用户名: 密码: 验证码:
通冠胶囊动员骨髓内皮祖细胞的作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     内皮祖细胞是一类能增殖并分化为血管内皮的前体细胞,内皮祖细胞在维持血管内皮的功能及血管新生中起重要作用。益气活血中药通冠胶囊对血管内皮细胞具有保护作用,能促进冠心病患者介入术后心功能的恢复,抑制介入术后再狭窄的发生。通冠胶囊的生物学作用与内皮祖细胞介导的再内皮化和改善缺血组织血供的生物学功能相似。同时,在通冠胶囊组方中,部分药物具有显著改善内皮祖细胞的增殖、粘附、迁移等生物学功能。
     研究目的
     探讨益气活血中药通冠胶囊对内皮祖细胞的生物学功能的作用及其机制。
     研究方法
     1临床资料回顾分析,选择符合入选条件的60例冠心病患者,其中冠心病基础用药30例和治疗组(冠心病基础用药+通冠胶囊)30例,回顾分析两组患者一般情况、冠脉造影和手术方式;对比分析术前、术后1月左室射血分数、室壁运动指数和心功能分级;术后1月,观察两组患者主要心血管事件发生率;对比分析术前和术后1月两组患者血清VEGF水平。
     2实验部分,给予SD大鼠通冠胶囊水煎剂灌胃,生理盐水灌胃做对照组,9天后提取大鼠外周血单个核细胞,用EGM-2完全培养基诱导其分化,通过观察细胞生长的形态学特征和激光共聚焦显微镜观察其具有内吞acLDL和结合UEA-1的内皮能力,鉴定为内皮祖细胞。对比两组的集落数量、迁移能力、粘附能力和血清VEGF水平。分离并培养健康志愿者循环内皮祖细胞,使用激光共聚焦显微镜鉴定其具有内皮功能,流式细胞仪检测其细胞表面抗原CD34+与VEGFR+2+表达。通过血清药理学研究方法,制备通冠胶囊含药血清,同时给予大鼠生理盐水灌胃,作为空白对照组。细胞经同步化后,随机分为四组:生理盐水组、通冠胶囊含药血清组、辛伐他汀组和通冠胶囊含药血清与PI3K/Akt抑制剂(Wortmannin+LY294002)组,干预24小时后,检测细胞迁移能力、粘附能力、增殖能力和细胞增殖周期比例。
     研究结果
     1临床资料回顾分析,两组患者术前基本资料、手术方式、左室射血分数以及室壁运动指数、心功能分级和血清VEGF水平无明显差异。术后1月,两组左室射血分数、室壁运动积分均较术前改善(均P<0.05),治疗组较对照组可进一步改善左室射血分数及室壁运动积分(P<0.05)。对照组有1例因重症左心功能不全,于术后4周死亡;两组患者在观察时间内均无靶血管血运重建。对照组新发的心功能衰竭发生率明显高于治疗组(P=0.045);两组主要心血管事件发生率比较,治疗组为6.7%,对照组为33.3%,治疗组明显低于对照组(P=0.024)。组术前比较,差异无统计学意义(P>0.05)。两组术后30天较术前血清VEGF水平均减低,差异有显著性意义(P均<0.05)。但是术后30天治疗组血清VEGF水平均明显高于安慰剂对照组,差异有显著性意义(P均<0.01)。
     2大鼠内皮祖细胞的生长及形态学观察和鉴定:接种第5天,贴壁的梭状细胞开始从集落的边缘长出,形成典型的集落现象。第7天后形成了长梭状细胞。通过激光共聚焦显微镜观察,鉴定其为内皮祖细胞。
     3大鼠内皮祖细胞集落计数、迁移、粘附能力及血清VEGF水平结果:通冠胶囊组与生理盐水组相比,细胞集落数量和迁移能力明显增强,具有显著性差异(均P<0.01),两组的粘附能力和血清VEGF水平无明显差异(均P>0.05)。
     4人内皮祖细胞的鉴定结果:培养第5天,贴壁的梭状细胞开始从集落的边缘长出,形成典型的集落现象。第7天后形成了长梭状细胞。通过激光共聚焦显微镜观察,鉴定其为内皮祖细胞。经流式细胞仪检测,贴壁细胞同时表达CD34+和VEGFR-2+的为15.4±1.8%。
     5各分组人内皮祖细胞的迁移、粘附、增殖能力和增殖周期比例结果:1umol/L辛伐他汀细胞的增殖能力和增殖周期比例,与其它辛伐他汀浓度组比具有显著差异(P<0.01)。各组与生理盐水组相比,细胞的迁移、粘附、增殖能力和细胞增殖周期期比例均显著显著增高(P<0.01)。通冠胶囊组与辛伐他汀组相比,粘附能力、迁移和增殖周期比例明显降低(P<0.01),但增殖能力明显提高(P<0.05)。通冠胶囊与PI3K通道蛋白阻滞剂组相比,细胞迁移、粘附、增殖、细胞增殖周期比例均显著增高(P<0.01)。
     结论
     1.通冠胶囊能够明显改善冠心病PCI术后患者左室射血分数、室壁运动积分和心功能分级,并上调PCI术后患者血清VEGF的水平。
     2.通冠胶囊能够显著动员大鼠骨髓内皮祖细胞至外周血循环,并增加其迁移能力。通冠胶囊含药血清能显著提高体外培养人内皮祖细胞的迁移、粘附能力、增殖能力和增殖周期比例,但作用效果不及辛伐他汀。PI3K/AKT通道蛋白阻滞剂明显减弱通冠胶囊的生物学功能。生理条件下,通冠胶囊改善内皮祖细胞的生物学功能机制可能其机制与PI3K/AKT通道的活化相关,但不完全依赖PI3K通道,同时通冠胶囊动员内皮祖细胞的机制可能不依赖于提高血清VEGF水平。
Background
     Endothelial Progenitor cells can proliferate and differentiate into vascular endothelial cells (EPC). EPC derived from bone marrow play an important role in vascular functions and angiogenesis after Ischemia. Tongguan Capsule, a protective effect on vascular endothelial cells, not only promotes the recovery of cardiac function of the patients after percutaneous coronary intervention, but also significantly inhibits the restenosis in stent. The effect of Tongguan Capsule is so similar to EPC biology, which mediated the re-endothelialization and improved the blood supply of ischemic tissue. Some Herbs, in Tongguan capsule prescription, have significantly improved the proliferation, migration, adhesion capacity of EPC.
