用户名: 密码: 验证码:
修饰纳米SiO_2的表面功能团测定及在尼龙6中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨丙基三乙氧基硅烷(APS)表面修饰的纳米二氧化硅(AMNS)和γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(GPS)表面修饰的纳米二氧化硅(GMNS)作为催化剂和新材料在生命科学、分析化学、光学等领域具有广阔的应用前景。目前其相关的制备技术研究正步入全面的工艺完善阶段,应用研究也已经开始受到关注。然而,目前针对AMNS和GMNS的应用研究大多还处于经验探索阶段,其主要原因是对AMNS和GMNS表面的功能团(即氨基和环氧基)的存在浓度及形态缺乏了解,其中功能团的浓度影响是最主要的因素。另外,针对AMNS的应用开发研究亟需进行。据此,本论文主要从三个方面开展相关研究:
     一、AMNS表面氨基浓度的测定
     分别建立了盐酸-乙醇非水滴定法、高氯酸-冰乙酸非水滴定法、分光光度法、循环伏安法(对氨基苯甲酸化学修饰电极法)和凯氏定氮法等测定AMNS表面氨基浓度的方法;系统地研究了各种实验条件对测定结果的影响,探讨了影响测定结果准确度的主要因素;讨论了不同分析方法的优缺点以及导致其测量结果出现差异的主要原因;为该类纳米材料的合成和应用研究建立了分析测试平台。结果表明:所建立的各种分析方法均能用于对AMNS表面氨基进行比较准确的测定。在两种滴定分析法中,在滴定终点附近对样品进行超声振荡处理,有利于缩短滴定过程;在高氯酸-冰乙酸非水滴定法中加入异辛醇作为分散剂,可以改善体系的互溶性,降低体系的冰点,拓宽体系的应用范围;分光光度法灵敏度高,pH值是影响其测定结果的重要因素;化学修饰电极法较好地避免了纳米颗粒的吸附和光反射等对测定结果的影响,使测定结果更加准确;凯氏定氮法相应的测量结果较高,其原因在于采用凯氏定氮法测定的是AMNS中的总氮,而采用其他分析方法测定的是AMNS中氨基氮。
     二、GMNS表面环氧基浓度的测定
     分别建立了盐酸-丁酮滴定法、高氯酸-冰乙酸非水滴定法、紫外分光光度法、荧光分光光度法、示波极谱法和电位滴定分析法(聚对硝基苯胺化学修饰电极法)等测定GPS的浓度及GMNS表面环氧基浓度的方法。详细研究了各种实验条件对测定结果的影响及影响测定结果准确度的主要因素,分析了不同分析方法的特点和使用范围,为该类纳米材料的合成和应用研究建立了分析测试平台。研究结果表明:利用所建立的各种分析方法均能实现对GMNS表面环氧基官能团浓度的准确分析,且不同分析方法所得到的测定结果无明显差异。盐酸-丁酮滴定法、高氯酸-冰乙酸非水滴定法中准确确定终点指示剂颜色的变化是保证分析准确性的最主要因素;紫外分光光度法、荧光分光光度法灵敏度较高;示波极谱法避开了纳米粒子的干扰,测定结果的准确性和重现性较高;电位滴定法在盐酸-丁酮法的基础上,以聚对硝基苯胺修饰电极指示终点,可有效地提高测定结果的准确性。
     三、AMNS/尼龙6复合材料的结构和性能研究
     在准确测定AMNS表面氨基的基础上,分析了熔融共混法制备的AMNS/尼龙6纳米复合材料的结构;建立了不同氨基浓度的AMNS与尼龙6基体界面相互作用的模型;提出了临界氨基浓度概念,确定了在尼龙6中添加AMNS的最佳浓度;探讨了AMNS表面氨基浓度对AMNS/尼龙6纳米复合材料机械性能的影响。探索出了从纳米填充材料表面功能团的浓度去研究其对纳米复合材料性能影响的新途径。
     结果表明:①AMNS表面的有机官能团能够与尼龙6基体发生反应,形成一种基于共价键和氢键连接的界面层结构;当AMNS表面氨基浓度达到某一临界值时,AMNS颗粒与尼龙6基体之间的相互作用最强,有利于实现复合材料的性能优化。②引入表面含不同浓度氨基的AMNS纳米颗粒都可以提高尼龙6的力学性能;当AMNS颗粒表面氨基浓度为2.86mmol·g-1时,复合材料的综合力学性能最佳,其拉伸强度、拉伸模量、弯曲强度、弯曲模量和缺口冲击强度分别提高了19.02%、47.16%、27.11%、38.69%、17.11%。③引入不同氨基浓度的AMNS均使得尼龙6的热稳定性能得到提高,并且复合材料的热稳定性能随着AMNS中氨基浓度的增加而提高;与尼龙6相比,在热重分析中复合材料发生10%失重时的温度随AMNS中氨基浓度的增加而提高6~10℃。④引入表面氨基浓度较高的AMNS作为添加剂有利于促进复合材料中尼龙6基体沿(002)/(202)面的生长;复合材料的结晶温度随着AMNS表面氨基浓度的增加而降低,但尼龙6基体的晶体结构基本保持不变。
As a kind of catalyst and novel functional materials, surface-modified nanosilica withγ-aminopropyltriethoxysilane (APS) andγ-glycidoxypropyltrimethoxysilane (GPS), coded as AMNS and GMNS, have been widely applied in the fields of life science, analytical chemistry and optics etc. At present, focus is being placed on modifying and integrating processes in terms of the preparation technology for AMNS and GMNS. And researches on the application of AMNS and GMNS are also begining to attract attention. However, current studies in relation to the applications of AMNS and GMNS are largely limited to exploration of experiences in labs, mainly due to insufficient understanding of the states and concentrations of the functional groups (i.e., amino and epoxy groups) on the surface of AMNS and GMNS, where the concentrations of the functional groups play a more critical role on the application. Besides, efforts are urgently needed to promote the application and development of AMNS in engineering. Therefore, the following three parts of research are to be highlighted in this dissertation:
     Part I: Determination of Amino Concentration on AMNS
     Methods such as hydrochloric acid-ethanol non-aqueous titration, perchloric acid-acetic acid non-aqueous titration, spectrophotometry and cyclic voltammetry (using glassy carbon electrode modified with p-aminobenzoic acid) were established for determining amino group on AMNS. The effects of various experimental conditions on the results of measurement were studied in detail. The main factors that affect the accuracy of measurement were investigated. The advantages and disadvantages of each method are discussed, and the main causes leading to differences from the measurement results by various methods are explored. Based on the above-mentioned studies, the analysis and test platforms have been established in relation to the synthesis and application of this type of nanomaterials. Results indicate that all the proposed methods could be well used to determine the amino concentration on AMNS with a good accuracy. For the both titration methods, treating the samples with ultrasonic vibration near the end point is favorable to shortening the titration process. For the perchloric acid-acetic acid method, the addition of 2-ethylhexanol as a dispersant could improve the inter-solubility of the titration system and decrease the system’s freezing point, leading to broadening the application scope of the method. For spectrophotometry method, it was of great sensitivity, and pH value had the most important role in affecting the results of measurement. In terms of the cyclic voltammetry, the effects of the adsorption of indicator by nanoparticles and the light reflectance by the nanoparticles were eliminated, helping to reaching good accuracy. Besides, higher the results of measurement was obtained along with Kjeldahl Method, mainly because Kjeldahl Method was used to determine the total nitrogen in AMNS while the other methods were applied to determine only amino nitrogen in AMNS.
     Part II: Determination of Epoxy Concentration on GMNS
     Various methods including non-aqueous titration with hydrochloric acid-butanone and perchloric acid-acetic acid, ultraviolet (UV) and fluorescence spectrophotometry, osciliopolarography and potential titration (using an electrode chemically modified with poly(p-nitro aniline)) were established to determine the content of GPS and the concentration of epoxy group on GMNS. The influences of various experimental conditions on the measurement results and the major factors significantly affecting the accuracy of measurement were investigated in detail. The characteristics of each method and its applicable scopes were discussed. And the analysis and test platforms in relation to the synthesis and application on this kind of nanomaterials were established. Results indicate that every established method could be well used to determine epoxy on GMNS accurately, showing insignificant difference in terms of the measurement results. For non-aqueous titration with hydrochloric acid-butanone and perchloric acid-acetic acid, the confirmation of the end point was the key factor to guarantee the accuracy of measurement. UV and fluorescence spectrophotometry methods had good sensitivity. Osciliopolarography method, without the interference by nanoparticles, had better accuracy and reproducibility than the other methods. Besides, potential titration, based on hydrochloric acid-butanone method and using an electrode modified with poly(p-nitro aniline) as the indicator electrode, had effectively increased accuracy.
