用户名: 密码: 验证码:
基于重复控制理论的逆变电源控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重复控制是基于内模原理的新型控制理论,是抑制周期性干扰信号的有效方法。为了解决逆变电源系统中非线性负载引起的波形畸变问题,本文对基于重复控制理论的逆变电源控制技术进行了深入的研究。研究工作主要集中在重复控制系统的基本性能、控制器设计理论以及针对逆变电源系统的应用设计等方面。
     在对重复控制理论的研究中,本文首先从极点与性能的关系出发,重新讨论了重复控制系统中各参数之间的关系。推导了内模、补偿器和受控对象模型之间的数学关系,给出了补偿器的最优形式,解决了传统分析法中忽略内模影响而带来的问题。其次,研究了非谐波次干扰下的重复控制器特性。通过数学推导和仿真,对此种干扰在重复控制系统中的影响以及与控制器参数的关系进行了深入研究。第三,分析了重复控制器的动态特性。研究了阶跃型给定信号下系统的响应过程,分析了影响性能的各项因素,给出了改善动态性能的具体措施。
     在“基本重复控制器设计法”的基础上,给出了两种新的控制器设计方法。方法一从极点与系统性能的关系入手,通过限制极点分布范围得到控制器的最优参数,克服了原方法无法给出最优参数的弊病。针对理想内模无法应用在含有不稳定零点的受控对象的问题,本文提出了第二种重复控制器设计方法。该方法在方法一的基础上,引入函数拟合的思想,较好地解决了系统稳定性和误差收敛之间的矛盾。
     本文从以下两方面对重复控制在逆变电源系统的应用进行了研究:首先是逆变电源系统的建模方法。通过分析元件参数变化的影响,提出在重复控制系统中可以直接根据电路拓扑和参数建立逆变器模型的观点,简化了建模的工作。其次,根据现有数学模型的特点,采用局部对消的思想设计了相应的重复控制器,解决了重复控制器对模型精度要求高、系统不易稳定的问题,并在控制器的设计中引入函数型内模和特殊函数,进一步提高了系统的性能。
     采用数字信号处理的思想,提出了一种全新的重复控制器工程设计方法。该方法将控制器的设计转化为零相移低通数字滤波器的设计问题,借助于数字信号处理的理论和工具直接得到所需的控制器参数。实践表明,此方法具有设计简单、控制器参数精确的优点,特别适合逆变电源系统的重复控制器设计。
The repetitive control (RC) theory is a new theory based on internal model (IM) principle. It is an effective method to overcome the periodic disturbance. In AC power system, nonlinear loads are major sources of total harmonic distortion (THD). This built the motivation for this dissertation. Therefore, research works have been done through simulation and experiment on RC characteristics, basic controller design principle and RC application in AC power system.
    Firstly, the relationship between IM, compensator and plant has been studied from the viewpoint of poles placement, according to which, the relevant explicit expression has been deduced. And from it, optimal compensator can been obtained. Secondly, the characteristics of RC have been studied profoundly when disturbance is stochastic. Thirdly, dynamic characteristic of RC has been analyzed. The factors that can improve the performance of transient response have been discussed.
    Two new design methods of repetitive controller have been proposed based on designing of prototype repetitive controller. First, we present a method to get optimal controller by assigning all poles of system on a given radius. Compared with old method, new method can get explicit parameter of controller, which can guarantee best performance for system. In addition, another method has been proposed for plant that has unstable zeros. The ideal effects have been obtained in steady error and rate of error convergence.
    By studying the parameter shift of component, a new method that build inverter's model by circuit's topology and parameters has been applied in RC system. According to plant model, modified design method based on partly cancellation is adopted for AC power system. Because new controller has strong stability, RC system doesn't need high accurate mathematics model. Furthermore, the stability can be improved by using special function in IM and compensator.
    A novel controller design method is proposed for inverter. A repetitive controller can be obtained by designing a zero phase shift low pass filter. With the help of digital signal processing and software tools, it is easy to design a satisfactory controller. The performance of system has been improved remarkably. It is a good method to design repetitive controller for inverter.
