用户名: 密码: 验证码:
微光学器件灰度掩模制作及应用技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微光学元件在现代通讯、军事应用、空间技术、超精加工、信息处理、生物医学及娱乐消费等众多领域中的广泛应用,与微光学领域相关的设计、制作与应用技术的研究受到越来越多的重视。本文主要针对微光学技术发展的瓶颈问题——器件制作进行重点研究,并初步探讨了微光学器件的设计与应用。本文的主要研究内容和结论有:
     1.在全面分析了现有衍射光学标/矢量理论的基础上,提出了一种简单通用的光程差积分法,可用于复杂面形衍射器件的标量分析。
     (1) 通过与角谱分析法和严格耦合波分析法之间计算结果的对比,证明了光程差积分法在标量领域的有效性;
     (2) 利用光程差积分法设计了一种新型同面相位补偿等腰闪耀光栅,解决了异面相位补偿二次衍射及加工对准的难题,并采用时域有限差分法验证了设计结果的正确性。
     2.首次提出了彩色等效灰阶细分扩展实现掩模曝光深度精细控制的方法。
     (1) 通过对掩模曝光深度与曝光光强之间的关系分析,得出等效灰阶细分扩展的必要性和扩展需求;
     (2) 提出了两种彩色等效灰度的颜色选择方法:测试选取法和解析计算法;
     (3) 针对彩色胶片制作模拟掩模易受外部环境影响及重复性不好的缺点,首次提出了彩色数字掩模,并以三彩色LCD(Liquid Crystal Display)组合彩色数字掩模制作为例,给出了3LCD组合方法及灰阶细分扩展计算公式。
     3.首次建立了一套基于DMD(Digital Micromirror Device)的微光学数字化灰度掩模制作系统。利用实时并行直写数字掩模精缩曝光技术,提高了掩模制作的速度和分辨率,获得了较好的实验结果。
     4.基于DMD数字化灰度掩模制作系统,首次提出了以下一系列适用于数字灰度掩模制作的新技术:
     (1) 数字移动掩模技术。数字移动掩模可用于制作柱透镜、正弦光栅、大数值孔径微透镜阵列等。建立了一个非整数周期移动曝光累积能量模型和一个多周期掩模阵列移动曝光边框效应模型,并给出了仿真和实验结果;
     (2) 数字旋转掩模技术。数字旋转掩模可用于制作大数值孔径微透镜、圆对称整形器件、锥形棱镜等。以几种常用微光学器件为例,构建了旋转掩模的数学模型并分别给出了仿真和实验结果;
     (3) 数字分形掩模技术。掩模分形可用于解决精缩投影系统入瞳透镜孔径有限导致的边缘能量损失。本文首次提出了多种数字掩模分形方法,如周期放大法、台阶分
Design, fabrication and application of micro-optics element (MOE) are put a high value on nowadays with the wide applications of MOE in modern communication, military, space technology, superfinishing, information processing, biomedicine, entertainment, and so on. At present, fabrication limit is a bottle-neck of the MOE development. Therefore, the emphasis of this dissertation is put on the research of MOE fabrication. Moreover, design and application of MOE are also briefly discussed. The main contents and contributions of this dissertation are as follows:1. On the basis of overall analysis of scalar and vector diffraction theory, method of optical -path-difference integration (OPDI) is given for the first time. OPDI is a simple and universal method which can be used to design and analyze MOE with complex structure in scalar domain.(1) The validity of OPDI was proved by comparing the diffraction efficiency computed with OPDI, angular spectrum and rigorous coupled-wave algorithm respectively.(2) With OPDI, a new type of isosceles blazed grating with compensated phase on the obverse side is designed, which avoids the difficulty of inverse alignment and secondary diffraction. The correctness of the new design is validated by the finite difference time domain method.2. A method of gray-scale subdivision expanding by color-gray equivalent is put forward for the first time.(1) The necessity of grayscale-subdivision expand is demonstrated with the analysis of the relation between the depth and intensity of exposure.(2) Two methods of color selection for color equivalent are given. One is testing selection. The other is resolve computation.(3) Color analog mask made with film is easily affected by exterior circumstance and its reproducibility is poor. So the concept of color digital mask is first brought forward. Combination with three color liquid crystal displays (LCD) is given as an example. The formulas of grayscale-subdivision expand is derived.3. Digital Micromirror Device (DMD) is selected to found a new digital gray-scale-mask system for the first time. With digital real-time mask and parallel direct-writing technique, speed of mask fabrication is improved and good experimental results were obtained.4. Based on the digital gray-scale-mask system using DMD, a series of new techniques for digital mask exposure have been put forward as follows:(1) Digital-mask-move technique. This technique can be used to fabricate cylinder lens, sine gratings, micro-lens array with bigger numerical aperture, etc. A model of aperiodic movement for single move-mask and a model of edge-effect for move-mask array were founded respectively. Results of simulation and experiments are given.(2) Digital-mask-rotation technique. This technique can be used to fabricate micro-lens with bigger numerical aperture, beam shaping element with circular symmetry structure and axicon prism, etc. Mathematical models of rotating mask for several common MOEs
    have been built. Results of simulation and experiments are given.(3) Digital-mask-fractal technique. Mask fractal can be used to solve the problem of energy loss in the edge of reduction lens with finite aperture. Many fractal methods have been put forward, such as period magnifying fractal, step dividing fractal and blend fractal, which can be applied to different type of MOE masks. With mask fractal, the transverse resolution of digital mask exposure is improved. Taking example for binary grating, the energy loss caused by diffraction limit was computed. The result showed that the lost efficiency caused by lens-aperture limit decreases greatly by use of mask fractal. Moreover, the energy on the middle and high orders diffraction has been increased.(4) Digital-mask-coding technique. Coding mask can be used to fabricate special MOE such as beam shaping element, beam splitting element. The coding mode of digital mask is analyzed. The requirement of digital-mask-coding system is discussed.(5) Method of gray-scale-subdivision expanding with two DMDs combination. The exposed depth of digital mask can be finely controlled by subdivided gray-scales. Combining two DMDs and changing their incident intensity ratio, equivalent gray-scales can be expanded more than five times and the longitudinal resolution is improved. Depth error of mask exposure can be decreased to less than 2%. 2DMDs secondary modulating or superimposed modulating simplifies the method of color-gray equivalent. Accuracy and flexibility of digital mask are increased. With 2DMDs combination, digital mask fabricating system can be widely used to make MOE with complex relief structure.All of the new technique for digital mask introduced above also can be applied to the gray mask fabricating system using other electrically addressed spatial light modulators, such as LCD and liquid crystal on silicon (LCOS).5. Error factors of digital gray-scale-mask system using DMD are analyzed systematically. Methods of correction and compensation are given.6. MOE application in precision measurement is discussed. Two new ways of MOE application are put forward for the first time.(1) Application of beam shaping in edge location. Method of substituting energy compress for size compress of focus spot is put forward, which can be used to improve the sensitivity of edge location. Simulation and experiment have been done. The results show that new technique will bring higher sensitivity of intensity change and better linearity of measurement than half-focus technique.(2) Grating filtering method for small-angle diffractive noise. The output of the blazed grating is sensitive to the angle of the incident light. Using this characteristic, a new filtering method for small-angle diffractive noise is found. With blazed grating, the angle between the valid signal and diffractive noise can be magnified. Simulated results show that when the angle between the valid signal and diffractive noise is less than 5°, the angle difference can be enlarged three times if the grating period and blazed angle are optimized. This result can be used to reduce the difficulty of lowpass filter and avoid energy attenuation of valid signal.
