用户名: 密码: 验证码:
水泥烧成系统故障诊断与质量预测支持向量机方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥工业生产中有效的过程监控和质量控制是保证生产安全、提高产品质量和经济效益的关键,如何充分利用来自生产过程监控系统的数据信息,进行水泥生产过程工艺故障诊断和质量预测是生产实际中亟待解决的问题。
     支持向量机是一种适用于小样本情况下的故障诊断和质量预测的有效方法。本文以水泥烧成系统工艺故障诊断、熟料游离氧化钙含量预测和生料磨出磨生料细度预测为对象,系统深入地研究支持向量机多类分类算法和回归估计算法,构建水泥烧成系统的工艺故障诊断模型和产品质量的预测模型,为指导生产、提高产品质量和生产效率提供一种有效的方法。本文的主要工作包含以下几个方面:
     1.针对有限样本情况下故障诊断的特点和传统模式识别方法在故障模式分类中面临的困难,以水泥烧成系统的工艺故障为诊断对象,研究了支持向量机用于故障诊断的关键问题,给出了基于支持向量机故障诊断的基本步骤,提出了基于类间分离性测度的支持向量多类分类算法、基于核聚类的支持向量多类分类算法和半模糊超球面的支持向量多类分类算法,建立了相应的多类分类模型,并对影响多类分类器性能的因素进行了分析。
     2.为了降低分类机和回归机的计算复杂度、提高分类和回归的精度,针对主成分分析在特征提取上存在的不足,通过计算原始特征空间的内积核函数来实现原始特征空间到高维特征空间的非线性映射,在高维特征空间中对映射数据进行主成分分析来得到原始特征数据的非线性主成分,提出并实现了一种基于核主成分分析的非线性特征提取方法。
     3.为了降低熟料游离氧化钙含量和出磨生料细度预测的计算复杂度,提高预测精度,提出了基于粗糙集约简和核主成分分析相结合的非线性特征提取方法,利用粗糙集的知识约简算法对样本数据进行预处理,删除冗余的属性,减少样本输入空间的维数,然后利用核主成分分析进行非线性特征提取。在此基础上,提出了集成粗糙集、核主成分分析和支持向量机回归算法;通过粗糙集属性约简和核主成分分析特征提取方法的研究,得出了可以利用粗糙集的约简结果来指导选择核主成分的数目。
     4.在总结分析烧成系统常见工艺故障的产生原因和主要现象的基础上,利用核主成分分析和支持向量机相结合的故障诊断方法,提出了水泥烧成系统工艺故障诊断的两种二叉树支持向量机多类分类算法和半模糊超球面多类分类算法,建立了新型干法水泥烧成系统工艺故障诊断模型,在小样本情况下对水泥烧成系统的工艺故障诊断方法进行了仿真测试;测试结果表明,所提出的算法可以明显地减少训练和测试时间,且分类精度比较理想。
     5.针对水泥生产过程中质量不能在线测量或有较长时间延迟的问题,通过分析5000t/d水泥生产过程和工艺流程的特点,选取合适的过程工艺参数,提取在线的过程运行数据,基于所研究的算法,提出了几种水泥生产过程质量预测方法,预测结果验证了所提出多种预测方法的有效性和正确性。
In the production process of the cement industry,effective process monitoring and quality control are crucial to guarantee production safety and increase product quality and economic gains.How to make full use of the data and information from the monitoring system in the production process to diagnose technological faults in the production process and predict the quality of the products is an urgent problem to be solved.
     Support Vector Machines(SVM) is an effective method applicable to the fault diagnosis and quality prediction when the samples are small.This study takes the technological fault diagnosis of the cement burning system,the prediction of the free calcium oxide content in the clinker,and the prediction of the fineness of raw mill finished products as its research objectives.We systematically studied in depth the SVM multi-class classification algorithm and the SVR estimation algorithm and constructed a model for the technological fault diagnosis of the cement burning system and a model for the prediction of product quality.In so doing,we hope to provide an effective method of guiding production and increasing product quality and production efficiency.To be brief,the main work of this study is as follows:
     1.In view of the characteristics of fault diagnosis under the circumstances of finite samples and the difficulties met by the methods based on traditional pattern recognition in the classification of fault patterns,with the technological faults in the cement burning system as the diagnostic objects,we studied the key issues of using SVM in fault diagnosis,presented the basic procedures for a SVM-based fault diagnosis,proposed a SVM multi-class classification algorithm on the basis of the interclass separability measure,a SVM multi-class classification algorithm on the basis of kernel clustering,a SVM multi-class classification algorithm on the basis of the semi-fuzzy hypersphere,and thereafter established their corresponding multi-class classification models,and then we analyzed the factors influencing the performance of the multi-class classifiers.
