用户名: 密码: 验证码:
堆石体物理力学特性及其工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆石体是一种有一定级配、无凝聚性、渗透能力很强的摩擦型集合料,并具有独特的物理力学特性。其特殊性主要是因为它是由颗粒和孔隙组成,其性质与颗粒的大小、形状及分布特征有关,并且在载荷作用下,这些参量将不断发生变化,堆石体物理力学性质也随之改变。论文采用散体力学、颗粒力学的相关理论对堆石体的强度和变形机理进行研究,并考虑到堆石体内部微观结构的变化特征,将微观结构的特征参数与宏观力学量统一起来,建立相适应的力学模型,将微观与宏观联系起来,进一步完善了对堆石体的研究。
    论文完成的主要研究工作有:
    有关堆石体物理力学性质方面,在已有研究成果基础上,对相关研究成果进行综合比较、分析、研究、总结,并借鉴散体力学、颗粒力学和统计力学相关理论,把有关堆石体的物理力学性质的研究成果融汇成了一个较完善的基础理论体系。
    从岩石的破碎机理出发,建立了堆石体粒径分布的对数正态分布模型,可以较好的预测爆破堆石体的粒径分布。
    对堆石体的物理力学性质进行了较全面的试验研究,包括现场测试与分析、现场大型碾压试验、原位剪切试验、渗透试验、击实试验、压缩试验、三轴剪切试验等,对堆石体的颗粒分布、抗剪强度、渗透特性、压缩性以及沉降特性进行了研究,丰富了理论研究内容,为工程应用提供了科学依据。
    从堆石体的组构特征出发,以数理统计为工具,研究了颗粒间的接触力以及接触力的法向分布,得出了颗粒间接触力的概率分布。研究了堆石体的力学性质与颗粒的空间堆积方式、孔隙的大小及孔隙的空间分布之间的关系。
    运用散体颗粒力学和数理统计理论,从颗粒的空间堆积形态出发,分析颗粒间的接触关系、接触力,并建立了堆石体颗粒间的局部微观接触力与宏观应力之间的关系。
    从堆石体颗粒的微观结构出发,建立了堆石体的刚性接触模型,将颗粒间的接触力同局部应力联系起来,建立了堆石体的局部本构模型。以堆石体局部本构关系为基础,并从微观到宏观,建立了堆石体的二维、三维本构模型,把堆石体的微观颗粒组构特征与其宏观物理力学特性联系起来,为进一步研究堆石体物理力学特性奠定了理论基础。
    通过理论分析、现场监测和数值分析等手段,研究了堆石体内土压力的分布状况,对堆石体的成拱机理进行了理论研究,并分析了堆石体对其内部构筑物安全性的影
    
    响。以堆石体的成拱效应为算例,以数值分析为手段,对堆石体填筑结构
    的土压力分布进行了数值模拟,验证了堆石体成拱效应。
    以几个不同工程为实例,充分阐述了堆石体在工程中的典型应用情况,充分应用了堆石体压实性能好、透水性强、填筑密度大、沉陷变形小、承载力高、稳定性好等优良工程特性,体现出了堆石体在工程中良好的安全、经济、社会和环境效益。工程应用表明堆石体是一种安全、经济以及具有良好社会、环境效益的工程材料。
Rockfill is a cohesionless frictional aggregate material with certain gradation, high seepage velocity and has particular physical and mechanical characteristics since rockfill is mainly composed of particles and void. Its properties are related to particle's size, shape and distributing character. These particle's parameters will change when force is put on, and the characteristics of rockfill change too. The strength and deformation mechanism are studied in this thesis on the base of discrete mechanics and granular material mechanics considering the change of microstructure of rockfill.