引文
[1] Motamedi M E. Micro-opto-electro-mechanical systems. Opt. Eng., 1994, 33(11): 3505~3517
    [2] Phillips N J. Micro-optics Studies Using Photopolymers. SPIE, 1990, 1544:10
    [3] Nogues J R. Fabrication of pure silica micro-optics by sol-gel. SPIE, 1992, 1751:214
    [4] Wencai Jing, Yimo Zhang, Ge Zhou. Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network. Optics Express, 2002, 10(14): 591~596
    [5] Jing Wencai, Zhang Yimo, Zhou Ge. Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network. Optical Express, 2002, 10(14): 591~596
    [6] Yongqi Fu, Ngoi Kok Ann Bryan. A novel one step integration of edge-emitting laser diode with micro-elliptical lens using focused ion beam direct deposition. IEEE Transactions on Semiconductor Manufacturing, 2002, 15: 2~8
    [7] Dennis W. Prather, Sriram Venkataraman, Marion Lecompte, et al. VLSI-Scale Integration of DOEs for Chip Level Optical Interconnects. Photon. Technol. Lett, 2001, 13:1112~1114
    [8] Alexander Rohrbach, K.-H. Brenner. Surface-relief phase structures generated by light-initiated polymerization. Appl. Opt,, 1995, 34(22): 4747~4754
    [9] E. Popov, J. Hoose, B. Frankel. Low polarization dependent diffraction grating for wavelength demultimlexing. Optical Express, 2004, 12(2): 269~275
    [10] Anna Burvall, Per Martinsson, Ari T. Friberg. Communication modes applied to axicons. Optical Express, 2004, 12(3): 377~383
    [11] M. He, X.C. Yuan, N. Q. Ngo, et al. Low-cost and efficient coupling technique using reflowed sol-gel microlens. Optical Express, 2003, 11 (14): 1621~1627
    [12] Xie Yongjun, Lu Zhenwu, Li Fengyou. Fabrication of large diffractive optical elements in thick film on a concave lens surface. Optical Express, 2003, 11(9): 992~995
    [13] Yongqi Fu, Ngoi Kok Ann Bryan. Investigation of hybrid microlens integration with vertical-cavity surface-emitting lasers for free-space optical links. Optical Express, 2002, 10(9): 413~418
    [14] Xie Yongjnn, Lu Zhenwu, Li Fengyou, et al. Lithographic fabrication of large diffractive optical elements on a concave lens surface. Optical Express, 2002, 10 (20): 1043~1047
    [15] Yongqi Fu, Ngoi Kok Ann Bryan. Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections. Optical Express, 2002, 10 (13): 540~549
    [16] Yuko Orihara, Werner Klaus, et al. Optimization and application of hybrid-level binary zone plates. App. Opt., 2001, 40(11): 5877~5885
    [17] H. M. Zenginoglou, P. L. Papadopoulos. Analytical expression for the fringe intensities of a nematic grating excited electrohydrodynamiccally in the dialectric mode. J. Opt. Soc. Am. A, 2001, 18 (3): 573-576
    [18] F. Furer, M. Schmitz, O. Bryngdahl. Diffraction efficiency improvement of diffractive cylinder lenses by Gaussian-beam illumination. Optical Express, 1997, 1(8): 234—239
    [19] JinCheng Wang,. Haitao Lang, et al. A Novel Synthetic Generated Hologram System Using Digital Space Light Modulator. SPIE Vol. 4924, 2002: 57-59
    [20] Dennis W. Prather. Design and application of subwavelength diffractive lenses for integration with infrared photodetectors. Opt. Eng., 1999, 38(5): 870—878
    [21] Ruthen R. Binary optics developers focus on sensors and communication. Scientific American. 1991, 265(6): 32
    [22] Veldkamp W B. Wireless focal planes on the road to amacronic sensors. IEEE J. Quantum Electronics. 1993, 29(2): 801-813
    [23] Yongqi Fu, Ngoi Kok Ann Bryan. Novel one-step method of microlens mold array fabrication. Opt. Eng., 2001, 40(8):1433-1434
    [24] B. P. Keyworth, D. J. Corazza, J. N. McMullin and L. Mabbott. Single-step fabrication of refractive microlens arrays. App. Opt., 1997, 36(10): 2198-2202
    [25] Michael R. Wang, Heng Su. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication. App. Opt., 1998, 37(32): 7568-7576
    [26] Jun Yao, Fuhua Gao, YongKang Guo, et al. Fabrication of refractive microlens array by etching dichromate gelatin with enzyme solution. Opt. Eng., 2001, 40(9): 2022-2025
    [27] J. Jahns, J. A. Cox. And M. G. Moharam. Diffractive optics and micro-optics: introduction to the feature issue. App. Opt., 1997, 36(20): 4633-4634
    [28] M. C. Hutley and R. F. Stevens. Use of diffracting optics in metrology and sensing. SPIE, 3099: 6-12
    [29] Gregory P.Behrmann and JohnP.Bowen. Influence of temperature on diffractive lens performance. App. Opt., 1993, 32(14): 2483-2489
    [30] Jon M. Bendickson. Analysis of finite diffractive optical elements. Ph.D. Dissertation. Georgia Institute of Technology. 2000
    [31] Barry L. Shoop, Thomas D. Wagner, et al. Design and analysis of a diffractive optical filter for use in an optoelectronic error-diffusion neural network. App. Opt., 1999, 38(14): 3077-3088
    [32] http://www.memsoptical.com/prodserv/products/grayscale.htm
    [33] G. K. Kilby, B. S. Shoop, J. N. Mait et al. Experimental characterization of a diffractive optical filter for use in optoelectronic analog-to-digital conversion. Opt. Commun., 1998,157: 1-6
    [34] Zhao Liping, Wu Minxian, Yan Yingbai, et al. Hybrid singlet lens applied to visible telescope objective design. SPIE, 1997, 3130: 80-87
    [35] Y. Fainman, F. Xu, R. Tyan, et al. Multifunctional diffractive optics for optoelectronic system packaging. SPIE, 1998, 3348: 152-162
    [36] Jeffrey A. Davis, Stuart H. Drayton, et al. Improved synthetic discriminant function performance using Fresnel lens-encoded binary phase-only filters. App. Opt., 1990, 29(17): 2594-2599
    [37] Feng Di, Yan Yingbai, Lu Si, et al. Design of diffractive optical element used for beam shaping in the Fresnel domain. Semiconductor Photonics and Technology, 2003, 9(2): 107~111