     2.In order to lower the computation complexity of the classifiers and the SVRs and increase the precision of classification and regression,considering the shortcomings of the principal component analysis(PCA) in feature extraction,through the computation of the inner product kernel function in the original feature space,we realized the nonlinear mapping from the original feature space to the high-dimension feature space,and in the high-dimension feature space,the nonlinear principal component of the original feature data are obtained through the PeA of the mapping data.Thus,we proposed and actualized an effective nonlinear feature extraction method on the basis of the kernel principal component analysis (KPCA).
     3.To lower the free calcium oxide content in the clinker,to reduce the computation complexity of predicting the fineness of raw mill finished products,and to increase the prediction precision,we proposed a nonlinear feature extraction method on the basis of the combination of rough sets(RS) reduction and KPCA,conducted preliminary treatments to the sample data by using the RS knowledge reduction algorithm,deleted the redundant attributes, reduced the number of the dimensions of the sample's input space,and then conducted the nonlinear feature extraction by using KPCA.On the basis of these procedures,we proposed an integrated RS-KPCA-SVM regression algorithm.By means of RS attribute reduction and the study of the KPCA feature extraction,we obtained the number to be used in guiding the selection of the kernel principal components by using the RS reduction results.
     4.We analyzed the causes to and the main phenomena of the common technological faults of the cement burning system.By using the fault-diagnosing method which combines the KPCA and the SVM,we proposed two kinds of binary tree SVM multi-class classification algorithm and the semi-fuzzy hypersphere multi-class classification algorithm for the diagnosis of the technological faults of the cement burning system,and we established a new fault diagnosis model for the new-style dry-process cement burning system.After that,we conducted simulation studies of the method of diagnosing the technological faults for the cement burning system when small samples were adopted.The testing results indicate that the proposed algorithms can distinctly reduce the time required for training and testing,and that the classification precision is relatively desirable.
     5.In view of the problem that it is impossible to monitor the cement quality online in the cement production process or there is a relatively long period of lagging,we analyzed the characteristics of the production process and the technological process of the 5000t/d cement, selected appropriate process technological parameters,extracted online process operational data,and on the basis of the proposed algorithms in this study,we proposed several methods of predicting the product quality in the process of cement production,and finally the prediction results verified the effectiveness and validity of the proposed multiple prediction methods.
引文
[1]刘志江,蔡玉良,庄春来等.新型干法水泥技术.北京:中国建材工业出版社,2005
    [2]吴晓辉,刘炯,梁永春等.支持向量机在电力变压器故障诊断中的应用.西安交通大学学报,2007.41(6):722-726
    [3]张超,韩璞,唐贵基.基于K-L变换的支持向量机在汽轮机故障诊断中的应用.汽轮机技术,2007.49(2):148-150
