用户名: 密码: 验证码:
现代海底热液活动中巨羽流形成机制的模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底热液活动系统是近十几年迅速发展起来的国际研究热点,而大型或集中在一定范围内的众多喷口组成的巨型羽状流系统,由于常常在热液喷溢区上方形成公里量级的热液羽状体并伴随有大型热液沉积多金属硫化物矿体的形成,加之,人们对海底之下的热液作用过程至今仍不清楚,其成因也就成了众所关注而又没有解决的重要科学问题。
     本文首先对现代海底热液活动的研究现状,包括业已取得的主要研究成果和主要研究方向进行了分析总结。对已有的热液活动的数学模型进行了归纳,分析了其合理性与不足之处。
     在上述工作基础上,首先建立了模拟普通黑烟囱热液系统及巨羽流形成的基本数学模型,对巨羽流的生成周期、生成时的温度和热液的物质通量进行求解,并探讨了热源温度、渗透率、反应区体积和释放区横截面积等因素对巨羽流生成的影响。得到的主要结论如下:巨羽流系统可以由普通黑烟囱系统发展演化而成,普通黑烟囱流系统经过2到3年的时间则可形成巨羽流系统,巨羽流产生时的热源温度必须超过500℃,喷出热液的最高温度为413℃左右。当反应区热源温度增大时,产生巨羽流的时间明显变小,可以不到一年时间,而巨羽流生成时的温度及巨羽流的最大物质流速几乎不随其变化。随着渗透率的增大,巨羽流的最大物质流速也随之增大,但其增速随渗透率的进一步增大而变缓,并逐渐趋向一个相当于下渗流无摩擦阻力时的极限稳定值。
     第二个模型是在保持前一个模型基本结构的基础上又考虑了代表下渗低温海水对热液的稀释作用。得到的主要结论有:下渗冷海水是很难进入到烟囱体内对热液进行稀释;当热液高速喷发时,下渗海水通道有可能成为新的热液上升通道,这可能是大面积热液喷溢区存在的主要原因;海底的低温释放流可能是热液系统演化的早期阶段的产物。
     第四章的模型是模拟巨羽流形成机制的裂缝模型,用来探讨系统中合理的热
Seafloor hydrothermal activity system develops up to be an international hot point for study in recent 10 years. The mechanism of formation for megaplume flow system that has a big vent or consists of more vents becomes an important and unsolved subject, because of formation of massive sulphides from its mega hydrothermal plume and the ignorance of formation processes.
     In the paper, directions and results of the study on modern seafloor hydrothermal activity are analyzed and summarized firstly. Traditional mathematic models are analyzed and their pros and cons are concluded.
     The basic mathematic model is built to simulate normal black smoker system and the formation of megaplume and to solve the temperature, period and maximal mass fluid rate when megaplume forms. The effects of main parameters like temperature of hot-source, permeability, volume of reaction-zone and area of discharge-zone on the formation of megaplume are discussed. Main conclusions are as follows. A normal black smoker system can evolve into a megaplume eruption. In fact, megaplume hydrothermal eruption will occur in two or three years. The temperature of the hot source must exceed 500℃, while the highest temperature of eruption fluid is about 413℃. If the temperature of the hot source is higher than 500℃, the critical period for megaplume’s formation can be obviously curtailed to be less than 1 year, while the critical temperature and the maximal mass fluid rate are nearly invariable. As the permeability increases, the maximal mass fluid rate increases gradually close to a steady value.