     Research Purposes
     To explore the effects and Mechanisms of Tongguan Capsul mobilizing bone marrow—derived endothelial progenitor cells.
     Methodology
     1 Retrospective analysis of clinical data:60 cases of eligible patients with coronary heart disease, who were treated with percutaneous coronary intervention (PCI), Of which 30 cases of patients were treated with conventional western medicine (the control group) and other 30 cases were treated with Tongguan Capsule and conventional western medicine(the treatment group). The clinical characteristics, coronary angiography and surgical methods were Analysis. Comparative Analysis the left ventricular ejection fraction (LVEF), ventricular wall motion parameters and cardiac function classification of NYHA before the operation and 30 days after the operation. The Major adverse cardiac events (MACE) were Analysis in 30 days after PCI. The level of the serum VEGF before the operation, and 30 days after the operation were Analysis.
     2 The peripheral blood mononuclear cells were extracted from SD rat, which were given Tongguan Capsule for 9 days. Mononuclear cells were cultivated with endothelial growth medium-2. After being cultured for 7d, the attached cells were identified as EPC by uptaking DiI-acLDL and binding FITC-lectin-1. We measured the number of colony-forming units of EPC. Cell Migration ability was examined by migration assay. The adhesion activity was determined by cell counts. The level of the serum VEGF was measure by ELISA. Isolate and culture the circulating EPC from healthy volunteers. The attached cells were characterized by uptaking Dil-acLDL and binding FITC-lectin-1. And also the attached cells were determined expressing CD34+ and VEGFR-2+ by flow cytometry. Preparation Tongguan Capsule serum by serum pharmacology method. Saline were given to the SD rat as the control. Cultured EPC were incubated with Tongguan Capsule serum and Tongguan Capsule serum with PI3K/Akt inhibitors (wortmannin and LY294002), simvastatin as a positive control. The cell migration ability was examined by migration assay, the adhesion activity was determined by cell counts The proliferation was determined by MTT assay and cell proliferation cycle analysis assay.