    [38] A. Salin. Use of mask making technology in producing high uality, low cost passive optical devices. SPIE, 1989, 1088:527~537
    [39] W. Daschner, M. Larsson, S. H. Lee. Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step. Appl. Opt. 1995, 34:2534~2539
    [40] M. R. Wang, H. Su. Multilevel diffractive microlens fabrication using one-step laser-assisted chemical etching on high-energy-beam sensitive glass. Opt. Lett. 1998, 23:876~878
    [41] 郑学哲,王凌,严瑛白等.实现ICF均匀照明的二元光学器件的混合优化设计.中国激光.1998,25(3):265~269
    [42] 严瑛白,冯文毅,崔晓明等.微光学视网膜器件与光学子波图像纹理分割.仪器仪表学报,1996,17(1):114~117
    [43] Z.S. Liu, R. Magnusson. Concept of multimode resonant optical filters. IEEE,2002, 14(8): 1091~1093
    [44] M.T. Gale, K. Knop, R. H. Morf. Zero-order diffractive microstructures for security application. SPIE, 1990, 1210:83~89
    [45] H. P. Herzig, ED. Micro-optics element, systems and applications. Taylor & Francis, London, 1997.
    [46] A. Schilling, P. Nussbaum, C. Ossmann, et al. Miniaturized focusing fan-out elements: design, fabrication and characterization. J. Opt. A: Pure Appl. Opt. 1999, 1: 244~248
    [47] 沈亦兵,杨国光,侯西云.激光光刻中的超分辨现象研究.光学学报.1999,19(11):1512~1517
    [48] S. H. Tao, X.-C. Yuan, W. C. Cheong, et al. Optimized polarization-selective computer generated hologram with fewer phase combinations. Optical Express, 2003, 11(11): 1252~1257
    [49] V. E. Shrauger, L. L. Erwin, J. L. Ahn, and C. Warde. Computer-generated multiple-phase-level holograms by use of color-printer techniques. App. Opt., 1994, 33(23): 5318~5327
    [50] Temmen M G, Kathman A D, Clark R L. Holograpic optics: optically and computer generated. SPIE, 1989, 1052:108~112
    [51] Veldkamp W B, Mchugh T J. Binary optics. Scientific American, 1992, 266(5):92~97
    [52] Lcgcr J, Holz M, Swanson G, et al. Coherent laser beam addition: An application of binary optics technology. Lincoln Lab. J. 1988, 1(2): 225~246
    [53] Special technology area review on micro-opto-electro-mechanical-systems (MOEMS). Report of Department of Defense Advisory Group on Electron Devices Working Group C(Electro-optics), 1997, 12
    [54] 金国藩,谭崤峰.二元光学.光电子技术与信息,2001,14(5):1~10
    [55] 金国藩.二元光学.物理与工程,2000,10(5):2~6
    [56] D.W. Prather, M. S. Mirotznik, J. N. Mait. Boundary element method applied to the analysis of diffractive optical elements. J. Opt. Soc. Am. 1997, A 14:34~43
    [57] L. C. Botten. M. S. Craig, R. C. Mcphedran, et al. The finitely conducting lamellar diffraction grating. Opt. Acta. 1981, 28:1087~1102
    [58] Ni Y. Chang, Chung J. Kuo. Algorithm based on rigorous coupled-wave analysis for diffractive optical element design. J. Opt. Soc. Am. A, 2001, 18(10): 2491~2501
    [59] M. S. Mirotznik, D. W. Prather, J. N. Mait, et al. Three dimensional analysis of subwavelength diffractive optical elements using the finite-difference-time-domain method. App. Opt., 2000, 39:2871~2880
    [60] Feng Di, Yan Yingbai, Jin Guofan, et al. Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution. Optical Express, 2003, 11(17): 1987~1994
    [61] Stephen Douglas Mellin. Design and analysis of finite aperture diffractive optical elements. Ph.D. Dissertation. University of Alabama. 2001:74~81
    [62] Jianhua Jiang. Rigorous analysis and design of diffractive optical elements. Ph. D. Dissertation. University of Alabama. 2000:74~81
    [63] Dennis W. Prather, Joseph N. Mait, Mark S. Mirotznik, et al. Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements. J. Opt. Soc. Am. A, 1998, 15(6): 1599~1607
    [64] G. Manara, A. Monorchio, R. Mittra. Frequency selective surface design based on genetic algorithm. Electronics Letters, 1999, 35 (17): 1400~1401
    [65] M. S. Mirotznik, D. W. Prather, J. N. Mait. Hybrid finite element-boundary element method for vector modeling diffractive optical elements. SPIE, 1996, 2689:2~13
    [66] M.S. Mirotznik, D. W. Prather, J. N. Mait. A hybrid finite element-boundary element method for the analysis of diffractive elements. J. Mod. Opt., 1996, 43:1309~1321
    [67] Jiang Jianhua, Gregory P. Nordin. A rigorous unidirectional method for designing finite aperture diffractive optical elements. Optical Express, 2000, 7(6): 237~242
    [68] 谢敬辉,刘锡宇.基于DPDV算法的二元光学元件设计.光学技术2000,26(3):225-227
    [69] 谭峭峰,严瑛白.同时实现多角度非垂轴面均匀照明的衍射光学器件.光子学报.2000,29(5):431~435
    [70] 俞世钢.提高计算机制全息图再现像质的有效方法.应用激光.2003,23(4):225~228
    [71] Tan Qiaofeng, Yah Yingbai, Jin Guofan, et al. Continuous phase diffractive optical element for uniform focal spot. SPIE, 1999, 3879:192-195
    [72] Fan Yun-Hsing, Ren Hongwen, and Wu Shin-Tson. Switchable Fresnel lens using polymer-stabilized liquid crystals. Optical Express, 2003, 11(23): 3080~3086
    [73] Boris Apter, Eli Schwartz, Uzi Efron. LC-beam steering device based on sub-wavelength diffractive optical element structure. SPIE, 2001, 4294:92~101
    [74] P. W. Cheng, et. A high-resolution projection display based on silicon light valves. Proc. of the 19th int'1 display research conf., 1999:497~500
    [75] Zimin Zhu. Gray characteristics of a color liquid-crystal televiseion in the beam of a He-Ne laser. App. Opt., 1997, 36(5): 1033~1038
    [76] Clarence A. T. H. Tee, William A. Crossland, et al. Binary phase modulation using addressed transmissive and silicon backplane spatial light modulators. Opt. Eng., 2000, 39(9): 2527~2534
    [77] Shin Masuda, Sounosuke Takahashi, et al. Liquid-crystal microlens with a beam-steering function. App. Opt., 1997, 36 (20): 4772~4778
    [78] J.L. de Bougrenet de la Tocnaye and L. Dupont. Complex amplitude modulation by use of liquid-crystal spatial light modulators. App. Opt., 1997,.36(8): 1730~1741
