用户名: 密码: 验证码:
电能质量复合调节装置控制策略及接入系统技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电能质量问题得到越来越广泛的关注,电力系统的无功、谐波以及不对称问题一直是人们关注的焦点。在电能质量复合调节装置控制策略及接入系统技术研究中,本文所做的工作如下:
     全面分析了基于级联多电平逆变器的电能质量复合调节装置(PQCC)及其控制策略。该PQCC结构上采用具有独立直流源的级联H桥多电平逆变器,每个H桥单元结构相同、易于实现电路的模块化设计和封装以及装置的大容量化;在控制策略方面,电压质量调节装置(VQC)和电流质量调节装置(CQC)均采用电压外环加电流内环的双闭环反馈控制。VQC采用负荷电压瞬时值作为外环控制,确保负荷电压能够快速跟踪参考电压,保证装置具有较快的响应速度;而将滤波电容器电流作为内环控制,以提高装置对系统参数及负荷的独立性,确保在各种负荷工况下装置的稳定运行。CQC电压外环的作用是控制装置的直流侧电压,使其稳定在给定值;电流内环的作用是按补偿电流指令进行电流控制,使补偿电流跟踪其指令信号变化,确保装置具有良好的补偿效果。MATLAB仿真验证了该系统结构和控制策略的实用性、有效性。
     对电能质量复合调节装置接入系统技术进行了仿真研究,主要研究内容有:装置正常运行、系统故障以及装置本身故障时的响应特性。本文首次分析了10kV电压等级下基于级联多电平逆变器结构的PQCC在系统故障情况下的响应特性。对于VQC,仿真研究了负荷侧故障时无限流电抗器和采用附加电抗器两种情况,验证了装置的故障电流限制功能;研究了装置和继电保护及自动化系统配合的问题,指出装置的故障电流限制功能及其本身的保护策略应和相应线路的继电保护配合,装置的运行及调度应纳入相应的配电自动化系统。对装置故障时的响应特性进行了分析,对于不同的故障情况,装置应有不同的响应特性。对于CQC,装置应具备负荷侧短路故障的判定功能,并和线路继电保护及自动化系统进行相关通信。当装置逆变器发生故障时,装置立即按事先设定的程序退出运行,同时封锁触发脉冲。
Power quality problem pays more and more attention in recent years. Reactive power, harmonic and asymmetry are always the focus points which people concerns. This paper works to research the control strategies of power quality composite conditioner (PQCC) and the technology connected with power system, including following contents:
     This paper analyzes a power quality composite conditioner (PQCC) based on cascaded multilevel inverter and its control strategy. The cascaded multilevel inverter adopted with separated DC sources is constructed with a number of identical H-bridges inverters, not only simplifies hardware manufacturability, but also makes the whole device flexible in terms of power capability. The control method of the outer voltage loop and inner current loop is used by voltage quality conditioner (VQC) and current quality conditioner (CQC). In the VQC, the instantaneous value of load voltage acts as outer loop control to ensure load voltage fast tracking reference voltage. An inner filter capacitor current loop is used to improve the independence of the device and ensure the device running stably in various working condition. In the CQC, the outer voltage loop is controlled to steady the DC voltage and reach its given value, and the inner current loop is controlled by compensation current instruction in order to ensure compensation current quickly tracking command signal and a good compensation effect of the device. MATLAB simulation verifies the effectiveness of the structure and control strategy.
     This paper researches the technology for the PQCC connected with power system, including the device normal operation, power system faults and device self-faults. The response characteristics of the PQCC based on cascaded multilevel inverter is analyzed firstly with 10kV voltage grade in this paper. The simulation researches the VQC whether or not current-limited reactor and proves the fuction of limited fault currents when load side has faults. It is presented that the fuction of limited fault currents of VQC and its self-protection should match relay protection of relevant line, and the device operation dispatch should bring into distribution automation system. In addition, this paper analyzes response characteristics of VQC self-faults, and indicates that the device should have different response characteristics when it has different faults. The CQC ought have jugement fuction of load side faults, and communicate with relay protection of relevant line and distribution system. For the multilevel inverter faults occurring in the CQC, the device should exit operation immediately according to the program before enchtment and lock the trigger pulse of the inverter.
