Review
    [11]Emi Takahashi,Kenichi Ohki,Dae-Shik Kim.Diffusion Tensor Studies Dissociated Two Fronto-TemporalPathways in the Human Memory System.Neuroimage.2007 January 15;34(2):827-838.
    [12]D.Tomasi,T.Ernst,E.C.Caparelli.Common deactivation patterns during working memory and visualattention tasks:An intra-subject fMRI study at 4 Tesla.Hum Brain Mapp.2006 August;27(8):694-705.
    [13]Bear MF CBW,Paradiso MA.Neuroscience:Exploring the Brain.2nd Edition.Maryland:Lippincott Williams & Wilkins,2001.749-773.
    [14]Brugge JF,Volkov IO,Garell PC,Reale RA,3rd HMA.Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans[J].J Neurophysiol.2003.90(6):3750-63.
    [15]Takayama Y,Kinomoto K,Nakamura K.Selective impairment of the auditory-verbal short-term memory due to a lesion of the superior temporal gyrus[J].Eur Neurol.2004.51(2):115-7.
    [16]Reale RA,Calvert GA,Thesen T,et al.Auditory-visual processing represented in the human superior temporal gyrus[J].Neuroscience.2007.145(1):162-84.
    [17]Yagishita S,Watanabe T,Asari T,et al.Role of left superior temporal gyrus during name recall process:an event-related fMRI study[J].Neuroimage.2008.41(3):1142-53.
    [18]Wang Q,Wang Z,Zhu P,Jiang J.Effects of subconvulsive electrical stimulation to the hippocampus on emotionality and spatial learning and memory in rats[J].Chin Med J(Engl).2003.116(9):1361-5.
    [19]Yassa MA,Stark CE.A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe[J].Neuroimage.2009.44(2):319-27.
    [20]
    [1]Barinaga M.New imaging methods provide a better view into the brain[J].Science,1997,276:1974-1976
    [2]Alkire MT.Probing the mind:anesthesia and neuroimaging[J].Clin Pharmacol Ther.2008 Jul;84(1):149-52
    [3]Nofzinger EA,Mintun MA,Wiseman M,et al.Forebrain activation in REM sleep:an FDG PET study[J].Brain Res,1997,770:192-201
    [4]Herscovitch P.Can[150]water be used evaluate drugs[J]?J Clin Pharmacol,2001,41:S 11-S20
    [5]Grasby P,Malizia A,Bench C.Psychopharmacology in vivo neurochemistry and pharmacology[J].Br Med Bull,1996,52:513-526
    [6]Richardson MP,Friston KJ,Sisodiya SM,et al.Cortical grey matter and benzodiazepine receptors in malformations of cortical development.A voxel-based comparison of structural and functional imaging data[J].Brain,1997,120:1961-1973
    [7]Kety SS.The theory and applications of the exchange of inert gas at the lungs and tissues[J].Pharmacol Rev,1951,3:1-41
    [8]Sokoloff L.Relation between physiological function and energy metabolism in the central nervous system[J].J Neurochem,1977,29:13-26
    [9]Sokoloff L.Relationships among local functional activity,energy metabolism,and blood flow in the central nervous system[J].Fed Proc,1981,40:2311-2231
    [10]Duncan JS.Positron emission tomography receptor studies[J].Adv Neurol,1999,79:893-899
    [11]Alkire MT,Haier RJ,Barker SJ,et al.Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomograph[J]y.Anesthesiology,1995,82:393-403
    [12]Alkire MT,Haier RJ,Shah NK,et al.Positron emission tomography study regional cerebral metabolism in humans during isoflurane anesthesia[J].Anesthesiology,1997,86:549-557
    [13]Alkire MT.Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers[J].Anesthesiology,1998,89:323-333
    [14]Alkire MT,Pomfrett CJ,Haier RJ,et al.Functional brain imaging during halothane anesthesia in humans:effects of halothane on global and regional cerebral glucose metabolism[J].Anesthesiology,1999,90:701-709
    [15]Alkire MT,Haier RJ,Fallon JH.Toward a unified theory of narcosis:brain imaging evidence for thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness[J].Conscious Cogn,2000,9:370-386
    [16]Alkire MT,Nathan SVDoes the amygdala mediate anesthetic-induced amnesia?Basolateral amygdala lesions block sevoflurane-induced amnesia[J].Anesthesiology.2005 Apr;102(4):754-60
    [17]Alkire MT,McReynolds JR,Hahn EL.Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat[J].Anesthesiology.2007 Aug;107(2):264-72
    [18]Alkire MT,Gruver R,Miller J,McReynolds JR Neuroimaging analysis of an anesthetic gas that blocks human emotional memory[J].Proc Natl Acad Sci U S A.2008 Feb 5;105(5):1722-7.