    [79] A.E. Macgregor,R.I. Young. Hadamard transforms of images by use of inexpensive liquid-crystal spatial light modulators. App. Opt., 1997, 36(8): 1726~1729
    [80] Graham D. Finlayson, Steven D. Hordley. Color Constancy at a pixel. J. Opt. Soc. Am. A, 2001, 18 (2): 253~264
    [81] Andres Marquez, Juan Campos, et al. Characterization of edge effects in twisted nematic liquid crystal displays. Opt. Eng., 2000, 39(12): 3301~3306
    [82] Sven Krueger, Guenther Wernike, Hartmut Gruber, et al. New challenges for spatial light modulators-laser beam splitting and beam shaping, reconstruction of digital holograms. SPIE, 2001, 4291:132~140
    [83] Xu Wang, Daniel Wilson, Richard Muller, et al. Liquid-crystal blazed-grating beam deflector. Appl. Opt., 2000, 39(35): 6545~6555
    [84] Stefano Beretta, Massimo Cairoli, Marzia Viardi. Optimum design of phase gratings for diffractive optical elements obtained by thin film deposition. SPIE, 1991, 1544: 2~9
    [85] Jerom inek H. Laser-assisted deposition and Etching of Silicon for Fabrication of Refractive and Diffractive Optical Elements. SPIE, 1994, 2045:194
    [86] 任延同,付永启.衍射光学元件制作技术及未来展望.光学精密工程.1997,5(2):7~11
    [87] V.I. Konov, V.V. Kononenko, S. M. Pimenov, et al. Excimer laser micromachining for fabrication of diamond diffractive optical elements. SPIE, 2000, 3933:322~331
    [88] W. X. Yu, X. C. Yuan. Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography. Optical Express, 2003, 11(8): 899~903
    [89] Xie Yongjun, Lu Zhenwu, Li Fengyou. Method for correcting the joint error of a laser writer. Optical Express, 2003, 11(9): 975~979
    [90] W. X. Yu, X. -C. Yuan, N. Q. Ngo, et al. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing. Optical Express, 2002, 10(10): 443~448
    [91] Yongqi Fu, Ngoi Kok Ann Bryan. One-step transfer of diffractive structure from a designed pattern to a replica by use of a hybrid solgel film. Optical Express, 2002, 10(10): 436~442
    [92] E. Bernhard Kley, Andreas Tunnermann. Optical Surfaces Fabricated by the use of E-beam lithography and their applications. 8th Microoptics Conference (MOC'01), Osaka, Japan, 2001: 24~26.
    [93] Yongqi Fu. Self-organized formation of a Blazed-grating-like structure on Si(100) induced by focused ion-beam scanning. Optical Express, 2004, 12(2): 227-233
    [94] Sheng Wu, Zhaozhi Wan. Direct writing of 40-nm features inside fused silica glass with oscillator ultrafast lasers. SPIE, 2003, 4984:225~229
    [95] Sihai Chen, Xinjian Yi, Hong Ma, et al. Novel method of fabrication of diffractive microlens arrays. SPIE, 2003, 4984:253~260
    [96] J. Paufler, H. Kiick, et al. High-throughput optical direct write lithography. Solid State Technology, 1997, 6: 175-182
    [97] H. J. Jiang, X. C. Yuan, et al. Single-step fabrication of surface relief diffractive optical elements on hybrid sol-gel glass. Opt. Eng., 2001, 40 (9): 2017-2021
    [98] Sergio Calixto, Marija S. Schol. Relief optical microelements fabricated with dichromated gelatin. App. Opt., 1997, 36(10): 2101-2106
    [99] Kalyashova Z N. Manufacture of diffractive structure in Metal Semiconductor Thin Film by Pules laser irradiation. SPIE, 1994, 2045:338
    [100] F. Quentel, J. Fieret, A.S. Holmes, et al. Multilevel diffractive element manufacture by excimer laser ablation and halftone masks. SPIE, 2001, 4274: 420-431
    [101] H. Jiang, X. C Yuan, Z. Yun, et al. Fabrication of microlens in photosensitive hybrid solgel films using a gray scale mask. Materials Science and Engineering C, 2001, 16: 99-102
    [102] J.T.Rantala, N.Nordman, O.Nordman, et al. Sol-gel hybrid glass diffractive elements by direct electron-beam exposure. Electron. Lett. 1998, 34: 455-456 ()
    [103] Xiaomei Wang, James R. Leger, Robert H. Rediker. Rapid fabricateon of diffractive optical elements by use of image-based excimer laser ablation. App. Opt., 36(20) : 4660-4665
    [104] V.I.Konov, V. V. Kononenko, S. M. Pimenov, et al. Excimer laser micromachining for fabrication of diamond diffractive elements. SPIE, 2000, 3933: 322-331
    [105] E. Lavallee, J. Beauvais, D. Drouin. Fabrication of masks for DUV and EUV lithography using silicide direct-write electron beam lithography process. Electronics Letters, 2000, 36(18): 1589-1590
    [106] V. P. Korolkov, A. I. Malyshev, et al. Application of gray-scale LDW-glass masks for fabrication of high-efficiency DOEs. SPIE, 1999, 3633: 129-138
    [107] John M. Tamkin, Brett Bagwell, Bradley T. Kimbrough, et al. High-speed gray-scale laser direct-write technology for micro-optic fabrication. SPIE, 2003, 4984: 210-218
    [108] Thomas J.Suleski, Donald C.O'Shea. Gray-scale masks for diffractive-optics fabrication: Ⅰ .Commercial slide imagers. App. Opt., 1995, 34: 7507-7517
    [109] Donald C.O'Shea, Willie S.Rockward. Gray-scale masks for diffractive-optics fabrication: Ⅱ .Spatially filtered halftone screens. App. Opt., 1995, 34: 7518-7526
    [110] Walter Daschner, Pin Long. Fabrication of diffractive optical elements using a single optical exposure with a gray-scale mask. J. Vac. Sci. technol., 1995, B13: 2729-2731
    [111] K. Reimer, H. J. Quenzer, et al. Micro-optic fabrication using one-level gray-tone lithography. SPIE, 1997, 3008: 279-288
    [112] Pin Long, Walter Daschner, et al. Replicating Diffractive Optical Elements on DuPont Photopolymer by Optical Lithography using a HEBS-glass Gray-scale Mask. SPIE, 1997, 3010: 105-110
    [113] Walter Daschner, Pin Long. Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single exposure with a gray-scale mask on high-energy beam-sensitive glass. App. Opt., 1997, 36: 4675-4680
    [114] X.C. Yuan,W. X. Yu, N. Q. Ngo, et al. Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask. Optical Express, 2002,10(7): 303-308