引文
[1]朱桂萍,王树民.电能质量控制技术综述.电力系统自动化,2002, 26(19): 28-32.
    [2]肖湘宁.电能质量分析与控制.中国电力出版,2004.
    [3] Power Quality in Commercial Building. BR105018, 1995, Electric Power Research Institute, (EPRI), Palo Alto, Califormia.
    [4] Bollen M H J. Understanding power quality problems, voltage sags and interruptions. New York. IEEE PRESS, 2000.
    [5] Join S. Hsu, Instantancous phasor method for obtaining instantancous balanced fundamental components for power quality control and continuous diagnostics, IEEE Trans. Power Delivery, vol.13, No.4, pp.1494, Oct 1998.
    [6]任元,吕润徐,张直平.信阳和驻马店地区电气化铁路谐波引起220kV高频保护动作的分析.电网技术,1995, 19(2): 71-77.
    [7]朱庆春. TCSC/SVC物理模拟装置的设计与实现和并联有源滤波技术的研究.华中科技大学硕士学位论文,2005.
    [8] Joseph. S Subjak, J. R. John S. Mcquilkin. Harmonics-Causes, Effects, Measurements, and Analysis: Anupdate. IEEE Trans. on Industry Applications, 1990, 26 (6): 1034~1042.
    [9] A. E. Hammad. Analysis of Second Harmonic Instability for The Chateauguay HVDC/SVC scheme, IEEE Trans. on Power Delivery, 1992, 7(1): 410~415.
    [10] Alexander E. Emanuel, John A. Orr, David Cyganske, Edward M. Gulachenski. A Survey of Harmonic Voltages and Currents at the Customer’s Bus. IEEE Trans. on Power delivery, 1993, 8(1): 411~421.
    [11] V. E. wagner, J. C. Balda, D. C. Griffith, A. Mc. Eachern, T.M. Bames,D.P. Hartmann, D. J. Phileggi, A. E. Emannuel, W. F. Horton, W. E. Reid, R. J. Ferraro, W. T. Jewell. Effects of Harmonics on Equipment, Report of the IEEE task force on the effects of harmonics on equipment. IEEE Trans. on Power Delivery, 1993, 8(2): 672~680.
    [12] A. Mansoor, W. M. Grady, P. T. Staats, R. S. Thallam, M. T. Doyle, M. J. Samotyj. Predicting the Net Harmonics Currents Produced by Large Numbers of Distributed Single-phased Computer Loads. IEEE Trans. on Power Delivery, 1995, 10 (4): 2001~2006.
    [13] J. Shen, J. A. Taufiq, A. D. Mansell. Analytical Solution to Harmonic Characteristics of Traction PWM converters. IEE Proc. Electr. Power Appl, 1997, 144 (2): 158~168.
    [14]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.第一版,机械工业出版社,1998.
    [15]吴竟昌,孙树勤,宋文南等.电力系统谐波.第一版,水利电力出版社,1988.
    [16]丁洪发.高性能电能质量补偿技术及其相关理论研究和TCSC/SVC物理模拟装置的设计与实现.华中科技大学博士后报告,2005.
    [17]许实章.电机学.机械工业出版社,1991.
    [18] P. M. Anderson. Analysis of Faulted Power System. Iowa State University Press, Ames IA, 1973.
    [19]能源部电力司.电气化铁道的谐波、负序对电力系统的影响. 1992.
    [20] Y. J. Wang. An analytical Study on Steady-state Performance of an Induction Motor Connected to Unbalanced Three-phase Voltage. IEEE Power Engineering Society 2000 Winter Meeting, Singapore, January 2000.
    [21] Brief 11: Low Voltage Ride-Through Performance of a Personal Computer Power Supply. EPRI Power Quality Database, Elforsk, Stockholm, Sweden, 1995.
    [22] N.Mohan, T.M.Undeland, and W.P.Robbins. Power Electronics-Converters, Applications and Design. John Wiley and Sons, New York, 1995.