    The adaptive mechanical model is established combining characteristic parameters of microstructure with macro mechanical parameters. The thesis enriches the research of rockfill, and the main achievements are as follows:
    A more integrated fundamental theory system for rockfill is built up upon synthetically compare, analysis, study and summarization of the research achievements about physical and mechanical characteristics of rockfill through introducing related theories of discrete mechanics, granular material mechanics and statistical mechanics.
    The Log-normal distribution model of rockfill particle is established based on rock fragmentation mechanism. It well forecast the gradation distribution of blasted rockfill.
    Comprehensive experimental research is carried out in this thesis to study the particle gradation, shear strength, seepage ability, compress ability and settlement of rockfill including in situ test and analysis, large scale roll test, in situ shear test, seepage test, compaction test, compress test, triaxial shear test and so on. The results are helpful to further research and provide necessary data for engineering project.
    Probability density of contact force is acquired through research contact force, contact force normal and fabric characteristics of rockfill by statistical mechanics to study the relationship between physical and mechanical characteristics of rockfill and packing style of particles, void and its dimensional distribution.
    Relationship between local micro contact force of particle and macro stress of rockfill is studied through discrete mechanics and statistical theory by analyzing of contact relation and contact force from dimensional packing of particle.
    Put forward rigid contact model that can connect contact force with local stress and establish local constitutive model based on micro structure of rockfill particle.
    Two dimensional and three dimensional constitutive models for rockfill are built up on the base of local constitutive relation. It connects particle micro fabric with macro mechanical response and can be the base for further research.
    Through theoretically analysis, in situ monitor and numerical analysis to study the
    
    soil force distributing status and investigate the arching action of rockfill and analyze the influence of rockfill on its inner structures.
    Engineering examples approve that rockfill has excellent engineering characteristics, such as good compactness, strong seepage ability, high density, low sedimentation, high bearing capacity, good stability and so on. It shows well safe benefit, economic benefit, social benefit and environmental benefit. So rockfill is a safe and economical engineering material with well social benefit and environmental benefit.
引文
[1] 邴凤山,21世纪中国水电建设的展望,水电能科学,1999,Vol.17 No.2: 1-4