     Research Results
     1 Clinical Retrospective analysis:Before the operation the clinical characteristics, coronary angiography, surgical methods, LVEF, ventricular wall motion parameters and cardiac function classification of NYHA were no difference in two groups.30 days after the operation, the LVEF, ventricular wall motion parameters of two groups are improved (P<0.05), Meanwhile, compared with the control group, the LVEF and ventricular wall motion scores of the treatment group were further improved. Duing to the severe left ventricular dysfunction, one case in control group was died at 4 weeks after the operation.30 days after the operation, there were on difference in nonfatal myocardial infarction, target vessel revascularization between two groups. The incidence of new heart failure of the treatment group was statistically lower than the control group (P=0.045), thus, the incidence of MACE in the treatment group was statistically lower than the control group (P=0.024). The level of VEGF were decreased significantly at 30 days in two groups. The level of VEGF at 30 days after the operation in the treatment group had significant differences compared with the control group(P<0.01).
     2 At the fifth day, rat mononuclear cells changed from round to spindle-shaped and grow into a colony. At the seventh day, some of the long spindle-shaped cell showing the distribution of cord-like or tubular. Cells were Identified as EPC that it could uptaking Dil-ac-LDL and binding FITC-lectin-1.
     3 Result of rat EPC colony-forming units, migration assay, adhesion assay and serum VEGF level assay:compared with the saline group, the numbers of colony-forming units and migration in Tongguan capsule group were significant (P<0.01). The number of adhesion and VEGF level in Tongguan capsule group, were no differences (P>0.05)
     4 At the fifth day, human mononuclear cells cells changed from round to spindle-shaped and grow into a colony. Cells were Identified as EPC that it could uptaking Dil-ac-LDL and binding FITC-lectin-1. The attached cells positive in expressing both CD34+and VEGFR-2+ were about 15.4±1.8%.
     5 Result of human EPC migration assay, adhesion assay, proliferation assay and cell proliferation cycle analysis assay:simvastatin as a positive control, compared with other Concentration, 1umol/L simvastatin has a were significant effect on EPC proliferation and proliferation cycle. Compared with the saline group, the numbers of EPC migration, adhesion, proliferation and cell proliferation cycle in Tongguan capsule serum group, lumol/L simvastatin group, and PI3K/Akt inhibitors group were significant (P<0.01). Compared with lumol/L simvastatin group, Tongguan capsule serum group have a lower effect on EPC adhesion and cell proliferation cycle (P<0.01), but have a higher effect on proliferation(P <0.01). Compared with PI3K/Akt inhibitors group, Tongguan capsule serum group have a higher effect on the numbers of EPC migration, adhesion, proliferation and cell proliferation cycle (P<0.01).
     Conclusion
     1 Tongguan capsule can significantly improve left ventricular ejection fraction, ventricular wall motion parameters, cardiac function classification of NYHA and serum VEGF levels in patients with coronary heart disease after percutaneous coronary intervention.
     2 Tongguan capsule can significantly mobilized rat bone marrow EPC to peripheral blood and enhance the biological function of migration. In vitro, Tongguan capsule serum significantly increased in human EPC migration, adhesion and proliferation, but effects were not so as simvastatin. PI3K/AKT inhibitors significantly reduced the biological functions of Tongguan capsule. The mechanisms on the effect of Tongguan Capsule mobilizing bone marrow—derived EPC may not be by increasing the serum VEGF levels and do not rely entirely on the activation of PI3K/AKT signal.
引文
[1]Donald Lloyd-Jones, Robert J. Adams, Heart Disease and Stroke Statistics_2010 Update. A Report From the American. Circulation, 2010;121:e1-e170.
    [2]Lisheng liu. Cardiovascular in china. Biochem Cell Biol,2007; (85):107-163
    [3]Gao R. Current status of percutaneous coronary intervention in China. Heart,2010; 96:415-418.
    [4]Joner M, Finn A, Farb A, et al. Pathology of Drug—Eluting Stents in Humans Delayed Healing and Late Thrombotic Risk. J Am Coil Cardiol.,2006,48:193—202.