     Part III: Structure and Properties of AMNS/Nylon 6 Composites
     Based on the accurate determination of amino group on AMNS, the structures of AMNS/nylon 6 nanocomposites prepared by melt blending were analyzed. A model was established to illustrate the interfacial interactions between AMNS with different concentrations of amino group and nylon 6 matrixes. A concept of critical concentration of amino group was put forward. The optimized concentration of AMNS added in nylon 6 matrixes was determined. And the effect of amino group concentration of AMNS on the mechanical properties of AMNS/nylon 6 nanocomposites was explored. Results are obtained as follows:
     ①The amino groups on AMNS surface reacted with the end carboxyl groups and acylamino groups of nylon 6, forming interfacial structures based on hydrogen bonding and covalent bonding. There might exist an optimum concentration of the functional groups in AMNS, at which maximum interfacial interactions between nanosilica as the filler and nylon 6 matrix would be realized, hence acquiring effectively improved mechanical properties of the filled nylon 6 composites.
     ②The introduction of AMNS resulted in improvement of the mechanical properties of nylon 6. When the amino concentration was 2.86 mmol·g-1, the tensile strength, tensile modulous, flexural strength, flexural modulus, and notched impact strength of the nanocomposite were increased by 19.02%, 47.16%, 27.11%, 38.69%, and 17.11%, respectively, as compared with that of nylon 6 matrix.
     ③The thermal stability of nylon 6 increased with the increase of amino concentration of AMNS. Compared with nylon 6, the temperature at which AMNS/nylon 6 composites showed weight loss of 10% was increased by 6~10 oC as compared with the nylon 6 matrix.
     ④Increasing the amino concentration on AMNS favored the growth of nylon 6 along the (002)/(202) planes. The crystallization temperature of the nanocomposites decreased with the increase of amino concentration on AMNS, while the crystallinity of nylon 6 matrix kept also unchanged.
引文
[1] M L Zhang, G L Ding, X Y Jing, X Q Hou, Preparation, modification and application of nanoscale SiO2. Applied Science and Technology, 2004, 31 (6) 64-66.
    [2]李小红,孙蓉,张治军.以化学键结合的聚合物-无机纳米复合材料.自然科学进展, 2004, 14: 1-5.
    [3]单薇,廖明义.纳米SiO2的表面处理及其在聚合物基纳米复合材料中的应用进展.高分子通报, 2006, (3): 1-9.
    [4]刘俊渤,藏玉春,吴景贵.纳米二氧化硅的开发与应用.长春工业大学学报, 2003, 24 (4): 9-12.
    [5]黄志杰,刘景春,黄海等.纳米SiO2-x抗老化性研究及其应用.化学建材, 2001, (1): 46-47.
    [6]李建新,王磊,孙洪巍.纳米二氧化硅的制备、改性和在塑料中的应用.安阳工学院学报, 2008, (2): 43-45.
    [7]何奕锋,徐文彬.纳米二氧化硅粉体的制备研究进展.材料开发与应用. 2008 ,(5) :8l-84.
    [8]许坷敬,董云会,杨富贵.化学沉淀法制备多孔纳米SiO2粉末.淄博学院学报, 2002, (4) : 52-55.
    [9]洪立福,金鑫.超细二氧化硅的制备与改性.北京化工大学学报, 2004, 31 (5): 69-72.
    [10]张宁,熊裕华.溶胶-凝胶法制备纳米二氧化硅.南昌大学学报, 2003, 27 (3): 267-269.
    [11]郭宇,吴红梅,尹桂丽.溶胶-凝胶法制备纳米二氧化硅.天津化工, 2005, 19 (1): 24-35.
    [12]陈玉萍,徐甲强,方少明.现代测试技术在纳米材料研究中的应用.化学研究与应用, 2004, 16 (5): 593-596.
    [13]李玲,向航.功能材料与纳米技术.北京:化学工业出版社, 2002.7.
    [14]M Rather, D Rather. Nanotechnology. Pearson Education, Inc., 2003.
    [15]高金堂,王宏刚,毛绍兰.纳米材料的结构分析.分析测试技术与仪器, 2000, 6 (2): 70-74.
    [16]唐新,周歧发,尹荔松等.纳米级二氧化硅玻璃粉的制备及其特性.中山大学学报(自然科学版), 1998, 37 (5): 35-38.
    [17]常同钦.纳米材料的测试与表征.微纳电子技术, 2006, (10): 499-501.
    [18]沈新璋,金名惠,孟厦兰.纳米二氧化硅的制备和表征.涂料工业, 2002, 9:15-17.
    [19]黄建滨,戴庆红,桂琳琳.溶胶凝胶法制备PbS/SiO2量子点玻璃的研究.北京大学学报(自然科学版), 1999, 35 (2): 183-190.
    [20]张金升,尹衍升.一种强有力的表征手段-穆斯堡尔谱学.现代仪器, 2003, (6): 33-36.
    [21]陈永顺,杜士明.热分析法在药学领域中的应用进展.中国药房, 2005, 16 (20): 1583-1584.
    [22]林怡辉,张正国,王世平.溶胶-凝胶法制备新型蓄能复合材料的研究.华南理工大学学报(自然科学版), 2001, 29 (11): 7-10.
    [23]李曦,刘连利,王莉莉.纳米二氧化硅的研究现状与进展.渤海大学学报(自然科学版). 2006, 27 (4): 304-308.
    [24]Kim S W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and TheirSuccessful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions.J. Am. Chem. Soc, 2002, 124: 7642.
    [25]黄勇,巫峡,曹云峰.纳米SiO2表面改性及其应用.江苏工业学院学报, 2006,18(4): 60-64.
    [26]Fuji M, UenoS. Surface Structural Analysis of Fine Power Modified with Butyl Alcohol. Colloid and Polymer Science, 2000, 278 (1): 30-36.
    [27]Fuji M, Takei T, et al. Wettability of fine silica powder surfaces modified with several normal alcohols. Colloids Surf., A: Physicochemical and Engineering Aspects, 1999, 154 (1-2): 13-24.
    [28]张志华,沈军.纳米SiO2颗粒对PU树脂热稳定性能的影响.塑料工业, 2003, (7): 37-39.
    [29]王宏新,陆路德,杨绪杰,等.纳米SiO2改性紫外光固化树脂涂料.南京理工大学学报, 2005, 29 (3): 323-325.
    [30]杨育珍,何胜刚.有机硅烷偶联剂及其应用.化学工程师, 1994, (43): 40-43.
    [31]陈世容,瞿晚星,徐卡秋.硅烷偶联剂的应用进展.有机硅材料, 2003, 17 (5): 28-31.
    [32]何晓燕,倪刚,薄丽丽,李岩,杨武.可逆加成断裂链转移(RAFT)自由基聚合法制备PMMA/SiO2有机/无机杂化材料.西北师范大学学报(自然科学版), 2006, 42 (2): 68-72.
    [33]钱家盛,姚日生.纳米SiO2表面聚合物接枝改性的研究.安徽化工,2006,(6):13-14.
    [34]毋伟,陈建峰,邵磊,初广文.聚合物接枝改性超细二氧化硅表面状况及形成机理.北京化工大学学报(自然科学版), 2003, 30 (2): 1-4.
    [35]沈兴海,高宏成.纳米微粒的微乳液制备法.化学通报,1995,(11):6-9.
    [36]钱晓静,刘孝恒.辛醇改性纳米SiO2表面的研究.无机化学学报, 2004, 20 (3): 335-340.
    [37]王刚,颜峰,滕兆刚,等.二氧化硅表面的APTS修饰.化学进展, 2006, 18 (2/3): 239-245.
    [38]Ek S, Iiskola E I, Niinist? L. Gas-phase deposition of aminopropylalkoxysilanes on porous silica, Langmuir, 2003, 19 (8): 3461-3471.
    [39]Ek S, Iiskola E I, NiinistêL. A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-depositedγ-aminopropylalkoxysilanes on heat-treated silica. J. Phys. Chem. B, 2004, 108: 11454-63.