    [4]Guoyun Zhang,Jing Zhang.A hybrid RS-SVM dynamic prediction approach to rotary kiln sintering process,Proceedings of the third International conference on machine learning and cybernetics,2004,478-482
    [5]张羲,阎威武,刘振亚等.基于核主元分析和邻近支持向量机的汽轮机凝汽器过程监控和故障诊断.中国电机工程学报,2007.27(14):56-61
    [6]Boser B.,Guyon I.,Vapnik V.N.A training algorithm for optimal margin classifiers,Proceedings of the Fifth Annual Workshop on Computational learning Theory,1992,144-152
    [7]Cortes C.,Vapnik V.N.The soft margin classifier.Technical memorandum 11359-931209-18TM,AT&T Bell Labs,1993
    [8]Vapnik V.N.,Golowich S.,Smola A.Support vector method for function approximation,regression estimation and signal processing.In M.C.Mozer,M.I.Jordan,and T.Petsche,editors,Advances in Neural Information Processing Systems 9,Cambridge MA,MIT Press 1997:281-287
    [9]边肇祺,张学工.模式识别(第二版).北京:清华大学出版社,2000
    [10]张学工.关于统计学习理论与支持向量机.自动化学报,2000.26(1):32-42
    [11]Vapnik V.N.The nature of statistical learning theory.New York:Springer Verlag,1995,张学工译.统计学习理论的本质.北京:清华大学出版社,2000
    [12]M.Anthony,P.Bartlett.Learning in neural networks:Theoretical Foundations.Cambridge University Press,1999
    [13]John Shawe-Taylor,Nello Cristianini.On the generalization of soft margin algorithms,IEEE Transactions on Information Theory,2002,48(10):2721-2735
    [14]J.Weston.Leave-One-Out support vector machines.Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,1999,727-733
    [15]Vapnik V.N.Statistical Learning Theory.New York:John Wiley & Sons,1998
    [16]A.Smola,B.Scholkopf,K.R.Muller.Convex cost functions for support vector regression.In L.Niklasson,M.Bodtn,and T.Ziemke,editors,Proceedings of the eighth international conference on artificial neural networks,Perspectives in neural computing,Berlin,Springer-Verlag,1998
    [17]T.Friess,N.Cristianini,C.Campbell.The Kernel-Adatron:A fast and simple learning procedure for support vector machines.Proceedings of the fifteenth international conference on machine learning,1998,188-196
    [18]O.L.Mangasarian,D.R.Musicant.Successive over relaxation for support vector machines.IEEE Transactions on neural networks,1999,10(5):100~106
    [19]B.Scholkopf,A.Smola,P.Bartlett.New support vector algorithms.Neural computation,2000.12:1207~1245
    [20]Chihchung Chang,Chihjen Lin.Training v-support vector classifiers:Theory and algorithms,neural computation,2001,13(9):2119~2147
    [21]Chihchung Chang,Chihjen Lin.Training v-support vector regression:Theory and algorithms,neural computation,2002,14(8):1959~1977
    [22]O.L.Mangasarian.Generalized support vector machines.Advances in large margin classifiers,MIT Press,2000:135~146
    [23]O.L.Mangasarian,D.R.Musicant.Nonlinear data discrimination via generalized support vector machines.ICCP99,Madison,Wisconsin,1999
    [24]Takuya Inoue,Shigeo Abe.Fuzzy support vector machines for pattern classification.Proceedings of international joint conference on neural networks.Washington,2001,1449~1454
    [25]Chunfu Lin,Shengde Wang.Fuzzy support vector machines.IEEE Transactions on Neural Networks,2002,13(2):464~471
    [26]J.A.K.Suykens,J.Vandewalle.Least squares support vector machines classifiers,Neural Processing Letters,1999,9(3):293~300
    [27]Honggunn Chew,R.E.Bogner,Chengchew Lim.Dual v-support vector machine with error rate and training size biasing.Proceedings of 26th IEEE ICASSP2001,Salt Lake City,USA,2001,1269~1272
    [28]Chihchung Chang,Chihjen Lin.LIBSVM:A library for support vector machines,http://www.csie.ntu.edu.tw/~cjlin