     The second model adds an embranchment which represents lower-temperature downward permeating seawater to the first model and simulates the dilution effects of permeating cold seawater to hydrothermal fluid. Conclusions are found after analyzing the solutions as follows: Permeating cold seawater can hardly invade the black smoker to dilute the hot fluid. The embranchment zone may become the next bigger discharge-zone when the hot fluid discharges in high speed, which may be
引文
[1]C.H.Lai 著;王亨君,黄振群译. 地质介质中热和溶质传输过程的数学模型. 青岛:青岛海洋大学出版社,1990
    [2]曹圣山. 模拟多孔介质中反应输运过程的有限颗粒法研究. 山东大学博士学位论文,2003
    [3]杜同军,翟世奎,任建国. 海底热液活动与海洋科学研究.青岛海洋大学学报,2002,32(4):597-602
    [4]高爱国. 海底热液活动研究综述. 海洋地质与第四纪地质,1996,16(1):103-109
    [5]季敏. 现代海底热液活动环境特征分析. 中国海洋大学硕士研究生学位论文,2004
    [6]栾锡武,秦蕴珊. 现代海底热液活动的调查研究方法. 地球物理学进展. 2002, 17(4):592-597
    [7]栾锡武,赵一阳,秦蕴珊. 热液柱的形态研究. 热带海洋学报. 2002, 21(2):91-96
    [8]栾锡武,赵一阳,秦蕴珊. 热液系统输向大洋的热通量计算. 海洋学报. 2002, 24(6):59-66
    [9]李心铭编著.流体力学.青岛:青岛海洋大学出版社,1996,第一版
    [10]Martin C.K.等; 马建华译. TAG 活动山体处海底热液活动的构造控制. Nature, 1996,382,6587
    [11]吴世迎,陈穗田,张德玉等. 马里亚纳海槽海底热液活动的热液硫化物研究. 中国科学(B),1991,2:198-204
    [12]王兴涛. 现代海底热液活动的热液循环及烟囱体研究. 中国海洋大学博士研究生学位论文,2004
    [13]王兴涛, 翟世奎,杜同军,季敏. 现代海底热液活动的研究模型分析.海洋科学,2005,29(5):60-65
    [14]增志刚,海底热液活动探索. 青岛:第一届海底热液活动学术讨论会,2002,1-18
    [15]翟世奎,陈丽蓉,张海启. 冲绳海槽岩浆作用与海底热液活动. 北京:海洋出版社,2001,171-185
    [16]翟世奎,许淑梅,于增慧,秦蕴珊,赵一阳. 冲绳海槽北部两个可能的现代海底热液喷溢点,科学通报,2001,46(6):490-492
    [17]赵一阳,翟世奎,李永植等. 冲绳海槽中部热水活动的新纪录. 科学通报,1996,41(14):1307-1310
    [18]朱家鲲. 计算流体力学. 北京:科学出版社,1985,3-157
    [19] Anderson R.N. Call ALVIN for hot science, Nature, 300(5889): 215-216, 1982
    [20]Baker E.T. a 6-year time series of hydrothermal plumes over the cleft segment of the juan de fuca ridg. J. Geophys. Res,1994,99:4889-4904.
    [21]Baker E.T., D.A. Tennan, R.A. Feely, G.T. Lebon, S.L. Walker, Field and laboratory studies on the effect of particle size and composition on optical backscattering measurements in hydrothermal plume, Deep-Sea Research I, 48, pp.593-604, 2001
    [22] Baker E T, G J Massoth. Characteristics of hydrothermal plumes from tow vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet. Sci. Lett, 1987,85:59-73.
    [23] Baker E T, G J Massoth, R A Feely. Cataclysmic hydrothermal venting on the Juan de Ruca Ridge. Nature,1987,329,149.
    [24] Baker E T, J W Lavelle, R A Feely, G J Massoth, S L Walker, J E Lupton. Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. J. Geophys. Res,1989,94:9237-9250.