    [40]Ek S, Iiskola E I, Niinist? L, Vaittinen J. Atomic layer deposition of amino-terminated siloxane network on silica through sequential reactions ofγ-aminopropyltrialkoxysilanes and water, Langmuir, 2003, 19: 10601-10609.
    [41]Westcott S L, Oldenburg S J, Lee T R, et al. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces, Langmuir, 1998, 14: 5396-5401.
    [42]Walcarius A., Etienne M.. Rate of access to the binding sites in organically modified silicates. 1. Amorphous silica gels grafted with amine or thiol groups. Chem. Mater, 2002, 14: 2757-2766.
    [43]K. C. Vrancken, P. Van Der Voort, K. Possemiers. Surface and Structural Properties of Silica Gel in the Modification withγ-Aminopropyltriethoxysilane. J. Colloid Interface Sci., 1995, 174: 86-91.
    [44]Waddell T G, Leyden D E, Debello M T. The nature of organosilane to silica-surface bonding. J . Am. Chem. Soc., 1981, 103: 5303-5307.
    [45]Goodwin J W, Harbron R S, Reynolds P A. Functionalization of colloidal silica and silica surfaces via silylation reactions. Colloid Polym. Sci., 1990, 268: 766-777.
    [46]Choi H, Chen I W. Surface-modified silica colloid for diagnostic imaging. J. Colloid Interface Sci., 2003, 258: 435-437.
    [47]Jesionowski T, Krysztafkiewicz A. Influence of silicon coupling agents on surface properties of precipitated Silica. Applied Surface Science, 2001, 172 (1-2): 18-32.
    [48]Blaaderen A V, Vrij A. Synthesis and Characterization of Monodisperse Colloidal Organo-silica Spheres. J. Colloid Interface Sci, 1993, 156 (1): 1-18.
    [49]衷敬和,张明艳.杂化聚酰亚胺薄膜耐电晕性能的研究术.工程塑料应用, 2005,33(9): 13-15.
    [50]韦奇,钟振兴,聂祚仁,等.高度有序介孔氧化硅材料SBA-15:高浓度氨基官能化及氨基及氨基团的可利用性.无机化学学报, 2008, 24 (1): 130-137.
    [51]Hiramatsu H, Osterloh F E. pH Controlled Assembly and Disassembly of Electrostatically Linked CdSe-SiO2 and Au-SiO2 Nanoparticle Clusters. Langmuir, 2003, 19: 7003-7011.
    [52]Graf C, Blaaderen A V. Metallodielectric Colloidal Core-Shell Particles for Photonic Applications. Langmuir, 2002, 18: 524-534.
    [53]Vansant E F, van der Voort P, Vrancken K C. Characterizationand Chemical Modification of the Silica Surface. Amsterdam: Elsevier, 1995, 149-297.
    [54]Vrancken K C, Possemiers K, van der Voort P, et al. Surface modification of silica gels with aminoorganosilanes. Colloids and Surfaces A, 1995, 98: 235-241.
    [55]蔡楚江,沈志刚,麻树林,等.不同偶联剂在二氧化硅基片表面吸附膜的形貌分析.化工矿物与加工, 2007年增刊: 64-68.
    [56]Satu E, Iiskola E I. A 29Si and 13C CP/MAS NMR Study on the Surface Species of Gas-Phase-Deposited APAS on Heat-Treated Silica. J. Phys. Chem. B, 2004, 108 (31): 11454.
    [57]任丽. APS对PPy/SiO2纳米导电复合材料的界面改性研究.功能材料, 2004, 35 (1): 69-70.
    [58]郑金颖,耿艳楼,赵新强.氨丙基功能化二氧化硅的制备及结构表征.功能材料, 2008, 39 (9): 1562-1566.
    [59]Tao Q, He H P, Frost R L, et al. Nanomaterials based upon silylated layered double hydroxides. Applied Surface Science, 2009, 255 (7): 4334.
    [60]Shimizu I, Okabayashi H, Taga K, et al. Raman scattering study of the interaction of 3-aminopropyltriethoxy silane on silica gel. Time-dependent conformational change of aminopropyl- silyl segments. Vibrational Spectroscopy, 1997, 14: 125-132.
    [61]Garbassi F, Balducci L, Chiurlo P, et al. A study of surface modification of silica using XPS, DRIFT and NMR. Applied Surface Science, 1995, 84: 145-151.
    [62]Shimizu I, Okabayashi H, Taga K. Diffuse Reflectance Infrared Fourier Transform Spectral Study of the Thermal and Adsorbed-water Effects of a 3-Aminopropyl- triethoxysilane Layer Modified onto the Surface of Silica Gel. Vibrational Spectroscopy, 1997, 14: 113-123.
    [63]Y uan P, Southon P D, Liu Z W, et al. Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J. Phys. Chem C, 2008, 112 (40): 15742.
    [64]Chiorcea-Paquim A M, Pauliukaite R, Brett C M A. AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol-gel encapsulated glucose oxidase electrochemical biosensors. Biosens. Bioelectron.2008, 24 (2): 297-305.
    [65]Liu S, Lang X, Ye H, et al. Preparation and characterization of copolymerized amino- propyl/phenylsilsesquioxane microparticles. Eur. Polym. J, 2005, 41: 996.
    [66] Gang S, Adrian H, Rastislav L. Reaction of N-phenyl maleimide with aminosilane monolayers. Colloids Surf. B, 2004, 35: 59.
    [67]Zhang Y, Liu K Z, et al. A new solid-state pH sensor and its application in the determination of amino on surface modified nanomaterials. Anal. Lett., 2005, 38 (8): 1249.
    [68]邓建,苏致兴.纳米二氧化硅为核的树枝状分子中荧光素激基缔合物和基态复合物的形成.化学学报, 2007, 65 (5): 445-450.
    [69]尤姝黎,于志强,杨振国.偶联剂对纳米SiO2/树脂复合材料显微形貌及性能的影响.分子材料科学与工程, 2008, 24 (10): 50-53.
    [70]Perruchot C, Chehimi M M. Use of aminosilane co upling agent in the synthesis of conducting, hybrid polypyrrole-silica gel particles. Surf. Interface Anal, 1998, 26: 689-698.
    [71]蔡楚江,沈志刚,邢玉山.硅烷偶联剂在二氧化硅基片表面吸附膜的形貌.材料研究学报, 2007, 21 (3): 261-266.
    [72]Vandenberg E T, Bertilsson L, Liedberg B, et al. Structure of 3-aminopropyl triethoxy silane on silicon oxide. J. Colloid Interface Sci., 1991, 147: 103-118.
    [73]Linde H. Polyamic acid interactions with aminopropylsilane surface conditioners on metal. J.Appl. Polym. Sci., 1990, 40: 613-622.
    [74]Chu C W, Kirby D P, Murphy P D. Interactions of aminosilane with alumina and silica substrates deposited from nonaqueous and aqueous media. J. Adhes. Sci. Technol, 1993, 7: 417-433.
    [75]Lee I, Wool R P. Controlling amine receptor group density on aluminum oxide surfaces by mixed silane self assembly. Thin Solid Films, 2000, 379 (1-2): 94-100.
    [76]Rill C, Glaser A, Foisner J, et a1.Temperature-Dependent Formation of Octadecylsiloxane Self-Assembled Monolayers on Mica As Studied by Atomic Force Microscopy. Langnmir, 2005, 21 (14): 6289-6295.
    [77]Jiang Z X, Huang Y D, Liu L, et al. Effects of Functional Group Polarity on Interfacial Behavior of Non-polar Polyarylacetylene Resin-Silica Glass Composites. High Performance Polymers 2009, 21 (1): 79-89.
    [78]Lee J W, Tra P T, Kim S I, et al. Adsorption Properties of Proteins on SBA-15 Nanoparticles Functionalized with Aminosilanes. J of Nanoscience and Nanotechnology, 2008, 8 (10): 5152-5157.
    [79]Ojeda M L, Campero A, Velasquez C, et al. SBA-15 surface functionalization via ferrocenyl Fischer chromium carbene coatings: Technology and textural properties. Surface & Coatings Technology, 2009, 203 (10-11): 1444-1451.
    [80]Zhang Y Q, Xiang L, Zhang Y H, et al. Study on preparation of composite membrane with molecular recognizing property and its selective permeance mechanism. Separation and Purification Technology, 2009, 65 ( 2): 130-136.
    [81]Qiu Fengxian, Zhou Yuming, Liu Juzheng. Synthesis and characterization of hybrid organic-inorganic materials based on EA-Man-APTES and silica. Journal of Southeast University (English Edition), 2005, 21 (1): 63-67.