    [23] P.Wang. The Use of FACTS Devices to Mitigate Voltages. PhD Thesis, Department of Electrical Engineering and Electronics, University of Manchester Institute of Science and Technology, Manchester, U.K. July 1997.
    [24] M.Grandpierre, and B.Trannoy. A Static Power Device to Rebalance and Compensate Reactive Power in Three-Phase Network: Design and Control. in Conf. Rec. 1977 Annu. Meet. IEEE Industry Applications Society. 127-135.
    [25] J.H. Chen, W.J. Lee, and M.S. Chen. Using a Static Var Compensator to Balance a Distribution System. IEEE Transactions on Industry Applications, 1999, 35(2): 298-304.
    [26] San-Yi Lee, and Chi-Jui Wu. On-Line Reactive Power Compensation Schemes for Unbalanced Three Phase Four Wire Distribution Feeders. IEEE. Trans. on Power Delivery, 1993, 18(4): 1958-1965.
    [27] Jen-Hung Chen, Wei-Jen Lee, and Mo-Shing Chen. Use of a Static Var Compensator for Generator Negative-Sequence Current Reduction. Electric Power Systems Research, 1996, 38: 183-190.
    [28] H.K.Tyll, G.Huesmann, K.Habur, et al. Design Compensations for the Eddy County Static Var Compensator. IEEE Trans. on Power Delivery, 1994, 9(2): 757-762.
    [29]范瑞祥.并联混合型有源电力滤波器的理论与应用研究.湖南大学博士学位论文,2007.
    [30]宋琦.并联型有源滤波及无功补偿研究.华中科技大学硕士学位论文,2005.
    [31] Hongfa Ding, Weiwei Liu, Yongpan Li, Xianzhong Duan, et al. Development of an Active Power Filter Physical Simulator Connected with RTDS. International Conference on Electrical Machines and Systems (ICEMS). Oct. 2008: 1206-1211.
    [32]丁洪发,段献忠,朱庆春.并联型混合有源滤波器的新型控制策略.华中科技大学学报. vol.34, no.8, Aug. 2006, pp.55-58.
    [33] Hongfa DING, Qingchun ZHU, and Xianzhong DUAN. A new control scheme for shunt hybrid active power filters. International Conference on Electrical Engineering (ICEE) 2005, Kunming, China. July 10-14, 2005, Paper No.168.
    [34]颜晓庆,杨君,王兆安.并联混合型电力有源滤波器的研究.电力电子技术,1998(4): 4-6.
    [35]肖湘宁,徐永梅,刘昊.混合型有源电力补偿技术与实验研究.电力系统自动化,2002, 26(5): 39-44.
    [36] Sasaki H, Machida T. A New Method to Eliminate AC Harmonic Currents by Magnetic Compensation Consideration on Basic Design. IEEE Trans. Power App&Syst, 1971, 90(5): 2009~2019.
    [37] L. gyugyi & E. C. Strycula. Active AC Power Filter. Proceeding of 1976 IEEE/IAS Annual Meeting. 1976.
    [38] H. Akagi. Y. Kanazawa, A. Nabae. Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuit. Proc. JIEE IPEC(Tokyo), 1983: 1375~1386.
    [39] H. Akagi. Y. Kanazawa, A. Nabae. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Trans. on IA. 1984, 20(3): 625~633.
    [40]王兆安,李民,卓放.三相电路瞬时无功功率理论研究.电工技术学报,1992, 3: 55-59.
    [41] N.H.Woodley, S.Middlekauff, and A.Sundaram. Dynamic Voltage Restorer Demonstration Project Experience (Orian Rugs/Duke Power). 51st Annual Power Distribution Conference, U. of Texas, Austin, Texas, October 19-21, 1998.
    [42] N.H.Woodley, L.Morgan, and A. Sundaram. Experience With an Inverter-Based Dynamic Voltage Restorer. IEEE Transactions on Power Delivery, 1999, 14(3): 1181-1186.
    [43] Y.H.Zhang, D.M.Vilathgamuwa and S.S.Choi. An Experimental Investigation of Dynamic Voltage Restorer. IEEE Power Engineering Society 2000 Winter Meeting, Singapore, January 2000, Paper 2000-WM 0-7803-5938-0 (CD-ROM).