    [115] E. B. Kley, F Thoma et al. Fabrication of micro optical surface profiles by using gray scale masks. SPIE, 1997, 3276:254~262
    [116] Victor P. Korolkov, Voldemar P. Koronkevich. New fabrication method for diffractive optical elements with deep phase relief. SPIE, 1997, 3010:180~191
    [117] Robert Carter. Gray-scale perceptions calculated: optimum display background luminance. App. Opt., 1997, 36(8): 1705~1717
    [118] Weixing Yu, X.C. Yuan. UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask. Optical Express, 2003, 11(18): 2253~2258
    [119] Pantazis Mouroulis, Frank T. Hartley, Daniel W. Wilson, et al. Blazed grating fabrication through gray-scale X-ray lithography. Optical Express, 2003, 11(3): 270~281
    [120] Zheng Cui, Jinglei Du, Yongkang Guo. Overview of grey-scale photolithography for micro-optical elements fabrication. SPIE, 2003, 4984:111~117
    [121] D.W. de Lima Monteiro, O. Akhzar-Mehr, P.M. Sarro, et al. Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si. Optical Express, 2003, 11(18): 2244~2252
    [122] Jeremy D. Rogers, Ari H. O. Karkkainen, Tomasz Tkaczyk, et al. Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass. Optical Express, 2004, 12(7): 1294~1393
    [123] A. H. O. Karkkainen, J. T. Rantala, M. R. Descour. Fabrication of micro-optical structures by applying negative-tone hybrid glass materials and grayscale lithography. Electron. Lett, 2002, 38 (1): 23~24
    [124] A. H. O. Karkkainen, J. T. Rantala, A. Maaninen, et al. Siloxane based hybrid glass materials for binary and gray-scale mask photoimaging. Adv. Mat. 2002,14:535~540
    [125] A. H. O. Karkkainen, J. M. Tamkin, J. D. Rogers, et al. Direct photolithographic deforming of organo-modified siloxane films for micro-optics fabrication. App. Opt., 2002, 41(19): 3988~3998
    [126] Guangya Zhou, Francis E. H. Tay, Fook Siong Chau. Design of the diffractive optical elements for synthetic spectra. Optical Express, 2003, 11(12): 1392~1399
    [127] Yongkang Guo, Qinjun Peng, et al. Micro optical Elements Made of Silver-halide Sensitized Gelatin Etched by Enzyme with Real-time Mask. SPIE, 2002, 4924:69~75
    [128] Q. J Peng, Y. K Guo, et al. LCD Real-time Mask Technique for Fabrication of Arbitrarily Shaped Microstructure. SPIE, 2002, 4720:557~660
    [129] 颜树华,戴一帆,吕海宝等.灰度掩模并行激光直写系统的总体设计.光电子·激光,2002,13(6):559~562
    [130] M.T. Gale. Replication technology for diffractive optical elements. SPIE, 1997, 3010: 111~123
    [131] Fredrik Nikolajeff, Stellan Jacobsson, et al. Replication of Continuous-relief diffractive optical elements by conventional compact disc injection-molding techniques. App. Opt., 1997, 36(20): 4655~4659
    [132] J. T. Rantala, A.H.O. Karkkainen, J.A. Hiltunen, et al. UV light induced surface expansion phenomenon of hybrid glass thin films. Optical Express, 2001, 8(13): 682-687
    [133] Dong Jun Kang, Jang-Ung Park, Byeong-Soo Bae. Single-step photopatterning of diffraction gratings in highly photosensitive hybrid sol-gel films. Optical Express, 2003, 11(10): 1144-1148
    [134] M. Karlsson, F. Nikolajeff. Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. Optical Express, 2003, 11(5): 502-507
    [135] Valery P. Kiryanov, Vladislav G. Nikitin, et al. Development and research of the scanning method for testing of diffraction optical elements. Measurement Science Review, 2001, 1(1): 159-162
    [136] Walker S J, Jahns J, Li L, et al. Design and fabrication of high-efficiency beam splitters and beam deflectors for integrated planar micro-optics systems. App. Opt., 1993, 32: 2494-2501
    [137] M. Gruber, J. Jahns, S. Sinzinger. Planar-integrated optical vector-matrix multiplier. App. Opt, 2000, 39: 5367
    [138] Diana M. Chambers, Gregory P. Nordin, Seunghyun Kim. Fabrication and analysis of a three-layer stratified volume diffractive optical element high-efficiency grating. Optical Express, 2003, 11(1): 27-38
    [139] Hong Xiaoyin, Duan Shengquan, Lu Jianping, et al. Application of development-free vapor photolithography in etching silicon nitride. SPIE, 1998, 3331: 474-482
    [140] Jerome Prieur, Francoise Cau, Johannes Wais, et al. UV-laser machining offers new horizon in diffractive optical elements small-series manufacturing. SPIE, 1997, 3099: 69-73
    [141] M. Ferstl, R. SteingRuber. Commercial fabrication of micro-structures and micro-optical elements for research and industrial applications. Heinrich-Hertz-Institut fur Nachrichtentechnik Berlin GmbH, Annual Report 1998, 1999: 109-112
    [142] Cynthia L. Vernold, Thomas D. Milster. Non-photolithographic fabrication of large computer-generated diffractive optical elements. SPIE, 1994, 2263: 125-133
    [143] Vernold C L. Non-photolithographic Fabrication of Large Computer-generated Diffractive optical Element. SPIE, 1994, 1751: 214
    [144] C. Constantine, D. J. Johnson, R. J. Westerman. Plasma etching of Cr photomasks: optimization of process conditions and CD control. SPIE, 1998, 3236: 94-103
    [145] C. Constantine, D. J. Johnson, R. J. Westerman. Plasma etching of Cr photomasks: parametric comparisons of plasma sources and process conditions. SPIE, 1997, 3096: 11-18
    [146] Wei-Chih Wang, Joe Nhut Ho, Per Reinball. Deep reactive ion etching of silicon using an aluminum etching mask. ASDAM, IEEE, 2002, 31-34
    [147] J. D. Mansell, D. R. Neal, and S. W. Smith. Binary-optic smoothing with isotroptic etching. App. Opt., 1997, 36(20): 4644-4647
    [148] Minoru Sugawara, Akira Chiba, Hiromasa Yamanashi, et al. Alternating phase shifting mask in EUV lithography. Jpn. J. Appl. Phys. 2001, 40: 100-101