    [2] 潘家铮,千秋功罪话水坝,北京,水利水电出版社,2000.5
    [3] 刘颂尧主编,碾压高堆石坝,北京,水利出版社,1989.7
    [4] 孔德坊主编,工程岩土学,北京,地质出版社,1992.7
    [5] Marsal R.J., Large scale testing of rockfill materials, J. Soil Mech. Fdn Engng Div. Am. Soc. Civ. Engrs. 93, 1967, SM 2: 27-34
    [6] Charles J.A., Watts K.S., The influence of confining pressure on the shear strength of compacted rockfill, Géotechnique 30, 1980, No.4: 353-367
    [7] Lee Y.H., Strength and deformation characteristics of rockfill, PhD thesis, Asian Institute of Technology, Bangkok, 1986
    [8] Leps T.M., Review of shearing strength of rockfill, J. Soil Mech. Fdn Engng Div. Am. Soc. Civ. Engrs 96, 1970, SM 4: 1159-1170
    [9] Vesic A.S. & Clough G.W., Behaviour of granular materials under high stresses, J. Soil Mech. Fdn Engng Div. Am. Soc. Civ. Engrs 94, 1968, SM 3: 661-668
    [10] R.J. Marsal, Mechanical properties of rockfill, Embankment dam engineering, casagrande volume, New York, 1973: 109-200
    [11] Marachi N.D., Strength and deformation characteristics of rockfill materials, PhD thesis, University of California, 1969
    [12] Marachi N.D., et al, Evaluation of properties of rockfill materials, J. Soil Mech. Fdn Engng Div. Am. Soc. Civ. Engrs 98, 1968, SM 1: 95-114
    [13] Indraratna B. et al, Design for grouted rock bolts based on the convergence control method, Int. Rock Mech. Sci. Geomech. Abstr. 27, 1986, No.4: 268-281
    [14] De. Mello, Y.F.B., Reflections on design decisions of practical significance to embankment dams, Géotechnique 27, 1977, No.3: 279-355
    [15] Indraratna B., Development and applications of a synthetic material to simulate soft sedimentary rocks, Géotechnique 40, 1990, No.2: 189-200
    [16] 田树玉,粗粒土抗剪强度特性试验研究,大坝观测与土工测试,1994,Vol.19 No.2: 35-38
    [17] 李远贤,粗粒土多级加载三轴试验分析,大坝观测与土工测试,2001,Vol.25 No.1: 40-42
    [18] 崔柏华,一种粗粒土室内渗透比较试验研究,大坝观测与土工测试,1996,Vol.20 No.2: 15-18
    [19] 徐刚,一种饱和粗粒土动强度试验结果的分析方法,大坝观测与土工测试,1998,Vol.22 No.1: 39-41
    
    
    [20] 屈智炯等,压实石碴料渗透变形的试验研究,成都科技大学学报,1984(2): 67-76
    [21] 徐天有等,堆石体渗透规律的试验研究,水利学报,1998,增刊: 80-83
    [22] 刘祖德,土石坝变形计算的若干问题,岩土工程学报,1983,Vol.5 No.1: 1-12
    [23] 张启岳等,粗颗粒土大型三轴压缩试验的强度与应力~应变特性,水利学报,1982(9): 22-31
    [24] 郭庆国,关于粗粒土抗剪强度特性的试验研究,水利学报,1987(5): 59-65
    [25] 朱家启等,水布垭高面板堆石坝堆石体压实密度的研究,长江科学院院报,1999,Vol.16 No.1: 42-44
    [26] 王继庄,粗粒料的变形特性和缩尺效应,岩土工程学报,1994,Vol.16 No.4: 89-95
    [27] Delwyn G.F., redlund,Harianto Rahardjo著,陈仲颐等译,非饱和土土力学 ,北京: 中国建筑工业出版社, 1997.8
    [28] 张智等,粗粒土湿化特性的研究,成都科技大学学报,1990,SUM No.52 No.5: 51-56
    [29] 刘开明等,粗粒土的工程特性及本构模型研究,成都科技大学学报,1993,SUM No.73 No.6: 93-102
    [30] 保富华等,粗粒土的本构模型研究,成都科技大学学报,1990,SUM No.52 No.4: 63-69
    [31] 屈智炯等,冰碛土微观结构、应力应变特性及其模型研究,岩土工程学报,1992,Vol.14 No.6: 19-28
    [32] 蒙进等,高压下冰碛土的颗粒破碎及应力应变关系,成都科技大学学报,1989,SUM No.43 No.1: 17-30
    [33] 肖晓军等,高低应力下冰碛土的应力-应变特性,成都科技大学学报,1988,SUM No.40 No.4: 7-13
    [34] 栾茂田等,关于岩土工程中若干基本力学问题的思考,大连理工大学学报,1999,Vol.39 No.2: 309-317