引文
[1] 陈伯时,电力拖动自动控制系统,北京:机械工业出版社,1992
    [2] 刘凤君,正弦波逆变器,科学出版社,2002
    [3] 吴竞昌,孙树勤,宋文南等,电力系统谐波,北京:水利电力出版社,1988
    [4] 王兆安,杨君,刘进军,谐波抑制和无功功率补偿,北京机械工业出版社,1998
    [5] 张直平,李芬辰,城市电网谐波手册,北京,中国电力出版社,2000
    [6] B.H.Kwon, E.H.Song, Design of Current Source Using 12-phase Controlled Rectifier, IEE Proc. Pt.B,Vol. 138, No.4, pp.185~191, 1991
    [7] 林海雪,孙树勤,电力网中的谐波,中国电力出版社,1998
    [8] T.Kataoka, K.Mizumachi, A pulsewidth controlled AC-to-DC Converter to improve Power Factor and Waveform of AC line Current, IEEE Trans. IA, Vol. 15, No.6, pp.670~675, 1979
    [9] Henchun Mao, Fred. C. Lee, Review of Power Factor Correction Techniques, IPEMC'97, PP.9~20
    [10] 毛鸿,三相电压型PWM整流器及其控制策略的研究,浙江大学博士学位论文,2000
    [11] T.Thomas, K.Haddad and A.Jaafari, Design and performance of Active Power Filters, IEEE Trans. IA, Vol.34, No.1, pp.38~46, 1998
    [12] Bhim Singh, Kamal Al-haddad and Ambrish Chanadra, A Review of Active Filters for Power Quality Improvement, IEEE Trans. IE, Vol.46, No.5, PP.960~971,1999
    [13] Kusko, S. M. Peeran and D. Galler. Noline loading of static and rotating Uninterruptible Power Supply. IPEC, Tokyo, 1990
    [14] Kusko, S. M. Peeran and N.Medora. Output Impedance of PWM Inverter-Feedback vs. Filters. IEEE-LAS'90, Oct 7-12, Part(2), pp. 1044-1048
    [15] 谢力华,逆变电源的数字控制技术及其并联控制策略的研究,西安交通大学博士学位论文,2001
    [16] Han-Ju Cha, Sin-Sup Kim, Min-Gu Kang et. al Real-time Digital Control of PWM Inverter With PI compensator for Uninterruptible Power Supply. Proceeding of 1990, PESC
    [17] Kawamura, T. Yoloyama, Comparison of five approaches for real time digital feedback control of PWM inverter, IEEE Ind. Appl. Society Conf., Vol.2, 1990, pp.1005-1011
    
    
    [18] Tsai Wen-Inne, Sun York-Yih, Design and implementation of three phase HIPWM inverters with instantaneous and average feedback, IEEE-IECON'93, Vol.2, pp800~805
    [19] Wu Hongying, Lin Dong, Zhang Dehua, et al., Current-mode control technique with instantaneous inductor-current feedback for UPS inverter, IEEE-APEC'97, Mar, 1999, Vol.2 pp951~957
    [20] Jung Shih-Liang, Huang Hsiang-Sung, Chang Meng-Yueh et al., Digital multiple-loop control technique for the PWM inverters used in uninterruptible power supplies
    [21] Ryan Michael J, Brumsickle William E, Lorenz Robert D, Control topology options for singlephase UPS inverters, IEEE Trans on IA, Vol.33, No.2, Mar-Apr 1997
    [22] Abdel-Rahim Naser M, Quaicoe John E, Analysis and design ora multiple feedback loop control strategy for single-phase voltage-source UPS inverters, IEEE Trans on PE, Vol. 11, No.4, Jul 1996, pp.532-541
    [23] Kalyan P.Gokhale, Atsuo Kawamura and Richard G.Hoft, Deadbeat Microprocessor Control of PWM Inverter for Sinusoidal Outputs Waveform Synthesis. PESC'85, pp.28~36
    [24] Atsuo Kawamura, Ronachai Chuarayapratip, Toshimasa Haneyoshi, Deadbeat Control of PWM Inverter with Modified Pulse Patterns for Uninterruptible Power Supply. IEEE Trans on IE, Vol.35, No.2, May 1988, pp.295~300
    [25] O. Kukrer, H. Komurcugil. Deadbeat control method for single-phase UPS inverter with compensation of computation delay, IEE Proc-Electr. Appl., Vol. 146, No. 1, 1999, pp. 123-128
    [26] 李锡雄,陈婉儿,脉宽调制技术,华中理工大学出版社.1996
    [27] Tomoki Yokoyama, Atsuo Kawamura, Disturbance observer based fully digital controlled PWM inverter for CVCF operation, IEEE Tran on PE, Vol.9, No.5, Sep 1994
    [28] 胡寿松,自动控制原理(第三版),国防工业出版社,1994
    [29] S. L. Jung, L.H. Ho, H. C. Yeh, et al, DSP-based Digital Control of a PWM Inverter for Sinusoidal Wave Synthesis by Optimal State Feedback Approach, IEEE-PESC'94, pp.546~551
    [30] Mauro Carpita, Mario Marchesoni, Experimental Study of a Power Conditioning System Using Sliding Mode Control. IEEE Trans on PE, Vol.11, No.5, Sept 1996, pp731~741
    [31] Shih-Liang Jung, Ying-Yu Tzou. Discrete Sliding-Mode Control of a PWM Inverter for Sinusoidal Output Waveform Synthesis with Optimal Sliding Curve. IEEE Trans on PE, Vol.11, No.4, July, 1996, pp.567~576
    [32] S.J. Chiang, T.L. Tai, T.S. Lee, Variable Structure Control of UPS inverter, IEE Proc of Electr., Power Appl., Vol. 145, No.6, Nov. 1998, pp559~567