    [82]Aiello D, Aiello R, Testa F, et al. Mesoporous materials incorporating a zinc(II) complex: Synthesis and direct luminescence quantum yield determination Journal of Photochemistry and Photobiology A-Chemistry, 2009, 201 (2-3): 81-86.
    [83]A. Gomathi, S. Jafar Hoseini and C. N. R. Rao. Functionalization and solubilization of inorganic nanostructures and carbon nanotubes by employing organosilicon and organotin reagents. Journal of Materials Chemistry, 2009, 19 (7): 988-995.
    [84]Etienne M, Walcarius A. Analytical investigation of the chemical reactivity and stability of amine-functionalized silica in aqueous medium. Talanta, 2003, 59: 1173-1188.
    [85]Gimpel M, Unger K. Hydrolytically stable chemically bonded silica supports with metal complexating ligands: Synthesis, characterization and use in high-performance ligand-exchange chromatography. Chromatographia, 1982, 16: 117-125.
    [86]O’Gara J E, Walsh D P, Phoebe C H, et al. Embedded-Polar-Group Bonded Phases for High Performance Liquid Chromatography. LC-GC, 2001, 19: 632-642.
    [87]张志胜,杨屹.以枝形大分子聚酰胺-胺(PAMAM)为键合固定相的开管毛细管电色谱柱的制备及评价.高等学校化学学报, 2006, 27 (1): 47-51.
    [88] Sakai K, Teng T C, Katada A, et al. Designable size exclusion chromatography columns based on dendritic polymer-modified porous silica particles. Chem. Mater., 2003, 15: 4091-4097.
    [89]Suzuki Y, Quina F H, Berthod A, et al. Covalently Bonded Ionene Polyelectrolyte Silica Gels Stationary Phases for HPLC. Anal. Chem., 2001, 73: 1754-1765.
    [90]Heberger K, Milczewska K. Principal component analysis of polymer-solvent and filler-solvent interactions by inverse gas chromatography. Colloids and Surfaces A, 2005, 260: 29-37.
    [91]Antochshuk V, Olkhovyk O, Jaroniec M, et al. Benzoylthiourea-Modified Mesoporous Silica for Mercury(II) Removal. Langmuir, 2003, 19: 3031-3034.
    [92]Jal P K, Patel S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions.Talanta, 2004, 62: 1005-1028.
    [93]Gambero A, Kubota L T, Gushikem Y, et al. Use of chemically modified silica withβ-Diketoamine groups for separation ofα-Lactoalbumin from bovine milk whey by affinity chromatography J. Colloid Interface Sci., 1997, 185: 313-316.
    [94]Garg B S, Bist J S , Sharma R K. Solid-phase extraction of metal ions and their estimation in vitamins, steel and milk using 3-hydroxy-2-methyl-1, 4-naphthoquinone-immobilized silica gel. Talanta, 1996, 43: 2093-2099.
    [95]Stair J L, Holcombe J A. Metal remediation and preconcentration using immobilized short-chain peptides composed of aspartic acid and cysteine. Microchem. J., 2005, 81: 69-80.
    [96]Walcarius A, Etienne M, Delacote C. Uptake of inorganic HgII by organically modified silicates: influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processe. Analytica Chimica Acta, 2004, 508: 87-98.
    [97]杨娜,朱申敏,张荻.氨基改性介孔二氧化硅的制备及其吸附性能研究.无机化学学报, 2007, 23 (9): 1627-1630.
    [98]Wang L, Qi T, Zhang Y. Novel organic–inorganic hybrid mesoporous materials for boron adsorption. Colloids Surf. A: Physicochem. Eng. Aspects, 2006, 275: 73-78.
    [99]Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. J. Phys. Chem. B, 1998, 102: 5503-5510.
    [100]Quan Zhang, Jack Miller. ZrO2/SiO2 mixed oxides as catalysts for alcohol dehydration. Applied Catalysts A: General, 2001, 209: 1-6.
    [101]陈小兰,邹健莉,黎中宝.新型四羧基铝酞菁-二氧化硅核壳荧光纳米粒子的制备及在荧光免疫分析中的应用.第四届海峡两岸分析化学学术会议论文集, 2006.11, p66-67(武汉)
    [102]宁巧玉,孟建新,王海鸣.新型铽配合物掺杂SiO2荧光纳米粒子的制备.中国稀土学报2006, 24 (3): 289-292.
    [103]Yang H H, Qu H Y, Lin P, et al. Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels. Analyst, 2003, 128: 462-466.
    [104]Ferreira L, Ramos M A,. Exquisite Regioselectivity and Increased Transesterification Activity of an Immobilized Bacillus subtilis Protease. Biotechnol. Prog, 2002, 18: 986-993.
    [105]Levy L, Sahoo Y, Kim K, et al. Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications. Chem. Mater., 2002, 14 : 3715-3721.
    [106]Liu Z G, Li Z, Zhou H, et al. Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid. Microscopy Research and Technique, 2005, 66: 179-185.
    [107]Nehilla B J, Popat K C, Vu T Q, et al. Neurotransmitter analog tethered to a silicon platform for neuro-BioMEMS applications. Biotechnology and Bioengineering, 2004, 87: 669-674.
    [108]Chong A S M, Zhao X S. Functionalized nanoporous silicas for the immobilization of penicillin acylase. Applied Surface Science, 2004, 237: 398-404.
    [109]KimJ K, Park J K, Kim H K. Synthesis and characterization of nanoporous silica support for enzyme immobilization. Colloids and Surfaces A, 2004, 241: 113-117.
    [110]曾恕金. PI/Si02纳米杂化薄膜聚集态结构及热性能研究.哈尔滨理工大学, 2007,硕士论文.
    [111]李莹,于建.纳米SiO2粒子表面官能团对尼龙6原位聚合的影响,高分子学报,2003,2:235.
    [112]Li Y, Yu J, Guo Z X. The influence of interphase on nylon 6 / nano-SiO2 composite materials obtained from in situ polymerization. Polym Int, 2003, 52 (6): 981-986.
    [113]刘秋萍.聚酰亚胺/无机纳米复合材料的制备与表征.陕西师范大学硕士学位论文, 2007.
    [114]Xuezhu Liu, Ulrich J. Krull. DNA hybridization on silica microbeads that are physically adsorbed as arrays on glass surfaces. Analytica Chimica Acta, 2006, 562: 1-8.
    [115]Zheng Chan, Lin Aimei. Microstructures and properties of ORMOSIL comprising methyl, vinyl, andγ-glycidoxypropyl- substitued silica. Optical Materials, 2007,29: 1543-1547.
    [116]Zhongyi Jiang, Yingxia Yu, Hong Wu. Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers. Journal of Membrane Science, 2006, 280: 876-882.
    [117]G. Della Giustina, G. Brusatin, M. Guglielmi. Direct nanopattern of hybrid sol–gel films. Materials Science and Engineering C, 2007, 27: 1382-1385.
    [118]Jos′e A.A. Sales, Claudio Airoldi. Calorimetric investigation of metal ion adsorption on 3-glycidoxypropyltrimethylsiloxane-propane-1,3-diamine immobilized on silica gel. Thermochimica Acta, 2005, 427 (1-2): 77-83.
    [119] Darin Allen, Ziad El Rassi. Capillary electrochromatography with monolithic silica columns: III. Preparation of hydrophilic silica monoliths having surface-bound cyano groups: chromatographic characterization and application to the separation of carbohydrates, nucleosides, nucleic acid bases and other neutral polar species. J. Chromatogr. A, 2004, 1029: 239-247.
    [120]Steven R D, Adrian R B, Alan A. Formation of silica/epoxy hybrid network polymers. Journal of Non-Crystalline Solids, 2003, 315: 197-205.
    [121]Voevodin N N, Kurdziel J W, Mantz R. Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol–gel. Surface & Coatings Technology, 2006, 201: 1080–1084.
    [122]Zhi-Ya Ma, Xian-Qiao Liu, Yue-Ping Guan, Hui-Zhou Liu. Synthesisof magnetic silica nanospheres with metal ligands andapplication in affinity separation of proteinsColloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 275: 87-91.
    [123]马骞,毛学峰,魏宏广. MCM-41介孔分子筛的修饰与表征.西北师范大学学报(自然科学版), 2003, 39 (4): 54-57.