    [19]Alkire MT,Hudetz AG,Tononi G.Consciousness and anesthesia[J].Science.2008 Nov7;322(5903):876-80.
    [20]Veselis RA,Reinsel RA,Beattie BJ,Mawlawi OR,Feshchenko VA,DiResta GR,Larson SM,Blasberg RG.Midazolam changes cerebral blood flow in discrete brain regions:an H2(15)O positron emission tomography study[J].Anesthesiology.1997 Nov;87(5):l 106-17
    [21].Reinsel RA,Veselis RA,Dnistrian AM,Feshchenko VA,Beattie BJ,Duff MRMidazolam decreases cerebral blood flow in the left prefrontal cortex in a dose-dependent fashion[J].Int J Neuropsychopharmacol.2000 Jun;3(2):117-127
    [22]Veselis RA,Reinsel RA,Feshchenko VA,Dnistrian AM.A neuroanatomical construct for the amnesic effects of propofol[J].Anesthesiology.2002 Aug;97(2):329-37
    [23]Veselis RA,Feshchenko VA,Reinsel RA,Dnistrian AM,Beattie B,Akhurst TJ.Thiopental and propofol affect different regions of the brain at similar pharmacologic effects[J].Anesth Analg.2004 Aug;99(2):399-408,
    [24]Veselis RA,Feshchenko VA,Reinsel RA,Beattie B,Akhurst TJ.Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations[J].Anesthesiology.2005 Jan;102(1):2
    [25]Veselis RA,Pryor KO,Reinsel RA,Mehta M,Pan H,Johnson R Jr.Low-dose propofol-induced amnesia is not due to a failure of encoding:left inferior prefrontal cortex is still active[J].Anesthesiology.2008 Aug;109(2):213-24
    [26]Hofle N,Paus T,Reutens D,Fiset P,Gorman J,Evans AC,Jones BE.Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in human[J]s.J Neurosci.1997 Jun 15;17(12):4800-8
    [27]Fiset P,Paus T,Daloze T,Plourde G,Meuret P,Bonhomme V,Hajj-Ali N,Backman SB,Evans AC.Brain mechanisms of propofol-induced loss of consciousness in humans:a positron emission tomographic study[J].J Neurosci.1999 Jul 1;19(13):5506-13
    [28]Kaisti KK,Metsahonkala L,Teras M,et al.Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography[J].Anesthesiology,2002,96:1358-1370
    [29]Kaisti KK,Langsjo JW,Aalto S,Oikonen V,Sipila H,Teras M,Hinkka S,Metsahonkala L,Scheinin H.Effects of sevoflurane,propofol,and adjunct nitrous oxide on regional cerebral blood flow,oxygen consumption,and blood volume in humans[J].Anesthesiology.2003 Sep;99(3):603-13
    [30]L(?)ngsj(?) JW,Kaisti KK,Aalto S,Hinkka S,Aantaa R,Oikonen V,Sipil(?) H, Kurki T,Silvanto M,Scheinin H.Effects of subanesthetic doses of ketamine on regional cerebral blood flow,oxygen consumption,and blood volume in humans[J].Anesthesiology.2003 Sep;99(3):614-23
    [31]Langsjo JW,Salmi E,Kaisti KK,Aalto S,Hinkka S,Aantaa R,Oikonen V,Viljanen T,Kurki T,Silvanto M,Scheinin H.Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans[J].Anesthesiology.2004 May;100(5):1065-71
    [32]Salmi E,Kaisti KK,Mets(?)honkala L,Oikonen V,Aalto S,N(?)gren K,Hinkka S,Hietala J,Korpi ER,Scheinin H.Sevoflurane and propofol increase 11C-flumazenil binding to gamma-aminobutyric acidA receptors in humans[J].Anesth Analg.2004 Nov;99(5):1420-6