    [35] Chang C.S., Strain tensor and deformation for granular material, Journal of Engineering Mechanics, 1988, Vol.116 No.4: 790-804
    [36] Chang C.S., et al, Packing structure and mechanical properties of granulates, Journal of Engineering Mechanics, 1988, Vol.116 No.5: 1077-1093
    [37] Chang C.S., Micromechanical modelling of constitutive relation for granular materials, Micromechanics of Granular Materials, ED, by Statake and Jenkin J.T., 1988: 271-278
    [38] Chang C.S. etc, Theoretical and experimental study of granular packing of granulates, J. Engrg. Mech., 1989, Vol.115 No.4: 705-720
    [39] Chang C.S. etc, Computer simulation and modelling of mechanical properties of particulates, Computers and Geotechnics, 1989, Vol.7 No.4: 269-287,
    [40] Chang C.S. etc, Slip mechanism-based constitutive model for granular soils, J. Engrg. Mech.,
    
    1989, Vol.115 No.3: 790-807
    [41] Chang C.S., Constitutive relation for particulate medium with the effect of particle rotation, Int. J. Solids Struct. 1990, Vol.26 No.4: 437-453
    [42] Chang C.S. etc, Modelling of discrete granulates as micropolar contium, J. Engng. Mech., 1990, Vol.116 No.12: 2703-2712
    [43] 毛坚强,散体介质的力学模型及应力计算方法初探,中国青年学者岩土工程力学及其应用讲座会论文集,武汉,1994: 156-162
    [44] 钟晓雄,颗粒材料力学模型的理论研究及试验验证,中国科学院武汉岩土力学研究所博士学位论文,1991
    [45] 钟晓雄等,粗粒体的微观组构与本构关系,岩土工程学报,1992,Vol.14 增刊: 39-48
    [46] 沈珠江,土体结构性的数学模型,岩土工程学报,1996, Vol.18 No.1: 95-97
    [47] 胡瑞林等,21世纪工程地质学生长点:土体微结构力学,水文工程地质,1999(4): 5-8
    [48] 胡瑞林等,土体微结构力学--概念、观点、核心,地球学报,1999,Vol.20 No.2: 150-156
    [49] Cundall P.A. etc., The development of constitutive laws fro soils using distinct methods, in Numerica Methods in Geomecganics, Aachen, 1979: 289-298
    [50] Serrano A.A. etc., A contribution to the mechanics of heterogeneous granular media, Proc. Symp. Plastricity and Soil Mech., Cambridge, U.K., 1973
    [51] Duffy J. etc, Stress-strain relation and vibrations of a granular medium, J. Appl. Mech., ASME., , 1957, Vol.24: 585-593
    [52] Deresiewicz H. et al, Stress-strain relation for a simple model of a granular medium, J. Applied Mech., ASME., 1958, Vol.25 No.3: 402-406
    [53] Duffy J. etc, A different stress-strain relation for the hexagonal close-packed array of elastic sphere, J. Appl. Mech., ASME., 1959, Vol.26: 88-94
    [54] Makhlourf H. etc, Elastic constants of cubical tetrahedral and tetragonal spheroidal arrays of uniform sphere, Proc., Int. Symp. of Wave Propagation and Dynamic Properties of Earth Materials, Albuqyerque, N.M., 1959: 825-837
    [55] Mindlin R.D. et al, Elastic Sphere in contact under varying oblique forces, J. Appl. Mech. Engns. 1953, Vol.20 No.3: 327-344
    [56] Cundall P.A., A computer model for simulating progressive large scale movements in blocky systems, Proceeding of the Symposium of the International Society of Rock Mechanics, Nancy, France, 1971, Vol.1 No.2: 56-64