    [124]吴翠明,徐铜文.烷氧基硅烷溶胶-凝胶机理研究进展.化学进展, 2007, 19 (1): 80-86.
    [125]Shi H W, Liu F C, Han E H, et al. Investigation on a Sol-gel Coating Containing Inhibitors on 2024-T3 Aluminum Alloy. Chinese Journal of Aeronautics, 2006, 19: S106-S112.
    [126]Duong H D, Sohn O J, Lam H T,et al. An optical pH sensor with extended detection range based on fluoresceinamine covalently bound to sol-gel support. Microchem. J., 2006, 84: 50-55.
    [127]高莉宁,房喻,吕凤婷,等.芘在石英玻片表面的柔性长臂固定化及其对二元羧酸的传感特性.中国科学(B辑:化学), 2004, 34: 36-45.
    [128]张兴文,胡立江,赵树山,等.正硅酸乙酯对有机无机杂化膜结合强度的影响.哈尔滨工业大学学报, 2004, 36: 1344-1350.
    [129]Wojtach K, Laczka M, Kowalska K C,et al. Characteristics of colored inorganic–organic hybrid materials. Journal of Non-Crystalline Solids, 2007, 353: 2099-2103.
    [130]Iijima M, Tsukada M, Kamiya H. Effect of surface interaction of silica nanoparticles modified by silane coupling agents on viscosity of methylethylketone suspension. Journal of Colloid and Interface Science, 2007, 305: 315-323.
    [131]Daoud W A, Xin J H, Tao X M. Synthesis and characterization of hydrophobic silica nanocomposites. Applied Surface Science, 2006, 252: 5368-5371.
    [132] Kasten L S, Balbyshev V N, Donley M S. Surface analytical study of self-assembled nanophase particle (SNAP) surface treatments. Prog. Org. Coat.,2003, 47: 214-224.
    [133]LǜF T, Gao L N, Li H H, et al. Molecular engineered silica surfaces with an assembled anthracene monolayer as a fluorescent sensor for organic copper(II) salts. Applied Surface Science, 2007, 253: 4123-4131.
    [134]Wong A K Y, Krull U J. Surface characterization of 3-glycidoxypropyltrimethoxysilane films on silicon-based substrates. Analytical and Bioanalytical Chemistry, 2005, 383: 187-200.
    [135] Sales J A A, Prado A G S. Interaction of divalent copper with two diaminealkyl hexagonal mesoporous silicas evaluated by adsorption and thermochemical data. Surf. Sci., 2005, 590: 51-62.
    [136] Daniels M W, Francis L F. Silane Adsorption Behavior, Microstructure, and Properties of Glycidoxypropyltrimethoxysilane-Modified Colloidal Silica Coatings. J. Colloid Interface Sci., 1998, 205:191-200.
    [137]Sales J A A, Prado A G S, Airoldi C. The incorporation of propane-1,3-diamine into silylant epoxide group through homogeneous and heterogeneous routes. Polyhedron, 2002, 21: 2647-2651.
    [138]Nikolaidis M R, Zujovic Z D, Edmonds N R, et al. Spectroscopic characterization of GPTMS/DETA and GPTMS/EDA hybrid polymers. J. Non-Cryst. Solids, 2007, 353: 1598-1605.
    [139]Li L S, Da S L, Feng Y Q, et al. Preparation and characterization of a p-tert-butyl- calix[6]-1,4-benzocrown-4-bonded silica gel stationary phase for liquid chromatography. Journal of Chromatography A, 2004, 1040: 53-61.
    [140]许丽丽,李来生. Preparation, Characterization and Chromatographic Performance of Curcumin Bonded Silica Stationary Phase.色谱, 2007, 25 (3): 374-379.
    [141]Chen Y, Kang E T. Electroless Metallization of Glass Surfaces Functionalized by Silanization and Graft Polymerization of Aniline. Langmuir, 2001, 17: 7425-7432.
    [142]Que W X, Sun Z, Lam Y L, et al. Effects of titanium content on properties of sol-gel silica-titania films via organically modified silane precursors. Journal of Physics D: Applied Physics, 2001, 34: 471-476.
    [143]Que W X, Hu X, Zhou J. Sol–gel fabrication of GeO2/ormosils organic–inorganic hybrid material channel waveguides. Thin Solid Films, 2005, 484: 278-282.
    [144]白红英,贾梦秋.纳米SiO2的原位改性及在耐热涂料中的应用.表面技术, 2003, 32: 59-62.
    [145]Ochi M, Takahashi R, Terauchi A. Phase structure and mechanical and adhesion properties of epoxy/silica hybrids. Polymer, 2001, 42: 5151-5158.
    [146]Sales J A A, Airoldi C. Epoxide silylant agent ethylenediamine reaction product anchored on silica gel-thermodynamics of cation-nitrogen interaction at solid/liquid interface. Journal of Non- Crystalline Solids, 2003, 330: 142-149.
    [147]何国亮,达世禄,王忠华.键合硅胶固定相表面上α-环氧基的测定及硅胶键合反应研究.色谱, 1993, 11 (4): 232-234.
    [148]Radi S, Ramdani A, Lekchiri Y, et al. Immobilization of pyrazole compounds on silica gels and their preliminary use in metal ion extraction. New J. Chem., 2003, 27: 1224-1227.
    [149]Chang S H, Gooding K M, Regnier F E. High-performance liquid chromatography of proteins. Journal of Chromatography, 1976, 125: 103-114.
    [150]刘旭,李来生,黄志兵,等.高效液相色谱喹啉醚基键合硅胶固定相的制备及评价.分析试验室, 2005, 24: 1-6.
    [151]罗爱芹,刘立文,戴荣继,等. 2,6-二-O-苄基-β-环糊精键合硅胶固定相的合成与色谱性能.北京理工大学学报, 2005, 25: 87-90.
    [152]Bai Z W, Zhou Y K, Ren S. Preparation of a New Enzyme Carrier and Its Application in the Immobilization of Lipase.分子催化, 1999, 13 (2): 143-146.
    [153] Ma Z Y, Guan Y P, Liu H Z. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. Journal of Magnetism and Magnetic Materials, 2006, 301: 469-477.
    [154]Petri A, Gambicorti T, Salvadori P. Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst. J. Mol. Catal. B: Enzym., 2004, 27: 103-106.
    [155]Shirosaki Y, Tsuru K, Hayakawa S, et al. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 2005, 26: 485-493.
    [156] Giustina G D, Brusatin G, . Electro-optics Modulator Realized by Poled Sol-Gel Material Doped with Functionalized Chromophores. Mater. Sci. Eng. C, 2006, 26: 979-982.
    [157]奚红霞,李忠,梁兆熙.新型有机/无机复合非线性光学材料制备与表征.华南理工大学学报(自然科学版), 2000, 28: 35-41.
    [158]王亚强,李玉平,郑廷秀,等.超细二氧化硅改性及其在建筑涂料中的应用.非金属矿(Non-metallic Mines), 2004, 27: 18-19.
    [159]DeOliveira E, Prado A G S. Ethylenediamine attached to silica as an efficient, reusable nanocatalyst for the addition of nitromethane to cyclopentenone. Journal of Molecular Catalysis A: Chemical, 2007, 271: 63-69.
    [160]Prado AGS, DeOliviera E. The interaction at the solid/liquid interface of 2,4-dichloro- phenoxyacetic acid with silica modified by reaction with ammonia gas. Journal of Colloid and Interface Science, 2005, 291: 53-58.
    [161]马骞,侯经国,吕卫华,等.β-环糊精修饰MCM-41复合介孔材料的合成与表征.无机化学学报, 2003, 19 (12): 1372-1375.
    [162] Que W X, Sun Z, Zhou J, et al. Preparation of hard optical coatings based on an organic/ inorganic composite by sol–gel method. Materials Letters, 2000, 42: 326–330.
    [163]Coutant D E, Clarke S A, Francis A H, et al. Selective separation of fullerenes on hydroxyphenyl-triphenylporphyrin–silica stationary phases. J. Chromatogr.A,1998,824: 147-157.
    [164]罗毅.改性尼龙6工程塑料的现状和发展趋势.中国塑料, 1998, 12 (5): 9-15.
    [165]张吉林.尼龙改性研究进展.工程塑料应用, 1998, 26 (1): 28-30.
    [166]李凤生,杨毅,马振叶.纳米功能复合材料及应用.北京:国防工业出版社, 2003.
    [167]朱金唐,付中玉.熔融共混制备尼龙6/纳米SiO2复合材料与性能研究.北京服装学院学报, 2006, 26 (4): 12-17.