    [33]Salmi E,Langsjo JW,Aalto S,N(?)gren K,Metsahonkala L,Kaisti KK,Korpi ER,Hietala J,Scheinin H.Subanesthetic ketamine does not affect 11C-flumazenil binding in humans[J].Anesth Analg.2005 Sep;101(3):722-5,
    [34]Laitio RM,Kaisti KK,L(?)angsj(?) JW,Aalto S,Salmi E,Maksimow A,Aantaa R,Oikonen V,Sipila H,Parkkola R,Scheinin H.Effects of xenon anesthesia on cerebral blood flow in humans:a positron emission tomography study[J].Anesthesiology.2007 Jun;106(6):1128-33
    [35]Salmi E,Laitio RM,Aalto S,Maksimow AT,L(?)ngsj(?) JW,Kaisti KK,Aantaa R,Oikonen V,Metsahonkala L,N(?)gren K,Korpi ER,Scheinin H.Xenon does not affect gamma-aminobutyric acid type A receptor binding in humans[J].Anesth Analg.2008 Jan;106(1):129-3
    [36]Bonhomme V,Fiset P,Meure P,et al.Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation:a positron emission tomography study[J].J Neurophydiol,2001,85:1299-1308
    [37]Bonhomme V,Maquet P,Phillips C,Plenevaux A,Hans P,Luxen A,Lamy M,Laureys S.The effect of clonidine infusion on distribution of regional cerebral blood flow in volunteers[J].Anesth Analg.2008 Mar;106(3):899-909
    [38]Reinsel rA,Veselis RA,Beattie BJ,et al.Midazolam changes cerebral blood flow in discrete brain regions[J].Anesthesiology,1997,87:1106-1117
    [39]Paus T.Functional anatomy of arousal and attention systems in the human brain[J].Prog Brain Res,2000,126:65-77
    [40]Veselis RA,Reinsel R,Feshenko V,et al.Dose related decrease in rCBF in R and L prefrontal cortices(PFC) during memory impairment with midazolam and propofol[J].Neuroimage,2001,6:13-18
    [41]Gyulai FE,Minrun MA,firestone LL.Dose-dependent enhancement of in vivo GABA(A)—benzodiazepine receptor binding by isoflurane[J].Anesthesiology,2001,95:585-593
    [42]Alkire MT,Haier BJ.Correlating in vivo anaesthetic effects with ex vivo receptor density data supports a A\GABAergic mechanism of action for propofol,but not for isoflurane[J].Br J Anaesth,2001,86:618-626
    [43]Forster BB,Mackay AL,Whittall KP,et al.Functional magnetic resonance imaging the basics of blood-oxygen-level-dependent imaging[J].Can Assoc Radiol,1998,49:320-32
    [44]Bandettini PA,Wong EC,Hinks RS,et al.Time course EPI of human brain function during task activation[J].Magn Reson Med,1992,25:390-397
    [45]Buxton RB,Wong EC,Frank LR.Dynamics of blood flow and oxygenation changes during brain activation:the balloon model[J].Magn Reson Med,1998,39:855-864
    [46]Friston KJ,Mechelli,Turner R,et al.Nonlinear responses in fMRI:the balloon model,Volterra kernels and other hemodynamics[J].Neuroimaging,2000,12:468-477
    [47]Duyn JH,Gillen J,Sobering G,van Zijl PC,Moonen CT.Multisection proton MR spectroscopic imaging of the brain[J].Radiology.1993 Jul;188(1):277-82
    [48]Duyn JH,Moonen CT.Fast proton spectroscopic imaging of human brain using multiple spin-echoes[J].Magn Reson Med.1993 Oct;30(4):409-14.