    [33] Ying-Yu Tzou, Lien-Hsun Ho,Rong-Shyang Ou, Fuzzy Control of a Closed-Loop Regulated PWM Inverter under Large Load Variation. IEEE-IECON'93, Vol. 1, pp.267~272
    [34] Bor-Ren Lin, Richard G. Hoft, Real-Time Digital Control of PWM Inverter with Fuzzy Logic Compensator for Nonlinear Loads, IEEE-LAS'93 Part 2(of 3), pp.862~869
    [35] Bor-Ren Lin, Chihchiang Hua. Uniterruptible Power Supply with Fuzzy Logic Approach, IEEE-IECON'93, Vol.2, pp.1123~1128
    [36] B.A.Francis, W.M.Woham, The Internal Model Principle for Linear Multivariable Regulators, Applied Mathematics & Optimization, Vol.2, No.2,1975, pp. 170~194
    [37] T. Inous, M. Nakano, S. Twai, High Accuracy Control of Servomechanism for Repeated Contouring, Proceedings of the 10th Annual Symposium on Incremental Motion Control Systems and Devices, 1981, pp.285~292
    [38] T. Inous, M. Nakano, T. Kubo, et al, High Accuracy Control of a Proton Synchrotron Maget Power Supply, IFAC, 8th Triennial World Congress, Kyoto, Japan, 1981, pp.3137~3142
    
    
    [39] S. Hara, Y.Yamamoto, Stability of Repetitive Control Systems, Proc of 24th Conference on Decision and Control, IEEE, December 1985, pp. 326~327
    [40] M. Nakano, S. Hara, Microprocessor-Based Repetitive control, in Microprocessor-Based Control Systems, Sinha N.K.(editor), D.Reidel Publishing Co., pp279~296,1986
    [41] T. Omata, S. Hara, M.Nakano, Nonlinear Repetitive Control with Application to Trajectory Control of Manipulators, Journal of Robotic Systems, 1987, pp.631~652
    [42] S.hara, M. Tetsuka, R. Kondo, Ripple Attenuation in Digital Repetitive Control System, Proc of 29th CDC, IEEE, Dec 1990, pp. 1685~1690
    [43] S. Hara, T. Omata, M. Nakano, Synthesis of Repetitive Control Systems and its Applcations, Proc of 24th CDC, IEEE, December 1985, pp. 1387~1392
    [44] S.Hara, Y.Yamamoto, T. Omata, et al., Repetitive Control system: A New Type Servo System for Periodic Exogenous Signals, IEEE Trans on Automatic Controls, Vol. 33, NO. 7,July 1988
    [45] M. Tomizuka, T.Tsao, K.Chew, Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers, Proc of ACC, 1988,pp.860~866
    [46] M. Tomizuka, C.Kempf, Design of Discrete Time Repetitive Controllers with Applications to Mechanical Systems, Proc of IFAC, 11th ,August 1990
    [47] M. Ymada, Y. Funahashi, S. Ishihara et al., Extended Discrete-time Prototype Repetitive Controllers and its Application, Proc 35th CDC IEEE 1996, Vol.4, pp.3606~3611.
    [48] J.HuandM.Tomizuka, A new plug-in adaptive controller for rejection of periodic disturbances, ASME/IEEE J. Dynamic Syst., Meas., Contr., vol.33,pp. 1-5,1991.
    [49] Keiji, Watanbe, K. Yamada, Repetitive Control of Time-delay System, Proc of 29th CDC, IEEE, Dec 1990, pp. 1685~1690
    [50] K. Chew, M. Tomizuka, Steady-state and Stochastic Performance of a Modified Discrete-Time Prototype Repetitive Controller, Journal of Dynamic Systems and Control, ASME Vol.112, March 1990, pp.35~4 1
    [51] M. Tomizuka, T.Tsao, K. Chew, Analysis and Synthesis of Discrete-Time Repetitive Controllers, Journal of Dynamic System, Measurement, and Control, ASME, Vol. 111, Sept 1989, pp.353~358
    [52] C. Cosner, G. Anwar, M. Tomizuka, Plug in Repetitive Control for Industrial Robotic manipulateors, Proc. IEEE Int. Conf. Robotics and Automation, 1990, pp. 1970~1975
    [53] H. Broberg, R. Molyet, Elimination of Coherent Errors in a Mirror Sero for a New Weather Satellite, 23rd Annual Pittsburgh Conference on Modelling and Simulation, May 1992
    [54] H. Broberg, R. Molyet, Correction of Periodic Error in a Weather Satellite sero Using Repetitive Control, lst IEEE Conf. Control Application, Dayton, OH, Sep 1992
    [55] T. Tsao, M. Tomizuka, Robust Adaptive and Repetitive Digital Tracking Control and Application to Hyfraulic Sero for Noncircular Machining., Journal of Dynamic Systems and Control, ASME Vol. 116, March 1994, pp.24~32
    [56] K. Watanabe, M. Yamatari, A Design Repetitive Control System-High Accuracy Servomechanisms for Periodic Inputs, 10th IFAC world Congress on Automatic Control, 1987,Vol.9, pp. 157~161.