    [168]Muhammad I S, Zulfiqar S, Ahmad Z. preparation a properties of pclyamide-titania nanocomposites. Sol-Gel Technol, 2007, 44 (1): 41-46.
    [169]Reynaud E, Jouen T, Gauthier C, Vigier G, Varler J. Polymer, 2001, 42: 8759-8768.
    [170]陈婉吟,林志勇,杨俊等.MC尼龙6/TiO2原位纳米复合材料的制备及表征.工程塑料应用.2004, 32(12):4-7.
    [171]赵才贤.原位聚合法制备PA6/SiO2纳米复合材料.高分子材料科学与工程, 2007, 23 (1): 218-221.
    [172]贾志杰.碳纳米管增强PA6复合材料的机理.高分子材料科学与工程,2003,19(3): 198-200.
    [173]欧玉春.界面改性剂在聚丙烯/高岭土二相复合体系中的作用.高分子学报,1996, (1): 59-64.
    [174]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构.高分子材科科学与工程, 1998, (2): 12-15.
    [175]欧玉春,于中搬,方晓萍.界面改性剂对刚性粒子增韧尼龙6熔体流变行为的影响.高分子学报, 1994, (4): 449-454.
    [176]Monserrat García, Gerhard van Vliet. Large-scale extrusion processing and characterization of hybrid nylon-6/SiO2 nanocomposites. Polym Adv Technol, 2004, 15 (4): 164-172.
    [177]Liu T X, Phang I Y, Shen L, et a1.Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites.Macromolecules, 2004, 37: 7214-7222.
    [178]何翼云,熊远凡.复合包装膜用尼龙的装备及其性能研究.工程塑料应用,2000,28 (7): 1-4.
    [179] Monserrat G, Matthijn D R, Louis W. et a1.Friction and wear studies on nylon-6/SiO2 Nanocomposites. J. Appl. Polym. Sci. 2004,92(3):1855-1862.
    [180]朱金唐,付中玉.熔融共混制备尼龙6/纳米SiO2复合材料与性能研究.北京服装学院学报, 2006, 26 (4): 12-17.
    [181]李莹,于健.原位聚合制备尼龙6/纳米SiO2复合材料研究.工程塑料应用, 2002, 30(9): 7-11.
    [182]Ceren ?zdilek, Krzysztof Kazimierczak, et al. Preparation and properties of polyamide-γ-boehmite nanocomposites. Polymer, 2004, 45: 5207-5214.
    [183]舒中俊,陈光明.聚合物/黏土纳米复合材料及其特殊阻燃性能.塑料工业,2000,28(3): 24-26.
    [184]R. J. Varley, A. M. Groth, K. H. Leong. The role of nanodispersion on the fire performance of organoclay–polyamide nanocomposites. Compos. Sci. Technol., 2008, 68: 2882-2891.
    [185]崔建霞.纳米SiO2增强尼龙摩擦学性能的影响因素研究.河南理工大学学报, 2008, 27 (3): 357-360.
    [186]Srinath G, Gnanamoorthy R. Sliding wear performance of polyamide 6–clay nanocomposites in water. Composites Science and Technology,2007,67(3-4):399-405.
    [187]Wang Junxiang. Investigation of the MoS2 filler on the tribological properties of carber fiber reinforeed nylon 1010 compsites. Wear, 2003, 255: 774-779.
    [188]王东红,石玉.纳米SiC/PA-66复合材料的研究.化工新型材料, 2004, 32 (2): 11-12.
    [189]韩顺昌.纳米材料的结构特性及其表征.材料开发与应用, 1998, 13 (1): 36-40.
    [1] Vansant E F, van der Voort P, Vrancken K C. Characterization and Chemical Modification of the Silica Surface. Amsterdam: Elsevier, 1995. 149-297.
    [2] Kallury K M R, Thompson M. Chemically Modified Surface (eds. Pesek J J, Leigh I E). Cambridge: The Royal Society of Chemistry, 1994, 58-128.
    [3] O’Gara J E, Walsh D P, Phoebe C H, et al. Embedded-Polar-Group Bonded Phases for HighPerformance Liquid Chromatography. LC-GC, 2001, 19: 632-642.
    [4] Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. J. Phys. Chem. B, 1998, 102: 5503-5510.
    [5] Plueddemann E P. Silane Coupling Agents, 2nd ed. New York : Plenum, 1991. 153-249.
    [6] Zhang Y, Liu K Z, et al. A new solid-state pH sensor and its application in the determination of amino on surface modified nanomaterials, Anal. Lett., 2005, 38 (8): 1249.
    [7]张志胜,杨屹.以枝形大分子聚酰胺-胺(PAMAM)为键合固定相的开管毛细管电色谱柱的制备及评价.高等学校化学学报, 2006, 27 (1): 47-51.
    [8] Liu S M, Lang X M, Ye H, et al. Preparation and characterization of copolymerized amino- propyl/phenylsilsesquioxane microparticles. Eur. Polym. J, 2005,41:996-1001.
    [9] Jane Jie Yang, Issa M. El-Nahhal, I-Suer Chuang and Gary E. Maciel. Synthesis and solid-state NMR structural characterization of polysiloxane-immobilized amine ligands and their metal complexes. Journal of Non-Crystalline Solids, 1997, 209: 19-39.
    [10] Mathieu E, Alain W. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta, 2003, 59: 1173-1188.
    [11] A. Walcarius, M. Etienne, J. Bessiere. Rate of Access to the Binding Sites in Organically Modified Silicates. 1. Amorphous Silica Gels Grafted with Amine or Thiol Groups. Chem. Mater. 2002, 14: 2757-2766.
    [12] Gang S, Adrian H, Rastislav L. Reaction of N-phenyl maleimide with aminosilane monolayers. Colloids and Surfaces B: Biointerfaces, 2004, 35: 59–65.
    [13] Tsubokawa N, Iida T, Takayama T. Modification of Cellulose Powder Surface by Grafting of Polymers with Controlled Molecular Weight and Narrow Molecular Weight Distribution. J. Appl. Polym. Sci., 2000, 75: 515.
    [14]叶美君.聚酸胺树脂中胺值的测定.热固性树脂, 1999, (2): 51-53.
    [15]张志贤.有机官能团定量分析.北京:化学工业出版社, 1990. l.
    [16]张振华.氨基酸与茚三酮显色反应影响因素的探讨.邵阳高等专科学校学报, 2000, 13 (1): 42-44.
    [17] Liu J. Y., Cheng L., Liu B. F., Dong S. J. Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films. Langmuir, 2000, 16: 7471-7476.
    [18] Cheng L., Liu J. Y., Dong S. J. Layer-by-layer assembly of multilayer films consisting of silicotungstate and a cationic redox polymer on 4-aminobenzoic acid modified glassy carbon electrode and their electrocatalytic effects. Anal. Chim. Acta. 2000, 417: 133–142.
    [19] Walcarius A., Lüthi N. Electrochemical evaluation of polysiloxane-immobilized amine ligands for the accumulation of copper(II) species. Electrochimica Acta. 1999, 44: 4601–4610.
    [20] Etienne M., Bessiere J., Walcarius A. Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Sensors and Actuators B. 2001, 76: 531-538.
    [21] Arrigan D. W. M., Bihan L. L. A study of l-cysteine adsorption on gold via electrochemical desorption and copper(ii) ion complexation. Analyst, 1999, 124: 1645–1649.
    [1] Chang S H, Gooding K M, Regnier F E. High-Performance Liquid-Chromatography of Proteins. Journal of Chromatography, 1976, 125: 103-114.
    [2]刘旭,李来生,黄志兵.高效液相色谱喹啉醚基键合硅胶固定相的制备及评价.分析试验室, 2005, 24: 1-6.
    [3]罗爱芹,刘立文,戴荣继. 2,6-二-O-苄基-β-环糊精键合硅胶固定相的合成与色谱性能.北京理工大学学报, 2005, 25: 87-90.
    [4] Bai Z W, Zhou Y K, Ren S. Preparation of a New Enzyme Carrier and Its Application in the Immobilization of Lipase.分子催化, 1999, 13 (2): 143-146.
    [5] Ma Z Y, Guan Y P, Liu H Z. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. J. Magn. Magn. Mater., 2006, 301: 469-477.