    [25]Bailey D.M., A.J. Jamieson, P.M. Bagla, M.A. Collins, I.G. Priede, Measurement of in situ oxygen consumption of deep sea fish using an autonomous lander vehicle, Deep-Sea Research, I 49(2002)1519-1529
    [26] Ballard R.D. Dive into the great rift., National Geographic Magazine, v. 147, no. 5, 604-615, 1975
    [27]Ballard R.D., T.H. Van Andel. The Galapagos rift at 86°W: Variations in volcanism, structure and hydrothermal activity along a 30km segment of the rift valley, JGR,1982,87:1149-1161
    [28]Batchelor G. B. An Introduction to Fluid Dynamics. Cambridge University Press
    [29]Becker K., et al. Deep drilling into young oceanic crust, Hole 504B, Costa Rica Rift. Reviews of Geophysic,1998,79:67
    [30]Beranzoli L., A.D. Santis, G. Etiope, P. Favali, F. Frugoni, G. Smriglio, F. Gasparoni, A. Marigo, GEOSTAR: a Geophysical and oceanographyic station for abyssal research, Physics of the Earth and Planetary Interiors, 108:175-183, 1998
    [31]Bodvarrson G., R.P. Lowell. Ocean-floor heat flow and the circulation of interstitial water, J.Geophys. RES., 1972, 77: 4472-4475
    [32] Burian, E.; Yoerger, D.; Bradley, A.; Singh, H., Gradient search with autonomous underwatervehicles using scalar measurements, IEEE Proceedings of Autonomous Underwater Vehicle Technology, pp. 86-98, 1996
    [33]Campbell J A, J M Gieskes. Water column anomalies associated with hydrothermal activity in the Guaymas Basin, Gulf of California. Earth Planet. Sci. Lett, 1984,68:57-72.
    [34]Cann J R., M R Strens. Modeling Periodic Megaplume Emission by Black Smoker Systems. Journal of Geophysical Research.,1989, 94: 12,227-12,237.
    [35]Cann J R., M R Strens, A Rice. A simple magma-driven thermal balance model for the formation of volcanogenic massive sulfides. Earth Planet. Sci. Lett,1985, 76:123-134.
    [36]Cathles L, A capless. 350C flow zone model to explain megaplumes, salinity variations and high temperature veins in ridge axis hydrothermal systems. Econ. Geol., 1993, 88: 977-1988
    [37]Chin C.S., K.H. Coale, V.A. Elrod, K.S. Johnson, G.J. Massoth, E.T. Baker, In situ observation of dissolved iron and manganese in hydrothermal vent plume, juan de Fuca Ridge, J. Geophys. Res., 99(B3):4969-4984, 1994
    [38]Clauser C., H. Villinger. Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben, Geophys. J. Int., 1990,100(3): 393-414
    [39]Coale K.H., C.S. Chin, G.J. Massoth, K.S. Johnson, E.T. Baker, In situ mapping of iron and manganese in hydrothermal plumes, Nature, 352:325-328, 1991
    [40]Corey A. T. Measurement of water and air permeability in unsaturated soil. Proc, Sci. Soc. 1999, 21: 7-10
    [41]Corliss J.B., J. Dymond, et al. Submarine thermal springs on the Galapagos rift. Science, 1979,203: 1073-1083
    [42]Craig, H., Horibe, Y., Farley, K. A., Welhan, J. A., Kim, K. R., Hey, R. N., Hydrothermal vents in the Mariana Trough -results of the first ALVIN dives, Eos, Transactions, American Geophysical Union, 68(44):1531, 1987
    [43]Davis E E, D.A. Seemann. Anisotropic thermal conductivity of Pleistocene turbidite sediments of the northern Juan de Fuca ridge, Proc. ODP139 Sci. Results, 1994,559-564
    [44]Davis E E, D.S. Chapman, C B Forster. Observations concerning the vigor of hydrothermal circulation in young oceanic crust. J. Geophys. Res, 1996, 101: 2927-1942.
    [45]Davis E E, D.S. Chapman, M J Mottl, et al. Flank flux: An experiment to study the nature of hydrothermal circulation in young oceanic crust. J. Earth Sci., 1992, 29(5): 925-952.
    [46]Davis E.E., Wang K., He J., et al. An unequivocal case for high Nusselt number hydrothermalconvection in sediment-buried igneous ocean crust. Earth Planet. Sci. Lett.,1997,146:137-150
    [47]Delaney J.R., G.R. Heath, A.D. Chave, B.M. How, H. Kirjham, NEPTUNE: Real-time ocean and earth sciences at the scale of a tectonic plate, Oceanography, 13, 17-83, 2000
    [48]Detrick, R. S., and S. E. Humphris. 1994. Exploration of global oceanic ridge system unfolds. EOS, Transactions, American Geophysical Union 75:325-326.