    [149] Oleg A. Makarov, Zheng Chen, Azalia A. Krasnoperova, et al. A new application for X-ray lithography: fabrication of blazed diffractive optical elements with a deep
     phase profile. SPIE, 1996, 2723:261~267
    [150] T Hesjedal, W Seidel. Near-field elastomeric mask photolithography fabrication of high-frequency surface acoustic wave transducers. Nanotechnology, 2003, 14:91~94
    [151] Olivier J. F. Martin, Nicolas B. Piller. Energy flow in light-coupling masks for lensless optical lithography. Optical Express, 1998, 3(7): 280~285
    [152] H. Schmid, H. Biebuck, B. Michel, et al. Light-coupling masks for lensless, subwavelength optical lithography. Appl. Phys. Lett. 1998, 72:2379~2381
    [153] H. Schmid, H. Biebuck, B. Michel, et al. Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography. J. Vac. Sci. Technol. 1998
    [154] Weixing Yu, X.C. Yuan. Variable surface profile gratings in sol-gel glass fabricated by holographic interference. Optical Express, 2003, 11(16): 1925~1930
    [155] S.Traut, H. P. Herzlg. Holographically recorded gratings on microlenses for a miniaturized spectrometer array. Opt. Eng, 2000, 39(1): 290~297
    [156] Hugo F. Schouten, Taco D. Visser, Greg Gburl, et al. Creation and annihilation of phase singularities near a sub-wavelength slit. Optical Express, 2003, 11(4): 371-380
    [157] J. N. Malt, D. W. Prather, M. S. Mirotznik. Binary subwavelength diffractive-lens design. Opt. Lett., 1998, 23(17): 1343~1345
    [158] J. N. Mait, A. Scherer, O. Dial, et al. Diffractive lens fabricated with binary features less than 60nm. Opt. Lett. 2000, 25:381~383
    [159] M. Schmitz, R. Brauer, O. Bryngdahl. Phase gratings with subwavelength structures. J. Opt. Soc. Am. 1995, A 12: 2458~2462.
    [160] Rongchung Tyan. Design, modeling and characterization of multifunctional diffractive optical elements. Ph.D. Dissertation. University of Califonia. 1998
    [161] R. Volkel, ph. Nussbaum, et al. Design, fabrication and testing of micro-optical components for sensors and Microsystems. SPIE, Vol. 3099:196~211
    [162] Madeleine B. Fleming and M. C. Hutley. Blazed diffractive optics. Applied Optics, Vol. 36, No. 20: 4635~4643
    [163] P. Rusek, H. P. Urbach. Diffraction by a microrelief grating. J. Opt. Soc. Am. A, Vol. 18, No. 1, 2001(1): 94~102
    [164] Tasso R. M. Sales, G. Michael Morris. Diffractive-refractive behavior of kinoform lenses. App. Opt., 1997, 36(1): 253~257
    [165] J. N. Mait, D. W. Prather, M. S. Mirotznik. Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory. J. Opt. Soc. Am. 1999, A16:1157-1167
    [166] 米凤文.衍/折红外混合光学系统及其测试技术研究.博士论文,浙江大学,2001:29~37
    [167] J. N. Mait. Understanding diffractive optical design in the scalar domain. J. Opt. Soc. Am. 1995, A12:2145-2158
    [168] D. A. Pommet, M. G. Moharam, E. Gram. Limits of scalar diffarction theory for diffractive phase elements. J. Opt. Soc. Am. 1995, A11:1827-1834()
    [169] D. W. Prather, M. S. Mirotznik, J. N. Mait. Boundary integral methods applied to the analysis of diffractive optical elements. J. Opt. Soc. Am., 1997, A14:34-43
    [170] Dennis W. Prather, Shouyuan Shi. Hybrid scalar-vector method for the analysis of electrically large finite aperiodic diffractive optical elements. SPIE, 1999, 3633:2~13
    [171] Arvind S. Marathay, John F. McCalmont. Vector diffraction theory for electromagnetic waves. J. Opt. Soc. Am. A, 2001, 18(10): 2585~2593
    [172] Markus E. Testorf, Michael A. Fiddy. Efficient optimization of diffractive optical elements based on rigorous diffraction models. J. Opt. Soc. Am. A, 2001, 18(11): 2908~2914
    [173] Shouyan Shi, Dennis W. Prather. Electromagnetic analysis of axially symmetric diffractive optical elements illuminated by oblique incident plane waves. J. Opt. Soc. Am. A, 2001, 18(11): 2901~2907
    [174] T. Vallius, M. Honkanen. Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel profiles. Optical Express, 2002, 10(1): 24~34
    [175] C.A. Balanis. Advanced Engineering Electromagnetics. John Wiley & Sons, New York, 1989
    [176] Kurt L. Shlager, John B. Schneider. A survey of the finite-difference time-domain literature. 1999:1~64
    [177] Gianluca Lazzi. Unconditionally stable D-H FDTD formulation with anisotropic PML Boundary conditions. IEEE, MWCL, 2001, 11(4): 149-151
    [178] Francisco Perez-Ocon, Jose Ramon Jimenez Cuesta, Antorio Manuel Pozo Molina. Exponential discretization of the perfectly matched layer(PML) absorbing boundary condition simulation in FD-TD 3D. Optik, 2002, 113(8): 354~360
    [179] Jon W. wallance, Michael A. Jensen. Analysis of optical waveguide structure by use of combined finite difference/ finite-difference time-domain method. J. Opt. Soc. Am. A. 2002, 19(3): 610~619
    [180] Jean-Pierre Beronger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics. 1994, 114:185~200
    [181] ean-Pierre Beronger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics. 1996, 127:363~379
    [182] 冯祖伟.时域有限差分方法在天线和微波技术中的应用(上).现代雷达.1997,1:41~49
    [183] Post D. Moire fringe multiplication with a nonsymmetrical doubly blazed reference grating. Applied Optics, 1971, 10 (4): 901-907
    [184] Lu Haibao, Cao Juliang, et al. Research for isoscesles blazed grating and its application in double gratings precise displacement measurement. ISTM, 1999: 79~83
    [185] 徐平,杜春雷,郭永康等.双闪耀光栅的计算机设计与制作方法.应用激光,1996,16(1):22~24
    [186] Van Kessel, P.F, Hornbeck, L.J, Meier, R.E, et al. A MEMS-based projection display. IEEE, 1998, 86:1687~1704
    [187] Dana Dudley, Walter Duncan, John Slaughter. Emerging digital micromirror device (DMD) applications. DLPTM Products New Applications. Texas Instruments, Inc.