    [6] Antonella Petri, Tiziana Gambicorti, Piero Salvadori. Covalent immobilization of chloro- peroxidase onsilica gel and propertiesofthe immobilized biocatalyst. J. of Molecular Catalysis B: Enzymatic, 2004, 27: 103-106.
    [7] Yuki Shirosaki, Kanji Tsuru, Satoshi Hayakawa, Akiyoshi Osaka, Maria Ascensao Lopes, Jose Domingos Santos, Maria Helena Fernandes. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 2005, 26: 485-493.
    [8] Wenxiu Que, X. Hub, J. Zhou. Sol–gel fabrication ofGeO2/ormosils organic-inorganic hybrid material channel waveguides. Thin Solid Films, 2005, 484: 278-282.
    [9] G. Della Giustina, G. Brusatin, M. Guglielmi, F. Romanato. Direct nanopattern of hybrid sol–gel films. Mater. Sci. and Eng. C, 2006, 26: 979-982.
    [10] Xi H X, Li Z, Liang Z X.. Synthesis and Characterization of a New Organic/ Inorganic Hybrid Nonlinear Optical Materia.华南理工大学学报(自然科学版,英文), 2000, 28 (12): 35-41.
    [11]白红英,贾梦秋,毋伟.纳米SiO2的原位改性及在耐热涂料中的应用.表面技术, 2003, 32: 59-62.
    [12]王亚强,李玉平,郑廷秀等.超细二氧化硅改性及其在建筑涂料中的应用.非金属矿, 2004, 27: 18-19.
    [13] M. Ochi, R. Takahashi, A. Terauchi. Phase structure and mechanical and adhesion properties of epoxy/silica hybrids. Polymer, 2001, 42: 5151-5158.
    [14] Edimar DeOliveira, Alexandre G. S. Prado.Ethylenediamine attached to silica as an efficient, reusable nanocatalyst for the addition of nitromethane to cyclopentenone. J. Mol. Catal. A: Chem., 2007, 271: 63-69.
    [15] A. G. S. Prado, E. DeOliviera. The interaction at the solid/liquid interface of 2,4-dichloro- phenoxyacetic acid with silica modified by reaction with ammonia gas. J. of Colloid and Interface Science, 2005, 291: 53-58.
    [16]马骞,毛学峰,魏宏广,田锐. MCM-41介孔分子筛的修饰与表征.西北师范大学学报(自然科学版), 2003, 39 (4): 54-57.
    [17]马骞,侯经国,吕卫华等.β-环糊精修饰MCM-41复合介孔材料的合成与表征.无机化学学报, 2003, 19 (12): 1372-1375.
    [18] Motoyuki Iijima, Mayumi Tsukada, Hidehiro Kamiya. Effect of surface interaction of silica nanoparticles modified by silane coupling agents on viscosity of methylethylketone suspension. J. of Colloid and Interface Science, 2007, 305: 315-323.
    [19] W. A. Daoud, J. H. Xin, Xiaoming Tao. Synthesis and characterization of hydrophobic silica nanocomposites. Appl. Surf. Sc., 2006, 252: 5368-5371.
    [20] L. S. Kasten, V. N. Balbyshev, M. S. Donley. Surface analytical study of self-assembled nanophase particle surface treatments. Progress in Organic Coatings, 2003, 47: 214-224.
    [21] Fengting Lu¨, Lining Gao, Huihui Li, Liping Ding, Yu Fang. Molecular engineered silica surfaces with an assembled anthracene monolayer as a fluorescent sensor for organic copper(II) salts. Applied Surface Science, 2007, 253: 4123-4131.
    [22] Wong A K Y, Krull U J. Surface characterization of 3-glycidoxypropyltrimethoxysilane films on silicon-based substrates. Analytical and Bioanalytical Chemistry, 2005, 383: 187-200.
    [23] Jose A. A. Sales, Alexandre G.S. Prado , Claudio Airoldi. Interaction of divalent copper withtwo diaminealkyl hexagonal mesoporous silicas evaluated by adsorption and thermochemical data. Surface Science , 2005,590:51–62
    [24] J. A. A. Sales, A. G. S. Prado. The incorporation of propane-1,3-diamine into silylant epoxide group through homogeneous and heterogeneous routes. Polyhedron, 2002, 21: 2647-2651.
    [25] Chen Y, Kang E T, Neoh K G. Electroless Metallization of Glass Surfaces Functionalized by Silanization and Graft Polymerization of Aniline. Langmuir, 2001, 17: 7425-7432.
    [26] Que W X, Sun Z, Lam Y L. Effects of titanium content on properties of sol–gel silica–titania films via organically modified silane precursors. J. Phys. D: Appl. Phys., 2001, 34: 471-6.
    [27] Zhi-Ya Ma, Xian-Qiao Liu, Yue-Ping Guan, Hui-Zhou Liu. Synthesisof magnetic silica nanospheres with metal ligands andapplication in affinity separation of proteins. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 275: 87-91.
    [28] Steven R D, Adrian R B, Alan A. Formation of silica/epoxy hybrid network polymers. J. of Non-Crystalline Solids, 2003, 315:197-205.
    [29] J. A. A. Sales, C. Airoldi. Epoxide silylant agent ethylenediamine reaction product anchored on silica gel-thermodynamics of cation–nitrogen interaction at solid/liquid interface. J. of Non-Crystalline Solids, 2003, 330: 142-149.
    [30] Radi S; Ramdani A; Lekchiri Y, et al. Immobilization of pyrazole compounds on silica gels and their preliminary use in metal ion extraction. New J. of Chemistry, 2003, 27 (8): 1224-1227.
    [31] M. W. Daniels, J. Sefcik, L. F. Francis. Reactions of a Trifunctional Silane Coupling Agent in the Presence of Colloidal Silica Sols in Polar Media. J. Colloid Interface Sci.,1999,219, 351-6.
    [32]刘锋,张媛,孙光洁. IO3-与IO4-共存体系的氧化还原滴定分析法.天津大学学报, 2002, 35 (2): 265-266.
    [33]魏永巨,刘翠格,默丽萍.碘离子的紫外光谱及其分析应用.分析化学, 2003, 31 (1): 120.
    [34] M. Iijima, M. Tsukada, H. Kamiya. Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone. J. Colloid Interf. Sci., 2007, 307: 418-424.
    [35] K. C. Vrancken, P. van der Voort, K. Possemiers, et al. The role of silanols in the modification of silica gel with aminosilanes. J. Colloid Interf. Sci., 1995, 170: 71-77.
    [36] J. Ueda, S. Sato, A. Tsunokawa, et al. Scale-up synthesis of vinyl polymer-grafted nano-sized silica by radical polymerization of vinyl monomers initiated by surface initiating groups in the solvent-free dry-system. Eur. Polym. J., 2005, 41: 193-200.
    [37] B. Roy, M. Gupta, J. Ray. Studies on Conducting Polymers. I. Aniline-Initiated Polymerization of Nitroanilines. Macromolecules, 1995, 28: 1727-1732.
    [38] R. Ando, G. Nascimento, R. Landers, P. Santos. Spectroscopic investigation of conjugated polymers derived from nitroanilines. Spectrochim. Acta A, 2008, 69: 319-326.
    [1]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究.分子通报, 1997, (3): 135-143.
    [2]郭敏燕,周晓东.聚合物基纳米复合材料的界面.现代塑料加工应用, 2004, 16 (5): 42-45.
    [3]李莹,于建.纳米SiO2粒子表面官能团对尼龙6原位聚合的影响.高分子学报, 2003, (4): 235-240.
    [4]容敏智,章明秋.纳米SiO2增韧增强聚丙烯的界面效应与逾渗行为.复合材料学报, 2002, (2): 1-4.
    [5]吴春蕾,章明秋.纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能.复合材料学报, 2002, (12): 61-67.
    [6] D. J. Upadhyay, N. Y. Cui, C. A. Anderson. A comparative study of the surface activation of polyamides using an air dielectric barrier discharge. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 248: 47–56.
    [7] Shaobo Xie, Shimin Zhang, Fosong Wang, et al. Preparation, structure and thermomechanical properties of nylon-6nanocomposites with lamella-type and fiber-type sepiolite. Composites Science and Technology, 2007, 67: 2334–2341.
    [8] Akyu¨z S, Akyu¨z T. FTIR spectroscopic investigations of surface and intercalated 2-aminopyrimidine adsorbed on sepiolite and montmorillonite from Anatolia. J Mol Struct., 2003, 651–653.