    [49]Eberhart G,L, P.A. Rona, J. Honnorez. Geologic controls of hydrothermal activity in the Mid-Atlantic Ridge rift valley: tectonics and volcanics. Marine Geophysics Researches.,1988,10:233-239
    [50]Edmond J.M.Crest hydrothermal activity and the balance of the major and minor elements in the ocean: the Galapagos data. Earth Planet Sci Lett,1979,461:18
    [51]Embley R.W., W.W. Chadwick. Volcanic and hydrothermal processes associated with a recent phase of sea floor spreading at the northern Cleft segment: Juan de Fuca Ridge, J. Geophys. Res., 1994,99: 4741-4760
    [52]Ergun S. Fluid flow through packed columns. Chem. Eng. Prog.,1952, 48: 89-94.
    [53]Fehn U. The evolution of low-temperature convection cells near spreading centers: a mechanism for the formation of the Galapagos seamounts and similar manganese deposits, Econ. Geol., 1986, 81: 1396-1407
    [54]Fisher A.T. Permeability within the basaltic oceanic crust. Reviews of Geophysics, 1998, 36(2): 143-182
    [55]Fisher A. T., K Becker, T N Narasimhan, et al. Passive, off-axis convection in the southern flank of the Costa Rica Rift. J. Geophys. Res, 1990, 95: 9343-9370.
    [56]Fisher A .T., K Becker, T. N. Narasimhan. Off-axis hydrothermal circulation: Parametric tests of a refined model of processes at DSDP/ODP site 504, J. Grophys. Res., 1994, 99: 3097-3121
    [57]Fisher A. T., K Becker. Correlation between seafloor heat flow and basement relief: Observational and numerical examples implications for upper crustal permeability. J. Geophy. Res., 1995, 12641-12657
    [58]Fornari D.J., R.W. Embley. Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studies, in Humphris. Geophysical Monograph 91, AGU, Washington,D.C.,1995,1-46
    [59]Fornari, D. J., S. E. Humphris, and M. R. Perfit. 1997. Deep submergence science takes a new approach. EOS, Transactions, American Geophysical Union 78:402, 408.
    [60]Forster C, J P Evans. Hydrogeology of thrust faults and crystalline thrust sheets: results of combined field and modeling studies. Geophys. Res. Lett, 1991, 18(5): 979-982.
    [61]Francheteau, J., Needham,H.D., Choukroune,P., Juteau,T., Seguret,M., Ballard,R.D., Fox,P.J., Normark,W.R.,,First manned submersible dives on the East Pacific Rise at 21 deg.N (project RITA),general results, Marine Geophysical Research 4(4),345-379, 1981
    [62]Fred K. Duennebier, David W. Harris, James Jolly, Jackie Caplan-Auerbach, Robert Jordan, David Copson, Kurt Stiffel, James Babinec, and Jeff Bosel, HUGO: The Hawaii undersea geo-observatory, IEEE Journal of Oceanic Engineering, Vol. 27, No. 2, pp 218227, 2002
    [63]Gamo T., H. Chiba, T. Yamanaka. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Todriguez Triple Junction, Central Indian Ridge. Earth and Planetary Science Letters, 2001, 193: 371-379
    [64]Gamo T., H. Sakai, J. Ishibashi, et al. Hydrothermal plumes in the Eastern Manus Basin, Bismarck SeaCH4,Mn,Al and pH anomalies, Deep-Sea Res., 1993, 40: 2335-2349
    [65]Garg S.K., D.R. Kassoy. Convective heat and mass transfer in hydrothermal systems, In: L. Rybach, L. J. P. Muffler(eds.), Geothermal System, Wiley, 1981,37-76
    [66]Gernman C.R., G.P. Klinkhammer, M.D. Rudniki. The Rainbow hydrothermal plume, 36°15′N, MAR, Geophys. Res. Lett., 1996, 23(21): 2979-2982
    [67]Grill E.V., et al. A hydrothermal deposit from Explore Ridge in the northwest Pacific Ocean EPSL, 1981, 52: 142-150
    [68]Haenel R., L. Rybach, L. Stegena(eds). Handbook of terrestrial heat-flow density determination. Dordrecht: Kluwer Academic Publishers,1988
    [69]Hammond S.R. Relationships between lava types, Seafloor morphology and the occurrence of hydrothermal venting in the ASHES Vent Field of Axial Volcano,J.Geophys. Res., 1990,95: 12875-12893
    [70]Hartline B.K.,C.R.B. Lister. Topographic forcing of supercritical convection in a porous medium such as the oceanic crust, Earth Planet. Sci. Lett.,1981,55: 75-86
    [71]Heaton T H E, S M F Sheppard. Hydrogen and oxygen isotope evidence for seawater hydrothermal alteration and ore deposition, Troodos complex, Cyprus, in Volcanic Processes in Ore Genesis, pp. 42-57, Institute of Mining and Metallurgy and Geological Society of London, London, 1977.