    [44] L.Morán, I.Pastorrini, J.Dixon, et al. Series Active Power Filter CompensatesCurrent Harmonics and Voltage Unbalance Simulatneously. IEE Proc.-Gener. Transm. Distrib., 2000, 147(1): 31-36.
    [45]王德发,丁洪发.串联混合有源滤波器的建模及控制策略分析.电力系统自动化,2007, 20(31): 70-74.
    [46] Singh B, AI-haddad K, Chandra A. A New Control Approach to Three-Phase Active Filter for Harmonic and Reactive Power Compensation. IEEE Trans. on Power System, 1998, 13(1):133-138.
    [47] Peng F Z, Akagi H, Nabae A. Compensation Characteristics of the Combined System of Shunt Passive and Series Active Filter. IEEE Trans. on Industry Application, 1993, 29(1):144-152.
    [48]张代润.有源电力滤波技术研究的新进展.电工技术, 2000, 21(7): 4-7.
    [49] G.T.Heydt, W.Tan, T.LaRose, et al. Simulation and Analysis of Series Voltage Boost Technology for Power Quality Enhancement. IEEE Transactions on Power Delivery, 1998, 13(4): 1335-1341.
    [50] S.W.Middlekauff, and E.R.Collins. System and Customer Impact: Considerations for Series Custom Power Devices. IEEE Transactions on Power Delivery, 1998, 13(1): 278-282.
    [51] Ming Fang, Alister I.Gardiner, Andrew MacDougall, et al. A Novel Series Dynamic Voltage Restorer for Distribution Systems. Proceedings of PWERCON’98. Beijing. 1998. 38-42.
    [52] Nava-Segura A, Mino-Aguilar G. Four-Branches-Inverter-Based-Active-Filter for Unbalanced 3-Phase 4-Wires Electrical Distribution Systems. In: Industry Applications Conference, 2000. 2503-2508.
    [53]卓放,杨君,胡军飞等.三相四线制系统并联型有源电力滤波器实验研究.电力电子技术,1999, (6): 16-18.
    [54]郝晓弘,杜先君,陈伟.动态电压恢复器(DVR)研究现状与发展综述.科学技术与工程,2008, 5(8): 1259-1264.
    [55]王同勛,薛禹胜,S. S. CHOI.动态电压恢复器研究综述.电力系统自动化,2007, 31(9):101-107.
    [56] DING Hongfa, SHU Shuangyan, DUAN Xianzhong, et al. A novel dynamic voltage restorer and its unbalanced control strategy based on space vector PWM. International Journal of Electrical Power and Energy System, 2002, 24(9): 693-699.
    [57] Fang Zheng Peng, jin-sheng Lai, John W Mckeever. A multilevel voltage source inverter with separate DC source for static var generation. IEEE Trans. IA, 1996, 32(5): 1130-1137.
    [58] Lai Jih-Sheng, Peng Fang Zheng. Multilevel Converters-A New Breed of Power Converters, IEEE Trans. On Iand. Appl, 1996, 32(3): 509-517.
    [59]吴洪祥,何湘宁.级联多电平变换器PWM控制方法的仿真研究.中国电机工程学报,2001, 8(21): 42-46.
    [60] Choi, N.S., Cho, J.G., and Cho, G.H. A General Circuit Topology of a Multilevel Inverter. IEEE Trans Power Electron. Spec. Conf. Rec. 1991. 96-103.
    [61] Bum-Seok Suh and Dong-Seok Hyun. A New N-Level High Voltage Inversion System. IEEE Trans. On Industrial Electronics, 1997, 44(1): 107-115.
    [62] J.D.Ainsworth, M.Davies, P.J.Fitz et al. Static VAR Compensator (STATCOM) Based on Single-Phase Chain Circuit Converters. IEE Proc.-Gener. Trans. Distrib., 1998, 145(4): 381-386.
    [63] Rodriguez Jose, Lai Jih-Sheng, Peng Fang Zheng. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Transactions on Indus trial Electronics, 2002, (4): 724-738.