    [29]D.Tax,R.Duin.Support vector domain description.Pattern recognition letters,1999.20(11):1191~1199
    [30]Lee Y J,Mangasarian O.L.SSVM:A smooth support vector machine for classification,Computational Optimization and Applications,October 2001,20(1):5~22
    [31]Yuh-Jye Lee,Suyun Huang.A study on reduced support vector machines.IEEE Transactions on Neural Networks,2007.18(1):1~13
    [32]Li Zhang,Weida Zhou,Licheng Jiao.Wavelet support vector machine.IEEE Transactions on Systems,Man and Cybernetics,Part B,2004.34(1):34~39
    [33]Peng Lv,Daping Xu,Yibing Liu,Study of fault diagnosis model based on multi-class wavelet Support Vector Machines,Proceedings of the fourth international conference on machine learning and cybernetics,Guangzhou,2005,4319~4321
    [34]Chinchia Hsu,Chinhung Wu,Shihchien Chen,et al.Dynamically optimizing parameters in support vector regression:An application of electricity load forecasting,Proceedings of the 39th Hawaii international conference on system science,2006,1~8
    [35]J.Weston,R.Herbrich.Adaptive margin support vector machines.In A.Smola,P.Bartlett,B.Scholkopf,and D.Schuurmans,editors,Advances in Large Margin Classifiers,MIT Press,Cambridge,MA,2000:281~295
    [36]Osuna E.,Freund R.,Girosi F,.Training support machines:An application to face detection.Proceedings of CVPR'97,Puerto Rico,1997
    [37]Platt J.Fast Training of support vector machines using sequential minimal optimization,Advances in kernel methods-support vector learning,Cambridge,MIT Press,1999,185-208
    [38]Chihjen Lin.Asymptotic convergence of an SMO algorithm without any assumptions,IEEE Transactions on Neural Networks,2002,13(1),248-250
    [39]Joachims T.Making large-scale SVM learning practical.Research Report of the Unit No.Ⅷ(AI),computer science department of university of dortmund,1998:1-13
    [40]Friedhelm Schwenker.Hierarchical support vector machines for multi-class pattern recognition,Proceedings of fourth international conference on knowledge-based intelligent engineering & allied technologies,2000,561-565
    [41]Qinghen Xu,Aiguo Song,Wenjiang Pei,et al.Tree-structured support vector machine with confusion cross for complex pattern recognition problems,IEEE Int.Workshop VLSI design & video Tech.2005,195-198
    [42]Wenxing Ma,Meng Li.Fault pattern recognition of rolling beatings based on wavelet packet and support vector machine,Proceedings of the 27th Chinese control conference,2008,65-68
    [43]陶卿,曹进德,孙德敏.基于支持向量机分类的回归方法.软件学报,2002.13(5):1024-1028
    [44]Caixia Deng,Lixiang Xu,Zuoxian Fu.The Beat-wave signal regression based on least squares reproducing kernel support vector machine,Proceedings of the 7th international conference on machine learning and cybernetics,2008,3641-3645
    [45]Yanshi Dong,Kesong Han.A Comparison of several ensemble methods for text categorization,Proceedings of the 2004 IEEE international conference on services computing,2004
    [46]Yong Ma,Xiaoqing Ding.Face detection based on hierarchical support vector machines,Proceedings of 16th international conference on pattern recognition,2002,222-225
    [47]Clyde Shavers,Robert Li,Gary Lebby.An SVM-based approach to face detection,Proceedings of 38th Southeastern symposium on system theory,2006,362-366