    [57] Cundall P.A., The measurement and analysis of acceleration in rock slopes, Ph.D Dissertation, University of London, Imperial College of Science and Technology, 1971
    [58] Cundall P.A., Ball-a program to model granular media using the distinct element method, Dames
    
    & Moore Advanced Technology Group, London, 1978
    [59] 李伟,不连续散粒体的离散单元法,南京航空航天大学学报,1999, Vol.31 No.1: 85-91
    [60] 蒋鹏,离散元法用于块石土强夯过程模拟,岩土力学,1999, Vol.20 No.3: 29-34
    [61] 崔中兴,爆破筑坝形成自然反滤结构的块度研究,陕西水力发电,1994, Vol.10 No.1.3: 6-11
    [62] 吴新霞,Kuz-Ram模型在堆石坝级配料开采爆破中的应用,长江科学院院报,1998, Vol.15 No.4: 39-42
    [63] 东兆星,工程爆破中岩石破碎块度的理论研究,爆破,1998, Vol.15 No.2: 1-4
    [64] 田堪良,论天然沉积砂卵石粒度分布的分形结构,西北水资源与工程,1998, Vol.7 No.4: 26-31
    [65] 张云鹏,台阶爆破岩石破碎块度分布的数学模型,河北冶金,1995(4): 11-14
    [66] 郭爱国,砂砾石坝料渗透特性试验研究,武汉水利水电大学学报,1999, Vol.32, No.3: 93-97
    [67] Sia Nemat-Nasser, A micromechanically-based constitutive model for frictional deformation of granular materials, Journal of the Mechanics of Solids 48, 2000: 1541-1563
    [68] Ali Daouadji, An elastoplastic model for granular materials taking into account grain breakage. Eur. J. Mech. A/Solids 20(2001): 113-117
    [69] Steen Krenk, Characteristic state plasticity for granular materials, International Jour of Solids and Structures 37(2000): 9643-9360
    [70] Gray W.A., The packing of solid particles, Chapman and Hall Ltd., London, 1968
    [71] Yanagiswa E., Institute of Void and stress condition on the dynamic shear modulus of granular media, Adv in the Mechanics and the flow of Granular Materials, 1983, Vol.2: 947-960,
    [72] Smith W.O., Packing of homogeneous spheres, Phys, Rew, 1992, Vol.34: 1271-1274,
    [73] Grivas D.A., Particle contacts in decrete materials, Abstracts of Indian Academy of Science, Engng. Viv., 1975
    [74] Field W.G., Towards the statistical definition of a granular mass, Proc. 4th Aust. and N.Z. Conf. on Soil, 1963: 143-148
    [75] 陆厚根,粉体工程导论,上海,同济大学出版社,1993
    [76] 徐小荷等,岩石破碎学,北京,煤炭工业出版社,1984
    [77] K.Ono M. yamada, Analysis of the arching action in granular mass, Geotechnique 43, 1993, No.1: 105-120
    [78] 华东水利学院《土石坝工程》翻译组译,土石坝工程,北京,水利水电出版社,1978年9月第一版,
    [79] 傅志安,凤家骥主编,碾压混凝土面板堆石坝,武汉,华中理工大学出版社,1993年5月第一版
    [80] T·艾伦,颗粒大小测定,喇华璞等译,北京,中国建筑工业出版社,1984
    
    
    [81] Qiu Xiande, Yan Zongling, Probability Distribution Characteristics of Particle-size of Rockfill,New development in rock mechanics and rock engineerings, the proceedings of the 2nd international conference, Shenyang, China, 2002: 624-629
    [82] 阎宗岭,碾压堆石体物理力学特性及其稳定性研究,硕士学位论文,重庆大学建筑工程学院,2000
    [83] Jaroslav Feda, Notes on the effect of grain crushing on the granular soil behaviour, Engineering Geology, 63(2002): 93-98
    [84] 蒋颂涛,韩正海等,碾压混凝土面板堆石坝设计与施工,北京,水利水电出版社,1991.1
    [85] 陈明致等编,堆石坝设计,北京,水利出版社,1983.9
    [86] 蒋彭年编著,土的本构关系,北京,科学出版社,1982