    [188] Kevin J. Kearney, Zoran Ninkov. Characterization of a digital micromirror device for use as an optical in imaging and spectroscopy. SPIE, 1998, 3292:81~92
    [189] Andres Merquez, Juan Campos, Maria J. Yzuel, Characterization of edge effects in twisted nematic liquid crystal displays. Opt. Eng., 2000, 39(12): 3301~3306
    [190] L.J. Hornbeck, "Digital Light ProcessingTM for High-Brightness, High-Resolution Applications (Invited paper)", Electronic Imaging EI'97 Projection Displays Ⅲ, IS&T and SPIE, San Jose CA (1997), Texas Instruments White Papers (http://www.ti.com./dlp/docs/developer/resources/white/index.shtml)
    [191] Ryder S. Nesbitt, Steven L. Smith, Raymond A. Molnar, et al. Holographic recording using a digital micromirror device, header for SPIE use
    [192] 彭钦军,郭永康,陈波.液晶实时掩模技术制作连续微光学元件.光学学报,2003:220~224
    [193] 曾红军,陈波,郭履容.掩模移动技术中的边框效应及其应用.光电工程,2000,27(5):19~22
    [194] Chunlei Du, Xiaochun Dong, Chongxi Zhou. Method and experimental study for difffractive/refractive micro-optical elements with continuous profile. SPIE, 4924:61~68
    [195] 粟敬钦,姚军,杜惊雷等.灰阶编码掩模制作微光学元件.光学学报,2001,21(1):97~100
    [196] S.Sundaram, M.Knapczyk, and H. Temkin, All-optical switch based on digital micromirrors, IEEE Photonics Technology Letters, 2003, 15(6): 807~809
    [197] P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, et al. Scalable optical crpss-connect switch using micromachined mirrors. IEEE Photon. Technol. Lett., 2000, 12(7): 882~884
    [198] N. A. Riza and S. Sumriddetchkajom. Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device. Opt. Lett., 1999, 24(5): 282~284
    [199] Ofir Bochobza-Degani, David Elata, Yael Nemirovsky. Micromirror device with reversibly adjustable properties. IEEE Photon. Technol. Lett., 2003, 15(5): 733~735
    [200] Naoki Matsuzuka, Osamu Tabata. Algorithm for analyzing optimal mask movement pattern in moving mask deep X-ray lithography. International Symposium on Micromechatronics and Human Science, IEEE, 2002:159~164
    [201] Wang Yongtian, Cui Fang, Sun Yunan, et al. A new approach for the fabrication of diffractive optical elements with rotationally symmetric phase distribution. SPIE, 1998, 3348:94~97
    [202] Yongyi Yang, Henry Stark, Damla Gurkan, et al.. High-diffraction-efficiency pseudorandom encoding. J. Opt. Soc. Am., 2000, 17(2): 285~293
    [203] 杜惊雷,粟敬钦,张怡霄等.用灰阶编码掩模进行邻近效应校正的实验研究.微细加工技术.2000,2:39~44
    [204] 杜惊雷,粟敬钦,罗克俭等.用灰阶编码掩模实现邻近效应精细校正的研究.光学学报.2000,20(4):518~524
    [205] 姚军,粟敬钦,高福华等.编码灰阶掩模酶蚀明胶法制作折射微透镜阵列.中国激光.2001,28(7):633~636
    [206] 杜惊雷,黄奇忠,姚军.灰阶掩模实现光学邻近校正及计算模拟研究.光学学报,1999,19(5):695~702
    [207] 罗先刚,姚汉民,周冲喜等.可提高光刻分辨率的新技术.光子学报,2000,29(9):834~837
    [208] Levenson M D. Wavefront engineering from 500nm CD to 100nm CD. SPIE,1997, 3049:12~23
    [209] 冯伯儒.边缘相移掩模技术.光电工程.1997,24(A):12~17
    [210] 陈旭南,石建平,康西巧等.提高微细图形光刻分辨力的相移滤波技术研究.光子学报,2003,32(3):323~326
    [211] 康西巧,罗先刚,陈旭南.光瞳滤波提高投影光刻成像分辨力研究.光电工程,2001,28(3):9~11.
    [212] Fu Yongqi, Lu Zhenwu, Ma Yueying, et al. Analysis of errors & calibration method for manufacturing multilevel diffractive optical element by ion etching. SPIE, 1998, 3357:181~184
    [213] KEVIN J. Kearney, ZORAN Ninkov, Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy[C], SPIE, 1998, 3292:81~92.