    [48]Lihong Zhao,Xili Zhang,Xinhe Xu.Face recognition base on KPCA with ploynomial kernels,Proceedings of the 2007 international conference on wavelet analysis and pattern recognition,Beijing,China,2007,1213-1216
    [49]Bemardete Ribeiro.Support vector machines for quality monitoring in a plastic injection molding Process.IEEE Transactions on Systems,Man,and Cybernetics - PART C:Applications and Reviews,2005,35(3):401-410
    [50]Rojo Alvarez J.L.,Martinez-Ramon M.,de Prado-Cumplido M.,et al.Support vector method for robust ARMA system identification.IEEE Transactions on Signal Processing,2004,52(1):155-164
    [51]王定成,姜斌.支持向量机控制与在线学习方法研究的进展.系统仿真学报,2007.19(6):1177-1181
    [52]Land W.H.,Wong L.,Mckee D.W.,et al.Breast cancer computer aided diagnosis(CAD) using a recently developd SVM/GRNN Oracle hybrid.IEEE International Conference on Systems,Man and Cybernetics,2003,5:4705-4711
    [53]Osowski S.,Hoai L.T.,Markiewicz T.Support vector machine-based expert system for reliable heartbeat recognition.IEEE Transactions on Biomedical Engineering,2004,51(4):582-589
    [54]武华锋,李著信,伍建林等.基于支持向量机的柴油机排气阀智能故障诊断研究.内燃机学报,2006.24(5):465-469
    [55]Gianluca Antonelli,Fabrizio Caccavale,Carlo Sansone,et al.Fault diagnosis for AUVs using support vector machines,Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004,4486-4491
    [56]Zhiyong Luo,Zhongke Shi.On electronic equipment fault diagnosis using least squares wavelet support vector machines,Proceedings of the 6th World Congress on Intelligent Control and Automation,2006,Dalian,China,6193-6197
    [57]胡寿松,王源.基于支持向量机的非线性系统故障诊断.控制与决策,2001.16(5):617-620
    [58]汪江,陆颂元.汽轮发电机组故障诊断GA-SVM模型方法的研究.汽轮机技术,2005.47(1):1-3.16
    [59]马笑潇.智能故障诊断中的机器学习新理论及其应用.博士学位论文.重庆:重庆大学,2002
    [60]祝海龙.统计学习理论的工程应用.博士学位论文.西安:西安交通大学,2002
    [61]张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究.西安交通大学学报,2002.36(12):1303-1306
    [62]董明,孟源源,徐长响等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究.中国电机工程学报,2003.23(7):88-92
    [63]朱凌云,曹长修.基于支持向量机的缺陷识别方法.重庆大学学报(自然科学版),2002.25(6):42-45
    [64]Akira Mita,Hiromi Hagiwara.Damage diagnosis of a building structure using support vector machine and modal frequency patterns smart structures and materials 2003:Smart Systems and Nondestructive Evaluation for Civil Infrastructures,Proceedings of SPIE,2003,118-125
    [65]Sanna Poyhonen,Marian Negrea,Antero Arkkio,et al.Fault diagnostics of an electrical machine with multiple support vector classifiers.Proceedings of the 2002 IEEE international symposium on intelligent control vancouver,Canada,2002,373-378
    [66]翟永杰,王东风,韩璞.基于多类支持向量机的汽轮发电机组故障诊断.动力工程,2003.23(5):2694-2698
    [67]Smola A.J.,SchSlkopf B.A tutorial on support vector regression,statistics and computing,2004,14(3):199-222
    [68]Guanghui Fu,Guanghua Hu.Total least square support vector machine for regression,Proceedings of 2008 international conference on intelligent computation technology and automation,2008,271-275
    [69]O.A.Omitaomu,M.K.Jeong,A.B.Badiru,et al.Online support vector regression approach for the monitoring of motor shaft misalignment and feedwater flow Rate,IEEE Transactions on System,Man,and Cybernetics--Part C:Applications and Reviews,2007,37(5):962-970
    [70]安文森,孙彦广,朱文功.基于支持向量机的钢淬透性预测研究.仪器仪表学报,2006,27(11):
    1410-1413
    [71]高学金,王普,孙崇正等.基于支持向量机的青霉素发酵过程建模.系统仿真学报,2006.18(7):2052-2055
    [72]宓云軿,王晓萍,金鑫.基于机器学习的水质COD预测方法.浙江大学学报(工学版),2008.42(5):790-793