    [72]Hossain M.S., W. Rodi. A turbulent model for buoyant floes and is application to vertical buoyant jets. In Turbulent buoyant jets and plumes, ed. W. Rodi. Pergamon Press, Oxford, 1986
    [73]Humphris S.E. Hydrothermal process at mid-ocean ridge. Rev. Geophys. Suppl.,1995,71-80
    [74]Humphris S.E, et al. The internal structure of an active seafloor massive sulfide. Nature,2001, 377: 713-716
    [75]John M.S.,S.D. Robert.,Mid-ocean ridge magma chambers. J.Geophys. Res., 1992,97: 197-216
    [76]Johnson D.M. Crack distribution in the upper oceanic crust and its effects upon seismic velocity, seismic structure, formation permeability and fluid circulation. Initial Rep. DSDP, 1980, 51-53: 1479-1490
    [77]Jon Copley, All at Sea, Nature, Vol. 415, pp. 572-574, 2002
    [78]Jupp T., et al. A thermodynamic explanation for black smoker temperatures. Nature, 2000, 403: 880-895
    [79]Kenichi hoshino, et al. 流体混合成矿过程的初步检验.资源地质,2000,50(3):185-190
    [80]Kestin J,H E Khalifa.Effect of the pressure on the viscosity of aqueous NaCL solutions in the temperature range 20-150C,J.Chem.Eng.Data,23,1978,328-336.
    [81]Kevin G.S., R.H. Karl. Hydrothermal plumes: a review of flow and fluxes. In: Parson l. m, Walker C.L.,Dixon D R(eds). Hydrothermal vents and processes. Geological Society Special Publication, 1995, 87: 373-385
    [82]Kosakowski G, V Kunert, C Clauser, et al. Hydrothermal transients in Variscan crust: pale-temperature mapping and hydrothermal models, in Thermal regimes in the continental and oceanic Lithosphere, edited by C. Clauser, L. Rybach, T. Lewis. Tectonophysics, 1999, 306(3-4): 325-344
    [83]Lister C.R.B. On the thermal balance of a mid-ocean ridge, geophys.J.R. Astron. Soc., 1972,26, 515-535
    [84]Lowell R. P. Topographically driven subcritical hydrothermal convection in the ocean crust, Earth Planet. Sci. Lett., 1980,49:21-28
    [85]Lowell R. P.,D.K. Burnell. Mathematical modeling of conductive heat transfer from a freezing, convecting magma chamber to a single-pass hydrothermal system; implications for seafloor black smoker. Earth Planet. Sci. Lett.,1991, 104(1): 59-69
    [86]Lowell R. P., P. A. Rona. Hydrothermal models for the generation of massive sulfide deposits. J. Geophys. Res, 1985, 90: 8769-8783
    [87]Lowell R. P., P. A. Rona., R.P. Von Herzen. Seafloor hydrothermal system. J. Geophys. Res.,1993,100: 327-352
    [88]Lowell R. P., et al.ocean-floor heat flow and the circulation of interstitial water. J. Geophys.Res.,1992,77:4472-4475
    [89]Lowell R. P., Germanovich L N. Silica precipitation in fracture and the evolution of permeability in hydrothermal upflow zones. Sicience,1993,260:192-194.