    [214] T.R. Werner, J. A. Cox, J. Gieske, et al. The CO-OP DOE Foundry Process Results. SPIE, 1997, 3010:96~104
    [215] 李红军,赵晶丽,卢振武等.二元光学元件制作过程中的线宽误差.光电子·激光.2000,11(3):279~281
    [216] 颜树华,戴一帆,吕海宝等.电寻址空间光调制器”黑栅”效应的消除方法.光子学报.2002,31(11):1421~1424
    [217] 于殿泓.紫外光快速成型技术及其应用研究.博士学位论文.西安理工大学,2001:68
    [218] 曾红军,杜春雷,王永茹等.连续微光学元件在光刻胶上的面形控制.光学学报.2000,20(5):691~696
    [219] 桑涛,廖江红,卢振武等.具有任意图形编码的二值位相光栅的制作.光学精密工程,1997,5(1):10~15
    [220] Pin Long, Walter Daschner, Eric Johnson, et al. Replicating diffractive optical elements on DuPont photopolymer by optical lithography using a HEBS-glass gray-scale mask. SPIE, 1997, 3010:105~110
    [221] L.L. Doskolovich, M.A. Golub, N.L. Kazanskiy, et al. Software on diffractive optics and computer generated holograms. SPIE, 1995, 2363:278~284
    [222] Kurt Kanzler. Transformation of a gaussian laser beam to an Airy pattern for use in focal plane intensity shaping using diffractive optics. SPIE, 4443
    [223] Lu Si, Yi Deer, Yan Yingbai, et al. Beam-shaping application in laser heat processing. SPIE, 2001, 4274:452~460
    [224] Haibao Lu, Yingzheng Shen, et al. Research of the technology for the edge checkout using laser half-focus. SPIE, 1996, 2899:304~310
    [225] 谭峭峰,严瑛白,金国藩.衍射光学束匀滑器件性能的空间频谱分析.中国激光.2002,A29(8):699~702
    [226] Li Fengyou, Lu Zhenwu, Li Hongjun, et al. Nearly diffraction-limitation size flat-top laser beam shaper. SPIE, 2000, 4095:189~195
    [227] John Hoffnagle, Michael Jefferson. Transformation of the transverse intensity profile of a laser beam by aspheric lenses. SLAC, 2002, 10:1~16
    [228] 从文相,陈难先.分数Fourier变换域中Gauss光束整形的优化方法.自然科学进展,1998,8(6):657~663
    [229] Pamela L. Greene, Dennis G. Hall. Focal shift in vector beams. Optical Express, 1999, 4(10): 411~419
    [230] S. De Nicola. On-axis focal shift effects in focused truncated J_0 Bessel beams. Pure Appl. Opt. 1996, 5:827~831
    [231] B. Lu, W. Huang. Three-dimensional intensity distribution of focused Bessel-Gauss beams. J. Mod. Opt. 1996, 43:509~515
    [232] 张南洋生,杨坤涛.激光扫描相位边缘检测方法的研究.激光技术,Vol.25,No.6,2001:421~424
    [233] Korsakova S. S., Khonina S.N., Nalimov A.G. Studying diffraction of laser light by a dialectric circular cylinder, Optics-2003:30~31
    [234] J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Optics Communications, 2002, 207: 169~175.
    [235] Cha, S., Lin, P., Zhu, L., et al. 3D profilometry using a dynamically configurable confocal microscope. SPIE, 1999, 3640:246~253
    [236] Chen Yansong, Li Dehua. Diffractive optical elements for making CO_2 lase material processing. SPIE, 1995, 2577:176~180
    [237] 桑涛,王汝笠,光学衍射变换对及其在衍射相位元件设计上的应用.光子学报.1997,26(11):1020~102
    [238] 鲁建业,李琦等.采用混合遗传—模拟退火算法对DOE的直接设计.光电子·激光.2001,12(4):365~367
    [239] Sang Tao, Liaojiangzhong, Lu Zhenwu, et al. A new fourier iterative algorithm for the design of phase-only diffractive optical element used in laser beam shaping. Chinese Journal of Lasers, 1996, B5:451~460
    [240] 侯德胜,杜春雷,邱传凯等.ISI-2802激光直写系统及其应用.光电工程.1997,第A24:26~30
    [241] 张景和,廖江红,刘伟等.二元光学元件激光直接写入设备的研制.仪器仪表学报.2001,22(2):154-157
    [242] 沈亦兵,周光亚,侯西云等.用于二元光学掩模制作的激光直接写入系统研究.科技通报.1998,14(3):170~173
    [243] 周礼书,李学民,杜春雷等,形成连续微光学元件的灰度掩模图形生成方法.光电工程.2000,27(2).31~34
    [244] 张新宇,汤庆乐,张智等.用于微器件制作的灰度掩模技术.微细加工技术.2001.2:71~75
    [245] 周光亚,赵小林,张明生等.自由空间微光学元件的研制.微细加工技术.1999,3:58~64
    [246] 李红军,李凤友,于利民等.灰度掩模技术.微细加工技术,2000,1:10~15
    [247] 宋雪梅,徐敏,江铁良等.采用二元光学位相板修正干涉仪误差的理论探索.北京工业大学学报.1998,24(1):65~70
    [248] 周崇喜,林大健,杜春雷.二元光学反/衍混合Schmidt望远系统光学设计.光学学报.1998,18(5):627~630
    [249] 张中华,陈建新,王骐等.二元光学技术在激光成像雷达扫描器上的应用.激光 技术.2001,25(2):126~129
    [250] 杨李茗.二元位相校正技术在相控列阵光学系统中的应用.光学学报.1998,18(8):1138~1140
    [251] 崔庆丰.用二元光学元件实现复消色差.光学学报.1994,14(8):877~881
    [252] 贺莉清,吴梅生.大视场折/衍混合系统光学设计.激光杂志.1999,20(5):15~16
    [253] 樊叔维.二元光栅衍射特性的矢量理论分析.光学精密工程.1999,7(5):30~36
    [254] 杨李茗,杨国光,叶钧.小周期二元光学元件的矢量分析.光学学报.1999,19(1):106~112
    [255] 尹霄丽,余重秀.用改进的模拟退火算法设计二元光学阵列器件.光电子·激光.2001,12(2):154~157
    [256] 谢敬辉,刘锡宇.基于DPDV算法的二元光学元件设计.光学技术.2000,26(3):225~227
    [257] 易治明,赵达尊.减少自变量与ALOPEX算法在二元光学元件设计中的应用.光学学报.1994,14(4):425~429
    [258] 徐平,张晓春,韩永康等.二元光学元件制作误差分析与模拟.光学学报.1996,16(6):833~838
    [259] 叶钧,许乔,侯西云等.八台阶二元光学器件套刻误差的逐层分析法研究.浙江大学学报.1999,33(2):157~162
    [260] 郑学哲,严瑛白,金国藩等.对准误差对二元光学器件衍射效率的影响.光电子·激光.1997,8(4):241~245
    [261] 周进,韩良恺,高文琦等.二元光学元件各级光强的分布规律和衍射效率.中国激光.1996,23(5):449~452
    [262] 曾红军,陈波等.深浮雕连续微光学元件制作方法.光电工程.2000,27(4):1~6
    [263] 徐平,唐继跃,庞霖等.深蚀刻二元光学元件制作误差模拟.中国激光.1997,24(6):536~542
    [264] 杜惊雷,黄奇忠,姚军等.灰阶掩模实现光学邻近校正及计算模拟研究.光学学报.1999,19(5):698~702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700