    [57] K. K. Chew, M. Tomizuka, Digital Control of Repetitive Errors in Disk Drive System, Proceedings of American Control Conference, 1989, pp.540~548
    [58] T. J. Manayathara, T. Tsao, J.Bentsman, et al., Rejection of Unknown Periodic Load Disturbances in Continuous Steel Casting Process Using Learning Repetitive Control Approach, IEEE Trans on Control Systems Technology, Vol.4, No.3, 1996, pp.259~265
    
    
    [59] M. Tsai, G. Anwar, M. Tomizuka, Discrete Time Repetitive Control for Robot Manipulator, Proc. IEEE Int. Conf. on Robotics and Automation, 1988, pp.1341~1346
    [60] J. Moon, M. Lee, M. Chung, Repetitive Control for the Track-Following Servo System of an Optical Disk Drive, IEEE Trans. Control System Technology, Vol.6, No.5, Sept, 1998, pp663~670
    [61] H. G. M.D(?)tsch, H. T. Smakman, P. M. J. vandenHof, and M. Steinbuch, Adaptive repetitive control of a compact disc mechanism, Proc. Conf. Decision Contr., 1995, pp. 1720-1725
    [62] W. S. Chang, I. H. Suh, T. W. Kim, Analysis and Design of Two Type of Digital Repetitive Control Systems, Automatica, Vol.31, No.5, 1995 pp.741~746
    [63] M. Yamada, Y. Funahashi, S. Ishihara, et al., Extended Discrete-time Prototype Repetitive Controllers and its Application, Proc. 35th IEEE Conf. Decision and Control, 1996, Vol.4, pp.3606~3611
    [64] K. Srinivasan, F.-R. Shaw, Analysis and Design of Repetitive Control Systems Using the Regeneration Spectrum, Trans. ASME, J. Dynamic Syst., Meas., Contr., vol. 113, 1991, pp.216-222
    [65] Zheng-Hua Luo, B. Mahawan, repetitive Control of Tracking Systems with Time-Varying Periodic References, Proc. 37th IEEE Conf. Decision and Control, 1998, pp. 1248~1249
    [66] M. Yamada, Z. Riadh, Y. Funahashi, Discrete-Time Repetitive Control System with Multiple Periods, Proceedings of American Control Conference, 2000, pp.228~233
    [67] T. Haneyoshi, A. Kawamura, R. G. Hoft, Waveform Compensation of PWM Inverter with Cyclic Fluctuating Loads, IEEE Trans. on IA, Vol.24, No. 4, 1988, pp.582~589
    [68] Y. Nishida, T. haneyoshi, Predictive Instantaneous Value controlled PWM Inverter for UPS, IEEE PESC'92, Vol.2, Toledo, Spain, 1992, pp.776~783
    [69] S. Yeh, Y. Tzou, Adaptive Repetitive Control of a PWM Inverter for AC Voltage Regulation with Low Harmonic Distortion, IEEE PESC'95, Vol. 1, 1995, pp. 157~163
    [70] Y. Tzou, R. Ou, S. Jung, et al., High-Performance Programmable AC Power Source with Harmonic Distortion Using DSP-Based Repetitive Control Technique, IEEE Trans. on PE, Vol. 12, No.4,1997, pp.715~725
    [71] 张凯,康勇,熊建,陈坚,UPS逆变电源重复控制技术研究,华中理工大学学报,28卷,6期,2002,34~39页
    [72] Zhang Kai, Kang Yong, Xiong Jian, et al., Deadbeat Control of PWM Inverter with Repetitive Disturbance Prediction, IEEE APEC, Vol.2, 1999, pp. 1026~1031
    [73] K. Zhou, D. Wang, G. Xu, Repetitive Controlled Three-Phase Reversible PWM Rectifier, Proc. of American Control Conference, 2000, pp. 125~129
    [74] K. Zhou, D. Wang, K.-S Low, Periodic errors elimination in CVCF PWM DC/AC converter system: Repetitive control approach, IEE Proc. Control Theory Appl., Vol.147, No.6, Nov 2000, pp.694~700
    [75] 张凯、康勇、熊建、陈坚,基于状态反馈控制利重复控制的逆变电源研究,电力电子技术,2000年第5期,9~11页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700