    [5]Takayuki Asahara, Murohara T, Sullivan A, et al. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science,1997; 275,964.
    [6]Risau W. Mechanisms of angiogenesis. Nature,1997;386:671-674.
    [7]SUDA T., Takakura N, Oike Y Hematopoiesis and angiogenesis. Int J Hema tol.,2000; 71 (2):99—107.
    [8]Sandra Erbs, Axel Linke, Gerhard Schuler, et al. Intracoronary Administration of Circulating Blood-Derived Progenitor Cells After Recanalization of Chronic Coronary Artery Occlusion Improves Endothelial Function. Circ. Res.,2006;98:e48.
    [9]Jin Hur; Chang-Hwan Yoo et aL. Characterization of Two Types of Endothelial Progenitor Cells and Their Different Contributions to Neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology.,2004; 24:288.
    [10]Rehman J, Li J, Orschell CM, et al.Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation,2003; 107:1164-1169.
    [11]Murohara, T., Ikeda, H., Duan, J., et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization.J. Clin. Invest.,2000; 105; 1527-1536.
    [12]Majka S. M., Jackson K. A., Kienstra K. A., et al. Distinct progenitor populations in Beltrami, A. P., Barlucchi, L., Torella, D., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell,2003; 114:763-776.
    [13]Majka SM, Jackson KA, Kienstra KA, et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration./. Clin. Invest.,2003; 111:71-79.
    [14]Planat-Benard, V, Silvestre, JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives. Circulation,2004;109:656-663.
    [15]Ingram DA, Mead LE, Moore DB, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood,2005; 105:2783-2786.
    [16]Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood,2000;95:3106-3112.
    [17]Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation,2003:108:2511-2516.
    [18]Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med.2003;9:702-712.
    [19]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med.,2003:348:593-600.
    [20]Bertolini F, Shaked Y, Mancuso P, et al. The multifaceted circulating endothelial cell in cancer:towards marker and target identification. Nat. Rev., Cancer.2006 (6):835-845.
    [21]Case J, Mead LE, Bessler WK, et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitivehematopoietic progenitors. Exp. Hematol.,2007(35):1109-1118.
    [22]Timmermans F, Van Hauwermeiren F, De Smedt M, et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol.,2007; 27:1572-1579.
    [23]Fadini GP, Baesso I, Albiero M, et al. Technical notes on endothelial progenitor cells:ways to escape from the knowledge plateau. Atherosclerosis,2008;197:496-503.
    [24]Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood.J. Clin. Invest.,2000; 105:71-77.
    [25]Gulati R, Jevremovic D, Peterson TEet al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ. Res.2003; 93:1023-1025.
    [26]Hur J, Yoon CH., Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol.,2004.;4:288-293.
    [27]Yoon CH, Hur J, Park K, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells:the role of angiogenic cytokines and matrix metalloproteinases. Circulation,2005;112:1618-1627.
    [28]Schwartz SM, Benditt EP. Clustering of replicating cells in aortic endothelium. Proc Natl Acad Sci USA.,1976;73:651-653.
    [29]Douglas W. Losordo, Jeffrey M. Isner and Larry J. Endothelial Recovery: The Next Target in Restenosis Prevention. Circulation,2003;107:2635-2637
    [30]Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiologicaland pathological neovascularization. Circ Res.,1999:85:221-228.
    [31]Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res.,2000:87:728-730
    [32]A. A. KOCHER, M. D. SCHUSTER. Neovascularization of ischemic myocardium by human bonemarrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med,2001:7:430—436.
    [33]Kawamoto A, Gwon HC, Iwaguro H, el al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001;103 (5):634-7.
    [34]Hristov M, Weber C. Endothelial progenitor cells:characterization, pathophysiology, and possible clinical relevance. Journal of cellular and molecular medicine,2004; 8:498-508.
    [35]Iwami Y, Masuda H, Asahara T. Endothelial progenitor cells:past, state of the art, and future. Journal of cellular and molecular medicine, 2004:8:488-497.
    [36]Khakoo AY, Finkel T. Endothelial progenitor cells. Annu Rev Med., 2005:56:79-101.
    [37]Murasawa S, Asahara T. Endothelial progenitor cells for vasculogenesis. Physiology (Bethesda),2005; 20:36-42.