    [87] 马群寿编著,钢筋混凝土面板堆石坝,北京,水利水电出版社,1990.12
    [88] F.C. Walker, W.G. Holtz, Control of Embankment Material by Laboratory Testing, Transactions of ASCE, 1953, Vol.118: 127-140
    [89] H.H. 罗扎诺夫主编,水利水电部黄河水利委员会科技情报站译,土石坝,北京,水利水电出版社,1986.6
    [90] 杨荫华,土石料压实和质量控制,北京,水利水电出版社,1989.10
    [91] 熊治平,混合沙粒径的概率分布及几个问题的商榷,武汉水利水电学院学报,1987(1): 37-47
    [92] Г.К.克列因著,陈万佳译,散粒体结构力学,北京,中国铁道出版社,1983
    [93] 阎宗岭,邱贤德,徐健,碾压堆石体压实性能测试与分析,武汉大学学报(工学版),2001, Vol.34 No.5: 88-91
    [94] 混合沙粒径的概率分布及几个问题的商榷,武汉水利电力学院学报,1987(1): 37-47
    [95] 徐健等,碾压堆石体Mohr-Coulomb强度参数分析,地下空间,1999, Vol.19 No.5: 53-57
    [96] 松尾·稔,地基工程学可靠性设计理论与实践,北京,人民交通出版社,1990
    [97] 光耀华,岩石抗剪强度指标概率分析,岩石力学与工程学报,1994, Vol.14 No.4: 36-40
    [98] 杨大地等,数值分析,重庆,重庆大学出版社,1998.1
    [99] 邱贤德,阎宗岭等,堆石体渗透特性的试验研究,四川大学学报(工程科学版),2003, Vol.35 No.2: 6-9
    [100] R.E. 科斯林,流体通过多孔材料的流动,北京,石油工业出版社,1984.8
    [101] A.E. 薛定谔,多孔介质中的渗流物理,北京,石油工业出版社,1982.8
    [102] 郭庆国,粗粒土的工程特性及应用,郑州,黄河水利出版社,1998.8
    [103] 屈智炯,吴剑明,压实石碴料渗透变形的试验研究,成都科技大学学报,1984.12: 67-76
    [104] 张文正等,混凝土面板堆石坝的坝料特性和分析计算,岩土工程学报,1989,Vol.11 No.2: 17~23
    [105] Oda M., Konishi J., Nemat-Nasser, Some experimentally based fundamental results on the
    
    mechanical behaviour of granular materials, Géotechnique 30, 1980, No.4: 479-495
    [106] Arthur J. R. F., Dunstan T., Al-Ani, Q.A. J. L. & Assadi, A., Plastic deformation and failure in granular media, Géotechnique 27, 1977, No.1: 53-74
    [107] Lafeber D., Soil structural concepts, 1966, Engng. Geol.1: 261-290
    [108] Mahmood A., Mitchell J.K., Fabric-property relationships in fine granular materials. Clays Clay Miner.22, 1974, No.5: 197-208
    [109] Mulilis J.P., Chan C.K., Seed H.B., The effects of method of samples preparation on the cyclic stress-strain behaviour of sand. Earthquake Engineering Research Center, Report No. HERC 75-18, College of Engineering, University of California Berkeley, 1975
    [110] Oda M., Co-ordination number and its relation to shear strength of granular materials, Soil Fdn 12, 1977, No.2: 29-42
    [111] Brewer R., Fabric and mineral analysis of soil, New York, 1964
    [112] Oda M., Fabrics and their effects on the deformation behaviour of sand, Dept Fdn Engng, Fac. Engng, Saitana University, special Issue, 1976: 1-59
    [113] Oda M., The mechanism of fabric changes during compression deformation of sand. Soil Fdn 12, 1972, No.2: 1-18
    [114] Oda M., Initial fabrics and their relations to mechanical properties of granular materials, Soil Fdn 12, 1972, No.1: 17-36
    [115] Oda M., Deformation mechanism of sand in triaxial compression test, Soil Fdn 12, 1972, No.4: 45-63
    [116] S.V. Tsirel, Methods of granular and fragmented material packing density calculation, Int. J. Rock. Mech. Min. Sci. 1997, Vol 34, No.2: 263-273
    [117] Satake M., Fundamental quantities in the graph approach to granular material, Mechanics of granular materials, Ed. By J.T. Jenkins and M. Satake, 1983: 9-20