    [64]丁凯,邹云屏,张贤,张杰.级联多电平逆变器研究.电力电子技术,2002, 36(2): 26-28.
    [65] J.Dixon and L.Moran, Multilevel inverter, based on multi-stage connection of three-level converters, scaled in power of three, in Proc. IEEE 2002 Industrial Electronics Conf., IECON-02,NOV. 2002,Sevilla, Spain.
    [66] Hongfa Ding, Xianzhong Duan and Qingchun Zhu. A Multifunctional Series Power Quality Conditioner Based on Asymmetry Cascade Multilevel Inverter and Its Strategy. IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China, 2005.
    [67]丁洪发,段献忠,朱庆春.基于不对称级联型逆变器的串联混合有源电力滤波器.电力系统自动化,2005, 29(20): 1-6.
    [68] Micah Ortuzar, Rodrigo Carmi, Juan Dixon and Luis Moran. Voltage Source Active Power Filter, Based on Multi-stage Converter and Ultracapacitor DC-Link. IEEE 2003.
    [69] Hugh Rudnick, Juan Dixon and Luis Morán. Delivering Clean and Pure Power-Active power filters as a solution to power quality problems in distribution networks. IEEE power & energy magazine Sep. 2003.
    [70]王德发,丁洪发.基于不对称级联型多电平逆变器的动态电压恢复器研究.继电器,2007, 35(3): 49-52, 60.
    [71] C.I.Budeanu. Puissances Reactive et ficitives. Inst. Romain del’Enegie, Bucharest, Rumania, 1927.
    [72]杨万开,肖湘宁,杨以涵。不对称三相电路畸变电流和负序电流的一种实时检测方法。电工电能新技术,1998, 1: 68-72。
    [73]何振亚。数字信号处理的理论与应用。人民邮电出版社,1983。
    [74] S.Fryze.Active, Reactive and Apparent Power in Circuits with Nonsinusoidal Voltage and Current. (in Polish) Przegl. Elecktotech. 1931, (7 and 8): 193-203 and 1932, (22): 673-676.
    [75] M.Takeda, K.Ikeda, and A.Teramoto, et al. Harmonic Current and Reactive Power Compensation with an Active Filter. Proc. IEEE-PESC. 1988. 1174-1179.
    [76]杨君,王兆安,邱关源。不对称三相电路谐波及基波负序电流实时检测方法研究。西安交通大学学报,1996, 3: 94-99。
    [77]李民,王兆安,卓放。基于瞬时无功功率理论的高次谐波和无功功率检测。电力电子技术,1992, 2: 14-17。
    [78]李庚银,陈志业,丁巧林等。dq0坐标系下广义瞬时无功功率定义及其补偿。中国电机工程学报,1996, 3: 17-179。
    [79]马莉,周景海,吕征宇等.一种基于dq变换的改进型谐波检测方案的研究.中国电机工程学报,2002, 20(10): 56-63.
    [80] L.A.Moran, J.W.Dixon, and R.R.Wallace. A Three-Phase Active Power Filter Operating with Fixed Switching Frequency for Reactive Power and Harmonic Current Compensation. IEEE Transactions on Industrial Electronics, 1995, 42(4): 402-408.
    [81] L.A.Moran, J.W.Dixon, and R.R.Wallace. A Three-Phase Active Power Filter Operating with Fixed Switching Frequency for Reactive Power and Harmonic Current Compensation. IEEE Transactions on Industrial Electronics, 1995, 42(4): 402-408.
    [82]李建林,赵栋利,赵斌,等.载波相移SPWM级联H桥变流器及其在有源电力滤波器中的应用.中国电机工程学报,2006, 26(10)109-113.
    [83]尹忠东,丁辉,张哲然,于坤山.级联多电平动态电压恢复器的仿真与试验研究.电力电子技术,2005, 39(5): 63-65.
    [84]李建林.载波相移级联H桥型多电平变流器及其在有源电力滤波器中的应用研究.浙江大学博士学位论文,2005.
    [85]姜齐荣,赵东元,陈建业.有源电力滤波器.科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700