    [49]Duyn JH,Mattay VS,Sexton RH,et al.3-dimensional functional imaging of human brain using echo-shifted FLASH MRI[J].Magn Reson Med,1994,32:150-155
    [50]Ramsey NF,Kirkby BS,Van Gelderen P,Berman KF,Duyn JH,Frank JA,Mattay VS,Van Horn JD,Esposito G,Moonen CT,Weinberger DR.Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF.J Cereb Blood Flow[J].Metab.1996 Sep;16(5):755-64
    [51]Langheim FJ,Callicott JH,Mattay VS,Duyn JH,Weinberger DR.Cortical systems associated with covert music rehearsal[J].Neuroimage.2002 Aug;16(4):901-8
    [52]Chu R,de Zwart JA,van Gelderen P,Fukunaga M,Kellman P,Holroyd T,Duyn JH.Hunting for neuronal currents:absence of rapid MRI signal changes during visual-evoked response[J].Neuroimage.2004 Nov;23(3):1059-67
    [53]Bianciardi M,Fukunaga M,van Gelderen P,Horovitz SG,de Zwart JA,Duyn JH.Modulation of spontaneous fMRI activity in human visual cortex by behavioral state[J].Neuroimage.2008 Nov 6.[Epub ahead of print][54]Barnes J,Howard RJ,Senior C,Brammer M,Bullmore ET,Simmons A,David AS.The functional anatomy of the McCollough contingent colour after-effect[J].Neuroreport.1999 Jan 18;10(1):195-9
    [55]Senior C,Barnes J,Giampietro V,et al.The functional neuroanatomy of implicit-motion perception or representational momentum[J].Curr Biol,2000,10:16-22
    [56]Cooke R,Peel E,Shaw RL,Senior C.The neuroimaging research process from the participants' perspective[J].Int J Psychophysiol.2007 Feb;63(2):152-8.Epub 2006 Jun 27
    [57]Bucher RL,Goodman J,Burock M.Functional-anatomic correlates of object priming in human revealed by rapid presentation event-related fMRI[J].Neuron,1998,20:285-296
    [58]Antognini JF,Buonocore MH,Disbrow EA,et al.Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli:a fMRI study[J].Life Sci,1997,61:PL 349-354
    [59]Heinke W,Schwarzbauer C.Subanesthetic isoflurane affects task-induced brain activation in a highly specific manner[J].Anesthesiology,2001,95:583-593
    [60]Heinke W,Schwarzbauer C.In vivo imaging of anasthetic action in humans:approaches with positron emission tomography(PET) and functional magnetic resonance imaging(fMRI)[J].Br J Anaesth,2002,89:112-122
    [61]Heinke W,Fiebach CJ,Schwarzbauer C,Meyer M,Olthoff D,Alter K.Sequential effects of propofol on functional brain activation induced by auditory language processing:an event-related functional magnetic resonance imaging study[J].Br J Anaesth.2004 May;92(5):641-50
    [62]Heinke W,Zysset S,Hund-Georgiadis M,Olthoff D,von Cramon DYthe effect of esmolol on cerebral blood flow,cerebral vasoreactivity,and cognitive performance:a functional magnetic resonance imaging study[J].Anesthesiology.2005 Jan;102(1):41-50
    [63]Heinke W,Koelsch S.The effects of anesthetics on brain activity and cognitive function[J].Curr Opin Anaesthesiol.2005 Dec;18(6):625-31
    [64]John ER.The neurophysics of consciousness[J].Brain Res Rev,2002,39:1-28
    [65]Bagary M,Fluck E,File SE,et al.Is benzodiazepine-induced amnesia due to deactivation of the left prefrontal cortex[J].Psychopharmacology,2000,150:292-299
    [66]Stabemack C,Zhang Y,Sonner JM,et al.Thiopental produces immobility primarily by supraspinal actions in rats[J].Anesth Analg,2005,100:128-136
    [67]Koblin DD,Harris RA,Kendig JJ,et al.Hypothesis:inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites[J].Anesth Analg,1997,84:915-918
    [68]Alkire MT.Probing the mind:anesthesia and neuroimaging[J].Clin Pharmacol Ther.2008 Jul;84(1):149-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700