    [118] Scharle P., Constitutive models constrained by the entropy maximum principle, Numerical methods in geomecganics, 1988, Vol.21 No.2: 69-78
    [119] Colin B. Brown, Entropy and granular materials: model, Journal of engineering mechanic, 2000, Vol.126 No.6: 599-604
    [120] Colin B. Brown, Entropy and granular materials: experiments, Journal of engineering mechanic, 2000, Vol.126 No.6: 605-610
    [121] Oda M., Experiment study of antistrophic shear strength of sand by plane strain test, Soil Fdn, 1978, Vol 12 No.1: 25-38
    [122] Oda M., Stress -induced anisotropy in granular masses, Soil Fdn, 1985, Vol 25 No.3: 85-97
    [123] Cowin S.C., The relationship between the elasticity tensor and the fabric tensor mechanics of
    
    materials, Soil Mechanics, 1985, No. 4: 137-147
    [124] Jenkiss J.T., Volume change in small strain-axisymmetric deformations of granular materials, Micromechanics of granular materials, Ed. By M. Satake and J.T. Jenkins, 1988
    [125] Konishi J. etc, Induced anisotropy in assemblies of oval-section rods in the biaxial compression, Mechanics of granular materials, Satake M., Fundamental quantities in the graph approach to granular material, Mechanics of granular materials, Ed. By J.T. Jenkins and M. Satake, 1983: 31-39
    [126] Oda M. etc, Some experimentally based fundamental results on the mechanical behaviour of granular materials, Geotechnique 30, 1980, No.4: 479-495
    [127] Masral R.J., Contact forces in soils and rockfill materials, proceedings of the second pan American conference on soil mechanics and foundation engineering, 1963, Vol.2: 67-98
    [128] Masal R.J., Stochastic process in the grain skeleton of soils, Proc. 6th ICSMFE, 1977, Vol.1: 201-204
    [129] Rothenburb L., Bathurst R.J., Analytical study of induced anisotropy in idealized granular materials, Geotechnique, 1988, Vol.39 No.4: 601-614
    [130] Bathurs R.J., Rothenburb L., Micromechanical aspects of isotropic granular assemblies with linear contact interaction, J. App. Mech. 1988, Vol.55 No.1: 17-23
    [131] 陆永青等,散体材料弹性参数的估计,武汉交通科技大学学报,1997, Vol.21 No.2: 178-185
    [132] 王明洋,钱七虎,颗粒介质的弹塑性动态本构关系研究,固体力学学报,1995, Vol.16 No.2: 175-180
    [133] G.M.L. Gladwell, 经典弹性理论中的接触问题,北京,北京大学出版社,1991.12
    [134] K.L. Johnson著, 徐秉业等译,接触力学,北京,高等教育出版社,1992.5
    [135] Mindlin R.D., Deresiewics H., Elastic spheres in contact under varying oblique forces, J. Appl. Mech. Engns., 1953, Vol.20 No.3: 327-344
    [136] Atkison J.H. etc, Collapse of shallow unlined circular tunnels in dense sand, Tunnels & Tunnelling 7, 1975, No.4: 71-87
    [137] Atkison J.H, Cairncross A.M., Collapse of shallow tunnel in a Mohr-Coulomb material, Proc. Symp.Role of Plasticity in soil mechanics, Cambridge, 1973: 202-206