    [90]Lowell R. P., Germanovich L N. Dike Injection and the Formation of Megaplumes at Ocean Ridges. Sicience,1995,267:1804-1807.
    [91]Lowell R. P., Germanovich L N. On the temporal evolution of high-temperature hydrothermal system at ocean ridge crests. J. Geophys. Res.,1994,99:565-575.
    [92]Macdonald, K. C., D. S. Scheirer, and S. M. Carbotte. 1991. Mid-ocean ridges: discontinuities, segments and giant cracks. Science 253:986- 994.
    [93]Massoth, G.J., E.T. Baker, R.A. Feely, K. Okamura, E. Nakayama, hydrothermal sources and fluxes along the southern East Pacific Rise: thermochemical insights from plume data, EOS Transaction. American Geophysicis Union, 75(44), pp. 321, 1994
    [94]Momma H.,Iwase R., Mitsuzawa K., Kaiho Y., Fujiwara y., Preliminary results of a three-year continous observation by a deep seafloor observatory in Sagami Bay, Central Japan, Physics of the Earth and Planetary Interiors, 108:263-274, 1998
    [95]Milen-Thomson L. M., C. B. E. Theoretical hydrodynamics. The Macmillan Press.
    [96]Pascoe A. R., Cann J. R., S. Ge. Modelling diffuse hydrothermal folw in black smoker vent fields.London:Geological Society Special Publication,1995,159-173
    [97]Person M, J P Raffensperger, S Ge, G Garven. Basin-scale hydrogeologic modeling. Rev. Geophys, 1996,34(1): 61-87
    [98]Rabinowicz M, J Boulegue, P Genthon. 2-3 dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge. J. Geophys. Res, 1998, 103: 24045-24065
    [99]Ribando R., K. Torrence, D. Turcotte. Numerical models for hydrothermal circulation in the oceanic crust. J. Geophys. Res.,1976,81: 3007-3012
    [100]Richards H G, J R Cann, J Jensenius. Mineralogical and metasomatic zonation of the alteration pipes of Cyprus sulfide deposits.Econ. Geol., in press, 1989.
    [101]Richardson C J, J R. Cann, H G Richards, J G Cowan, Metal-depleted root zones of the Troodos ore-forming hydrothermal systems.Cyprus, Earth Planet. Sci. Lett,1987, 84:243-253.
    [102]Robigou, V., R. D. Ballard, C. Davis, H. Edmonds, S. Gallager, F. Grassle, H. Jannash, R. Lutz, L. Madin, A. Maffait, R. McDuff, R. Petrecca, B. Simoneit, K. Stewart, M. Tivey, N.Ulrich, C. Wirsen, C. Van Dover, and D. Yoerger. 1993.  JASON Project IV: Combined operations of JASON ROV, TURTLE submersible and satellite link to land (abstract). EOS, Transactions of the American Geophysical Union 74:573.
    [103]Rosenberg N.D., F.J. Spera, R.M. Haymon. The relationship between flow and permeability field in seafloor hydrothermal system. Earth. Planet.Sci. Lett., 1993, 116: 135-153
    [104]Rosenberg N.D.,A.T. Fisher.,J.S. Stein. Large-scale lateral heat and fluid transport in the seafloor: revisiting the well-mixed aquifer model. Earth. Planet.Sci. Lett., 2000, 182: 93-101
    [105]Sinton J.M., R.S. Detrick. Mid-ocean ridge magma chambers, J. Geophys. Res., 1992, 97:197-216
    [106]Snelgrove S.H., C.B. Forest. Impact of seafloor sediment permeability and thickness on off-axis hydrothermal circulation: Juan De Fuca Ridge eastern flank, J. Geophys. Res., 1996,101:2915-2925
    [107]Stein C.A., S.A. Stein. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992,359: 123-128
    [108]Strens M R,J R Cann. A model of hydrothermal circulation in fault zones at mid-ocean ridge crests, Geophys.J.R.Astron.Soc.1982,71:225-240
    [109]Teagle D.A.H, et al. Tracing the chemical evolution of fluids during hydrothermal recharge: Constraints from anhydrite recovered in ODP HOLE 504B. Earth Planet. Sci. Lett., 1998, 155:167-182
    [110]Thomson G. Basalt-seawater interaction in hydrothermal processes at seafloor spreading center. New York: Plenum, 1983,225-278
    [111]Tivey M.K., et al. Growth of large sulfide structure on the Endeavour segment of the JDF Ridge. EPSL, 1986,77: 303-317
    [112]Travis B.J., D.R. Janecky, N.D. Rosenberg. Three-dimensional simulation of hydrothermal circulation at mid-ocean ridges. Geophys. Res. Lett., 1991, 18: 1441-1444
    [113]Tunnicliffe et al. Hydrothermal vent of explore ridge, northeast pacific. Deep Sea Research, 1986, 33:401-412
    [114]Turner J S, I H Campbell. Temperature, density and buoyancy fluxes in “black smoker” plumes, and the criterion for buoyancy reversal. Earth Planet. Sci. Lett,1987, 86: 85-92.