    [38]Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res.,2004;95:343-353.
    [39]Miail H, Wolfgang E, Peter CW. Endothelial Progenitor cells: mobilization, differentiation and homing. Arterioscler Thromb Vasc Biol. 2003:23:1185-1189.
    [40]Libby P, Sukhova G, Lee RT, Liao JK. Molecular biology of atherosclerosis. Int J Cardiol,1997;62(suppl 2):S23-S29.
    [41]Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med., 1999:340:115-126.
    [42]Kerstin Strehlow MD, Nikos Werner MD. Estrogen Increases Bone Marrow-Derived Endothelial Progenitor Cell Production and Diminishes Neointima Formation. Circulation,2003;107:3059.
    [43]Cindy JM, Loomans, Eelco JP de Koning, et al. Endothelial Progenitor Cell dysfunction A Novel Concept in the Pathogenesis of Vascular Complications of Type 1 Diabetes. Diabetes,2004.53:195-199.
    [44]Imanishi Toshio, Hano Takuzo. Oxidized low-density lipoprotein inhibits vascular endothelial growth factor-induced endothelial progenitor cell differentiation. Clin Exp Pharmacol Physiol.,2003;30(9):665-670.
    [45]Frederick M. Rauscher, MD, Pascal J. Goldschmidt-Clermont, MD, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation,2003; 108:457.
    [46]T Eizawa, U Ikeda, Y Murakami, Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart, 2004; 90:685-686.
    [47]Fadini GP, Coracina A, Baesso, I, et al. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke,2006;37:2277-2282.
    [48]Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events:proof of concept for the clinical importance of endogenous vascular repair. Circulation,2005;111:2981-2987.
    [49]Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med.,2005; 353: 999-1007.
    [50]Yip HK, Chang LT, Chang WN, et al. Level and value of circulating endothelial.progenitor cells in patients after acute ischemic stroke. Stroke,2008;39:69-74.
    [51]Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulation endothelial progenitor cells inversely correates with risk factors for coronary artery disease. Cir Res.,2001.89:el-e7.
    [52]George J, Herz I, Goldstein E, et al. Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis. Arterioscler. Thromb. Vasc. Biol.,2003;23:e57-e60.
    [53]Yoshiki Matsuo, Toshio Imanishi, et al. The Effect of Senescence of Endothelial Progenitor Cells on In-stent Restenosis in Patients Undergoing Coronary Stenting.Intern Med,2006; 45(9):581-587.
    [54]Jacob George, Emil Goldstein, et al. Circulating endothelial progenitor cells in patients with unstable angina:association with systemic inflammation. Eur Heart J,2004;25(12):1003-1008.
    [55]Wojciech Wojakowski, Michal Tendera. Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes. Folia Histochem Cytobiol,2005,43(4):229-232.
    [56]Leone AM, Rutella S, Bonanno G, et al. Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. Eur Heart J,2005;26:1196-1204.
    [57]Wojakowski W, Tendera M, Michalowska A, et al. Mobilization of CD34/CXCR4+, CD34/CD117- c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation,2004; 110:3213-3220.
    [58]Massa M, Rosti V, Ferrario M, et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood,2005; 105:199-206.
    [59]Nikos Werner, Stefan Junk, et al. Intravenous Transfusion of Endothelial Progenitor Cells Reduces Neointima Formation After Vascular Injury. Circulation Research,2003;93:e17.
    [60]Daniel P. Griese, Afshin Ehsan, et al. Isolation and Transplantation of Autologous Circulating Endothelial Cells Into Denuded Vessels and Prosthetic Grafts. Circulation,2003;108:2710-2715.
    [61]Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation.2000;101:207-13.
    [62]Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells.J. Clin. Invest. 2001:108:399-405.
    [63]Werner N, Priller J, Laufs U, et al. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation:effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler. Thromb. Vasc. Biol,2002; 22:1567-1572.
    [64]Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res,2003; 92:1049-1055.
    [65]Lavi R, Zhu XY, Chade AR, Lin J, Lerman A, Lerman LO. Simvastatin Decreases Endothelial Progenitor Cell Apoptosis in the Kidney of Hypertensive Hypercholesterolemic Pigs. Arterioscler Thromb Vasc Biol,2010;Mar 4.