    [138] Atkison J.H., Potts D.M., Centrifugal model tests on shallow tunnels in sand, Tunnel & Tunnelling 9, 1976, No.1: 59-64
    [139] K. Ono, M. Yamada, Analysis of the arching action in granular mass, Geotechnique 43, 1993, No.1: 105-120
    [140] 周小文等,砂土中隧洞开挖稳定机理及松动土压力研究,长江科学院院报,1999, Vol.16 No.4: 19-13
    
    
    [141] Hundy R.L., The arch in soil arching, J. Geotech. Engng Div. Am. Soc. Civ. Engrs 111, 1985, GT3: 302-318
    [142] Getzler Z., Komornic A., Model study on arching above buried structures, J.Soil Mech. Fdns Div. Am. Soc. Civ. Engrs 94, 1968, SM5: 1123-1141
    [143] Atkinson, Potts D.M., Stability of a shallow circular tunnel in cohesionless soil, Geotechnique 27, 1977, No.2: 203-215
    [144] 周小文,濮家骝等,砂土中隧洞开挖稳定机理及松动土压力研究,长江科学院院报,1999, Vol.16 No.4: 9-13
    [145] 南京水利科学研究院主编,《土工试验规程》水电部SL237-1999,北京,中国水利水电出版社,1999年12月第1版
    [146] 孟宪麒等,石头河土石坝砂卵石抗剪强度,岩土工程学报,1983,Vol.5 No.1: 90-101
    [147] 陈希哲,粗粒土的强度与咬合力的试验研究,工程力学,1994,Vol.11 No.4: 56-62
    [148] 柏树田等,压实硬岩堆石的力学特性,水利水电技术,1993(6): 39-45
    [149] S.V. Tsirel, Methods of granular and fragment material packing density calculation, Int. J. Rock Mech. Min. Sci. 1997, Vol.34, No.2: 261-273
    [150] Cundall P.A., Strack O.D.L., A discrete numerical model for granular assemblies, Géotechnique 29, 1979, No.1: 47-65
    [151] Zeitoun D.G., Baker R., A stochastic approach for settlement predictions of shallow foundation, Géotechnique 42, 1992, No.4: 617-629
    [152] Paul Michelis A.M., Polyaxial yielding of granularrock, Journal of Engineering Mechanics, 1985, Vol.111 No.8: 1049-1066
    [153] Michael A., Mooney, Gioacchino Viggiani, Undrained shear band deformation in granular media, Journal of Engineering Mechanics, 1997, Vol.123 No.6: 577-585
    [154] Oleg Vinogradov, Explicit equations of motion of discrete system of disk in two dimensions, Journal of Engineering Mechanics, 1992, Vol.118 No.9: 1950-1858
    [155] Chang C. S., Lun Ma, Modeling of discrete granulates as micropolar continua, Journal of Engineering Mechanics, 1990, Vol.116 No.12: 2703-2721
    [156] 苏丽群等,天生桥一级水电站混凝土面板堆石坝设计,云南水力发电,2002, Vol.17 No.2: 48-50
    [157] 电力工业部昆明勘测设计院天生桥处坝工室,天生桥一级水电站混凝土面板堆石坝设计,红水河,2000, Vol.14 No.4: 13-16
    [158] 吴桂耀,天生桥一级水电站混凝土面板堆石坝工程介绍,贵州水力发电,1999, Vol.13 No.4: 4-6
    [159] 张羽,天生桥一级水电站混凝土面板堆石坝的填筑施工,贵州水力发电,1999, Vol.13 No.4,
    
    22-25
    [160] 徐永,天生桥一级水电站混凝土面板堆石坝工程开挖料和利用,水力发电,1999(12): 17-20
    [161] 白旭宏,天生桥一级水电站混凝土面板堆石坝的施工实践与体会,陕西水力发电,1999, Vol.15 No.2: 33-37
    [162] 戴剑锋,天生桥一级水电站混凝土面板堆石坝ⅡA料生产与质量控制,贵州水力发电,1999, Vol.13 No.4: 14-16
    [163] 李小联,天生桥一级水电站混凝土面板堆石坝ⅢA料的开采,贵州水力发电,1999, Vol.13 No.4: 16-21
    [164] 弗莱塔斯等,天生桥一级水电站混凝土面板堆石坝位移监测,水利水电技术,2000, Vol.31 No.6: 34-38
    [165] 高莲士等,天生桥面板堆石体坝实测变形的三维反馈分析,水利学报,2002(3): 26-31
    [166] 杨键,天生桥一级水电站面板堆石体沉降分析,云南水力发电,2001, Vol.17 No.2: 59-63
    [167] 中国市政工程西南设计研究院,涪陵城区移民迁建防护工程初步设计说明书,1998.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700