    [115]Turner J S, I H Campbell. A laboratory and theoretical study of the growth of “blacksmoker” chimneys. Earth Planet. Sci. Lett,1987, 82: 36-48.
    [116]Von Damm K.L., L.G. Buttermore, S.E. Oosting. Direct observation of the evolution of a seafloor black smoker from vapor to brine. EPSL, 1997, 149: 101-111
    [117]Vosteen H.D., R. Schellschmidt. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, 2002, 28: 499-509
    [118]Wang Kelin, He Jiangheng, Earl E. Davis. Influence of basement topography on hydrothermal circulation in sediment-buried igneous oceanic crust. Earth and Planetary Science Letters, 1997,146:151-164
    [119]Wilcock W.S.D. A model for the formation of the transient event plumes above mid-ocean ridge hydrothermal systems, J. Geophys. Res., 1997,102:12109-12121
    [120]Wilcock W.S.D. Cellular convection model of MOR hydrothermal circulation and the temperatures of black smoker fluids.J. Geophys. Res., 1998, 103(B2):2585-2596
    [121]Wilcock W.S.D. A. Mcnabb. Estimates of crustal permeability on the endeavour segment of the Juan de Fuca mid-ocean ridge, Earth. Planet. Sci. Lett., 1996, 138:83-91
    [122]Williams C.F., T.N. narasimhan, R.N. Anderson, et al. Convection in the oceanic crust: simulations of observations from Deep Sea Drilling Project hole 504b, Costa Rica rift, J. Geophys. Res., 1986, 91(b5): 4877-4889
    [123]William S D.A model for the formation of transient event plumes above mid-ocean ridge hydrothermal systems. J. Geophys. Res, 1997, 102: 12109-12121.
    [124]Wright, D. J. Rumblings on the ocean floor: GIS supports deepsea research. Geo Info Systems .1996. 6(1): 22-29.
    [125]Xinsheng. Yu, Z. Cao , D. Gong, S.Li, Development of an Observatory for Hydrothermal Vent and Gas hydrates in Deep Sea Sites, Proceeding of International Conference on Energy and the Environment, pp. 1302- 1305, 2003.
    [126]Yang J., R.N. Edwards, J.W. Molson et al. Three-dimensional numerical simulation of the hydrothermal system within TAG-like sulfide mounds. Geophys. Res. Lett., 1996,23: 3475-3478
    [127]Zierenberg R.A., R.A. Koski, et al. The deep structure of a seafloor hydrothermal deposit.Nature,2001, 392: 485-488
    [128]Zhai Shikui, Xu Shumei, Yu Zhenghui, Qin Yunshan, Zhao Yiyang. Two possible hydrothermal vents in the northern Okinawa Trough. Chinese Science Bulletin, 2001,46(6): 942-945
    [129]Zierenberg R.A., r.a. koski, et al. genesis massive sulfide deposits on a sediment covered spreading center, Escanaba trough, southern gorda ridge. Economic geology, 1993, 88:2069-2098

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700