    [9] Noda K, Tsuji M, Takahara A, et al. Aggregation structure and molecular motion of (glass-fiber/matrix nylon 66) interface in short glass-fiber reinforced nylon 66 composites. Polymer, 2002, 43 (14): 4055-4062.
    [10]福本修编,施祖培,杨维榕,唐立春译.聚酞胺树脂手册,北京:中国石化出版社, 1994.
    [11]朱诚身,王友文,雷宏伟.尼龙1010尼龙6共聚物的表观相图研究.应用化学, 1994, 11 (2): 99-101.
    [12]黎学东,陈鸣才,黄玉惠,丛广民.聚丙烯/尼龙6/聚丙烯接枝物原位复合材料的形态与力学性能-共混过程对体系的影响.高分子学报, 1998, (1): 109-112.
    [13]高建国,陈雨萍,王有槐.改性MC尼龙的a/Y球晶与力学性能的关系.中国塑料, 2000, 14 (10): 33-37.
    [14]林志勇.碳纤维表面阴离子接枝尼龙6及其碳纤维泥龙6复合材料界面效应.中山大学博士学位论文, 2002.
    [15]刘长生,王琪.阻燃型PA6/PP/硅灰石复合材料的制备及阻燃机理研究.高分子材料科学与工程, 2001, 17 (3): 139-142.
    [16] Jancar J., Dibenedeto A. T, Dianselmo A. Effect of adhesion on the fracture toughness of cal cium carbon filled polypropylene. Polym. Eng. Sci., 1993, 33 (9): 559-563.
    [17] Tjiong S. C., Li R K Y, Cheung T. Mechanical behavior of CaCO3β-crystalline phase particle filled polypropylene composites. Polym. Eng. Sci., 1997, 37 (1): 166-172.
    [18] Rong M. Z., Zhang M Q, Zheng Y X. Improvement of tensile properties of nano-silica/PPcomposites in relationt opercolation mechanism. Polymer, 2001, 42 (7): 3301-3304.
    [19]张以河,付绍云,李国耀,等.聚合物基纳米复合材料的增强增韧机理.高技术通信, 2004, 14 (5): 99-105.
    [20] Huang J C, He C B, Liu X M, et al. Organic–inorganic nanocomposites from cubic silsesquioxane epoxides: direct characterization of interphase, and thermomechanical properties. Polymer, 2005, 46 (18): 7018-7027.
    [21]朱晓光,漆宗能.聚合物增韧研究进展.材料研究学报, 1997, 6: 623-638.
    [22] Fekete E, Molnar S Z. J. Mater. Sci. Phys., 1999, B38: 885.
    [23] Jancar J, Dianselmo A. The yield strength of particulate reinforced thermoplastic composites. Polym. Eng. Sci., 1992, 32 (18): 1394-1399.
    [24] Kyu T., Zhou Z. L, Zhu G. C., TajuddinY, Qutubuddin S. Novel filled polymerc omposites pre pared from in situ polymerization via acolloidal approach. Kaolin/nylon-6 in situ composite. Polym. Sci., Part B: Polym. Phys., 1996, 34 (10):1761-1768.
    [25] Chan Seok Park, Ki Jun Lee, JaeDo Narn, SeongWoo Kim. Crystallization kineties of glass fiber reinforced PBT composites. J. Appl. Polym. Sci., 2000, 78: 576-585.
    [26] Philip B, Xie J, Chandrasekhar A, Abraham J, Varadan VK. A novel nanocomposite from multiwalled carbon nanotubes functionalized with a conducting polymer. Smart Mater. Struct., 2004, 13: 295-298.
    [27] Mo Z, Meng Q, Feng J. Crystal structure and thermodynamic parameters of Nylon-1010. Polym Inter., 1993, 32: 53-60.
    [28] Bas C, Battesti P. Crystallization and melting behaviors of poly (arletheretherketone) on origin of double melting peaks. J. Appl. Polym. Sci., 1994, 53: 1745-1757.
    [29] Holdsworth P T, Turner-Jones A. The melting behaviour of heat crystallized poly(ethylene terephthalate). Polymer, 1971, 12 (3): 195-208.
    [30] Griffin A C, Havens S J. Mesogenic polymers III. Thermal properties and synthesis of three homologous series of thermotropic liquid crystalline backbone polyesters. J. Polym. Sci. Polym. Phys. Ed., 1981, 19 (6): 951-969.
    [31] Lin Z D, Huang Z Z, Zhang Y. Crystallization and melting behavior of nano-CaCO3/poly- propylene composites modified by acrylic acid. J. Appl. Polym. Sci., 2004, 91: 2443-2453.
    [32]李磊,王夏琴,黄南薰.尼龙66的多重熔融行为.中国纺织大学学报, 2000, 26 (4): 93-95.
    [33]朱诚身,吕励耘,何素芹,等.蒙脱土对尼龙66熔融与结晶行为的影响.应用化学, 2002, 19 (10): 985-988.
    [34]任显诚,白兰英,王贵恒.纳米CaCO3增强增韧聚丙烯的研究.中国塑料, 2000, 14 (01): 22-26.
    [35] Mehrabzadeh M, Kamal MR. Melt processing of PA-66/clay, HDPE/clay and HDPE/PA-66/clay nanocomposites. Polym. Eng. Sci., 2004, 44 (6): 1152-1161.
    [36] Ogata N, Kawakage S, Ogihara T. Structure and thermal/mechanical properties of poly (ethylene oxide)-clay mineral blends. Polymer, 1997, 38 (20): 5115-5118.
    [37] Fornes T D, Paul D R. Crystallization behavior of nylon 6 nanocomposites. Polymer, 2003,44 (14): 3945-3961
    [38] Arimoto H, Ishibashi M. Crystal structure of theγ-form of nylon 6. J. of Polym. Sci., 1965, 3(1): 317-326.
    [39] E. M. Bradbury, L. Brown, A. Elliot. D. A. D. Parry. The structure of the gamma form of polycaproamide (Nylon 6). Polymer, 1965, 6 (9): 465-472.
    [40] Wu T M, Wu J Y. Structural analysis of polyamide/clay nanocomposites. J. Macromolecular- Physics, 2002, 41 (1): 17-31.
    [41] Kojima Y, Usuki A, Kawasumi M, et al. Mechanical properties of nylon6/clay hybrid. Mater Res., 1993, 8 (5): 1185-1188.
    [42] Liu Limin, Qi Zongneng, Zhu Xiaoguang. Studies on nylon6/clay nanocomposites by melt intercalation process. Appl. Polym. Sci., 1999, 71 (7): 1133-1135.
    [43]张艺.聚酰胺嵌段共聚物的设计合成及其与尼龙6共混体系的研究.中山大学博士学位论文, 2002.
    [44] Wang H L, Shi T J, Yang S Z, et al. Crystallization behavior of PA66/SiO2 organic-inorganic hybrid material. J. Appl. Polym. Sci., 2006, 101 (2): 810-817.
    [45]成煦,何其佳,张爱民.尼龙6/氯化钙复合材料受限结构研究.高分子材料科学与工程, 2002, 18 (6): 137-140.
    [46] Rybnikar F. Interaction in the system isotactic polypropylene-calcite. Appl. Polym. Sci., 1991, 42 (11): 2727-2737.
    [47] Alonso M., Velasco J. I., De Sajia J. A. Constrained crystallization and activity of filler in surface modified talc polypropylene composites. Euro. Polym. J., 1997, 33: 255-263.
    [48] Fujiyama M., Wakino T. Crystal orientation in injection molding of talc-filled polypropylene. J. Appl. Polym. Sci., 1991, 42: 9-20.
    [49] Fujiyama M. Crystal orientation in injection molding of flaky filler-filled polypropylene. Int. Polym. Process, 1992, 7: 84-91.
    [50] Fujiyama M. Crystal orientation in injection molding of flaky filler-filled polyolefin. Int. Polym. Process, 1998, 13: 284-290.
    [51] Folks M. J. Interfacial crystallization of polypropylene in composites. In polypropylene: Structure, blends and composites, Karger-Kocsis, J. Ed., Vol. 3, Chapman & Hall, 1995, Chapter 10, 340.
    [52] Qiuju Wu, Xiaohui Liu, Berglund L. A. An unusual crystallization behavior in polyamide6 montmorillonite nanocomposites. Macromol. Rapid. Comm., 2001, 22 (17): 1438-1440.
    [53] Xiaohui Liu, Qiuju Wu. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. Euro. Polym., 2002, 38: 1383-1391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700