    [73]Baesens B.,Viaene S.,Van Gestel,et al.An empirical assessment of kernel type performance for least squares support vector machine classifiers,Proceedings of fourth international conference on knowledge-based intelligent engineering systems & allied technologies,Brighton,UK,2000,313-316
    [74]杨斌,聂在平.一种支持向量回归中超参数自适应方法.广西师范大学学报,2003.21(1):195-199
    [75]郑小霞,钱锋.基于PCA和最小二乘支持向量机的软测量建模.系统仿真学报.2006.18(3):739-741
    [76]李云飞,黄彦全,蒋功连.基于PCA-SVM的电力系统短期负荷预测.电力系统及其自动化学报.2007.19(5):66-70
    [77]崔庆安,何桢,崔富新.基于支持向量机的焦炭质量预测模型.化工自动化及仪表,2006.33(1):28-31
    [78]林继鹏,刘君华.基于支持向量机的多组分气体分析.西安交通大学学报,2005.39(6):586-589
    [79]张永春.水泥新型干法窑系统的综合仿真.硕士学位论文.南京:南京工业大学,2002
    [80]齐灵水.仿真技术在新型干法水泥窑系统中的应用.硕士学位论文.南京:南京工业大学,2003
    [81]刘彬,刘晓琳.水泥分解窑温度控制系统设计.控制工程,2004.11(1):63-65
    [82]潘爱华.水泥回转窑热工控制模型研究及其仿真.博士学位论文.北京:中科院力学研究所,2000
    [83]王兰军,侯春,沈锦林.水泥回转窑故障诊断方法初探.材料科学与工程学报,2003.21(5):711-713
    [84]李常贤.复杂系统的预测控制及其应用.博士学位论文.浙江:浙江大学,2003
    [85]李常贤,诸静.单入双出的模糊预测协调控制在篦冷机系统中的应用研究.硅酸盐学报,2002.30(6):707-711
    [86]邹健.智能预测控制及其应用研究.博士学位论文.浙江:浙江大学,2002
    [87]赵晨.过程控制中的数据挖掘技术研究及其智能控制策略探讨.博士学位论文.浙江:浙江大学,2004
    [88]谭天乐.基于粗糙集的过程建模、控制与故障诊断.博士学位论文.浙江:浙江大学,2003
    [89]李志明.智能控制技术在水泥工业中的应用.硕士学位论文.武汉:武汉理工大学,2003
    [90]周晓东.基于WEB的水泥预分解窑系统仿真系统的研究.硕上学位论文.武汉:武汉理工大学,2002
    [91]杨力远.预分解窑煅烧过程计算机模拟.博士学位论文.武汉:武汉理工大学,2004
    [92]陈思维.窑尾预分解系统冷模试验及其流场的数值模拟研究.博士学位论文.武汉:武汉理工大学,2005
    [93]潘昊.智能方法在水泥性能分析中的应用研究.博士学位论文.武汉:武汉理工大学,2006
    [94]蔡玉良,潘炯,郑启权等.铜陵海螺5000t/d国产化示范线-烧成系统的技术配置与操作运行情况 分析.第五届全国新型干法水泥生产技术交流会论文集,2003,72-82
    [95]卢继高.基于MATLAB神经网络的水泥熟料强度预测.中国水泥,2007.(10):69-70
    [96]关生林.水泥预分解窑操作中遇到的故障及处理.建材发展导向,2003.(6):49-53
    [97]张浩云,齐俊华,杨旭.日产5000吨新型干法窑的操作体会.中国水泥,2007.(7):57-59
    [98]Cristianini N.,Shawe-Taylor J.著.李国正等译.支持向量机导论.北京:电子工业出版社,2004
    [99]Scholkopf B.,Smola A.,Vapnik V.,Prior knowledge in support vector kernels,Proceedings of advances in neural information proceeding systems 10,M.Jordan,M.Keams,and S.Solla,Eds.,Cambridge,MA.MIT Press,1998,640-646
    [100]Osuna Edgar,Freund Robert,Girosi Federico.Improved training algorithm for support vector machines.Neural networks for signal processing.Proceedings of the IEEE Workshop,1997,276-285
    [101]阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究.控制与决策,2003.18(3):358-360
    [102]Kfistiaan Pelckmans,Johan A.K.Suykens,Bart De Moor.Regularization constants in LS-SVMs:a fast estimate via convex optimization,Proceedings of 2004 IEEE International Joint Conference on Neural Networks,2004,699-704
    [103]朱家元,杨云,张恒喜等.基于优化最小二乘支持向量机的小样本预测研究.航空学报,2004.25(6):565-568
    [104]陶少辉,陈德钊,胡望明.LSSVM过程建模中超参数选取的梯度优化算法.化工学报,2007.58(6):1514-1517
    [105]Suykens J.A.K.Least squares support vector machines for classification and nonlinear modeling.Neural Network word,2000,10:29-48
    [106]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机.北京:科学出版社,2006
    [107]S.S.Keerthi,C.J.Lin.Asymptotic behaviors of support vector machines with gaussian kernel.Neural Computation.2003,15(7):1667- 1689
    [108]Hevade S K,Keerthi S S,Bhattacharyya C,et al.Improvements to the SMO algorithm for SVM regression.IEEE Trans on Neural Networks.2000,11(5):1188- 1193
    [109]Suykens.J.A.K,Vandewalle J.,De Moor B.,Optimal control by least support vector machines.Neural Networks,2001,14(1):23-35
    [110]Suykens J.,Branbanter J.D.,Lukas L.,et al.Weighted least squares support vector machines:robustness and spare approximation.Neurocomputing,2002,48(1):85 - 105
    [111]吴强,贾传荧,张爱锋等.球结构支持向量机的改进算法及仿真研究.系统仿真学报,2008.20(2):345-348
    [112]Tax D,Duin R.Support vector data description.Machine Learning,2004,54:45-66
    [113]Daniel J.Sebald,James A.Bucklew.Support vector machines and multiple hypothesis test problem.IEEE Transactions on Signal Processing,2001,49(11):2865-2872
    [114]Weston J,Watkins C.Support vector machines for multi-class pattern recognition.Proceedings of the European Symposium on Artificial Neural Networks.Bruges,1999,219-224
    [115]Chihwei Hsu,Chihjen Lin.A comparison of methods for multi-class support vector machines.IEEE Transactions on Neural Networks,2002,13(2):415 - 425
    [116]Krebel U.Pairwise classification and support vector machines.In:Scholkopf B,Burges,C,Smola A,eds.Advances in kernel methods-support vector learning.Cambridge,MIT Press,1999:255-268
    [117]Platt J.C.,Cristianini N.,Shawe-Taylor J.Large margin DAGs for multiclass classification.Advances in neural information processing systems 12.Cambridge,MTT Press,2000:547-553
    [118]赵晖.支持向量机分类方法及其在文本分类中的应用研究.博士学位论文.大连理工大学,2005
    [119]Kressel U.Pairwise classification and support vector machines.In B.Scholkopf,ed.Advances in kernel methods-support vector learning,MIT Press,Cambrifge,Massachusetts,1999,255-268
    [120]Platt J.,Cristianini N.,Shawe Taylor J.Large margin DAGs for multiclass classification.Proceedings of Advances in neural information processing systems,Massachusetts:MIT Press,2000
    [121]Fumitake Takahashi,Shigeo Abe.Decision-tree-based multiclass support vector machines.Proceedings of the 9th international conference on neural information processing.Singapore,2002,1418-1422
    [122]Schwenker F.Hierarchical support vector machines for multi-class pattern recognition.Proceedings of the fourth international conference on knowledge-based intelligent engineering system & allied technologies.Brighton,2000,561 -565
    [123]Schwenker F.,Palm G.Tree-structured support vector machines for multi-class pattern recognition.In:Kittler J,Roli F,eds.Multiple Classifier Systems.Springer,2001:409-417
    [124]Cheong S.,Oh S.H.,Lee S.Y.Support vector machines with binary tree architecture for multi-class classification.Neural Information Processing,2004,2(3):47-51
    [125]L J.Cao,K.S.Chua,W.K.Chong,et al.A comparison of PCA,KPCA and ICA for dimensionality reduction in support vector machine.Neurocomputing,2003,55:321 -336
    [126]范金城,梅长林.数据分析.北京:科学出版社,2002
    [127]陈念贻,钦佩,陈瑞亮等.模式识别方法在化学化工中的应用.北京:科学出版社,2000
    [128]Scholkopf B,Smola A,Muller KR.Nonlinear component analysis as a kernel eigenvalue problem.neural camputation,1998,10:1299-1319
    [129]Schoikopf B.,Smola A.,Muller K.R.Kemel principal component analysis.Proceedings ICANN,LNCS,Springer,1997,583-589
    [130]王华国,俞金寿.基于核函数主元分析的软测量建模方法及应用。华东理工大学学报,2004.30(5):567-570
    [131]李岳,温熙森,吕克洪.基于核主成分分析的铁谱磨粒特征提取方法研究.国防科技大学学报,2007.29(2):113-116
    [132]于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现.中国机电王程学报,2004.24(6):205-210
    [133]Bezdek J.C.Pattern Recognition with Fuzzy Objective Function Algorithms.New York:Plenum Press,1981
    [134]高新波,裴继红,谢维新.模糊C均值聚类算法中加权指数m的研究.电子学报,2000.28(4):80-83
    [135]范九伦,吴成茂.划分系数和总变差相结合的聚类有效性函数.电子学报,2001.29(11):1561- 1563
    [136]范九伦,吴成茂,丁夷.基于样本最大分类信息的聚类有效性函数.糊系统与数学,2001.15(3):68-73
    [137]舒云星,郭献军,葛玻.硅酸盐工业控制实训.武汉:武汉理工大学出版社,2002
    [138]谢克平.对生产中控制熟料fCaO指标的看法.水泥,2008.(4):9-11
    [139]纪明香,胡志俊.熟料fCaO最佳范围的控制经验.水泥,2008.(7):28-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700