    [66]Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation,2001;103:2885-2890.
    [67]Schomig K, Busch G, Steppich B, et al. Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur Heart J,2006:27 (9):1032-7.
    [68]Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization:a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation,2002;105: 3017-3024.
    [69]Thyberg J, Re-endothelialization via bone marrow-derived progenitor cells:still another target of statins in vascular disease. Arterioscler. Thromb. Vase. Biol.,2002; 22:1509-1511.
    [70]Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway.J. Clin. Invest.,2001; 108:391-397.
    [71]Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitorcells. Circulation,2004;110:3136-3142.
    [72]Kusuyama T, Omura T, Nishiya D, et al. The effects of HMG-CoA reductase inhibitor on vascular progenitor cells. J. Pharmacol. Sci.,2006;101:344- 349.
    [73]Hristov M, Fach C, Becker C, et al. Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis,2007:192:413-420.
    [74]Botta R, Gao E, Stassi G, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest., 2001:107:1395-1402.
    [75]Botta R, Gao E, Stassi G, et al. Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+cells and low dose CD34+KDR+ cells. FASEB J.2004; 18,:1392-1394.
    [76]Ma N, Stamm C, Kaminski A., et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc. Res.,2005:66:45-54.
    [77]Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol.,2005;39:733-742.
    [78]Satoshi Murasawa, Atsuhiko Kawamoto. Niche-Dependent Translineage Commitment of Endothelial Progenitor Cells, Not Cell Fusion in General, Into Myocardial Lineage Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005:25:1388.
    [79]Ott I, Keller U, Knoedler M, et al. Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. FASEB J,2005; 19:992-994.
    [80]Sondergaard CS, Bonde J, Dagnaes-Hansen F, et al. Minimal engraftment of CD34+ cells mobilized from healthy donors in the infarcted heart of athymic nude rats. Stem Cells Dev.,2009; 18(6):845-56.
    [81]Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation,2002; 106,3009-3017.
    [82]Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction:final 1-year results of the REPAIR-AMI trial. Eur. Heart J,2006; 27:2775-2783.
    [83]Erbs S, Linke A, Schachinger V, et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler substudy of the Reinfusion of Enriched Progenitor cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation,2007; 116:66-374.
    [84]Wollert KC, Meyer GP, Lotz J. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomized controlled clinical trial. Lancet,2004;364,:141-148.
    [85]Hirsch A, Nijveldt R, van der Vleuten PA, et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention:rationale and design of the HEBE trial-a prospective, multicenter, randomized trial. Am. Heart J,2006:152:434-441.
    [86]Hirsch A, Nijveldt R, van der Vleuten PA A, et al. Intracoronary infusion of autologous mononuclear bone marrow cells in patients with acute myocardial infarction treated with primary PCI:pilot study of the multicenter HEBE trial. Catheter. Cardiovasc. Interv.,2008; 71:273-281.
    [87]Ahmadi, H., Baharvand H.,Ashtiani SK., et al. Safety analysis and improved cardiac function following local autologous transplantation of CD133- enriched bone marrow cells after myocardial infarction. Curr. Neurovasc. Res.,2007;4:153-160.
    [88]Joris I. Rotmans, Jan M. M. Heyligers,et al. In Vivo Cell Seeding With Anti-CD34 Antibodies Successfully Accelerates Endothelialization but Stimulates Intimal Hyperplasia in Porcine Arteriovenous Expanded Polytetrafluoroethylene Grafts. Circulation,2005;112:12—18.
    [89]Blindt R, Vogt F, Astaf ieva, et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells.J Am Coll Cardiol.,2006; 47:1786-95.
    [90]Aoki J, Serruys PW, van Beusekom H, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34:the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol.,2005;45:1574-9.
    [91]Duckers HJ, Silber S, de Winter R, et al. Circulating endothelial progenitor cells predict angiographic and intravascular ultrasound outcome following percutaneous coronary interventions in the HEALING-II trial: evaluation of an endothelial progenitor cell capturing stent. EuroIntervention,2007; 3:67-75.
    [92]Duckers HJ, Soullie T, den Heijer P, et al. Accelerated vascular repair following percutaneous coronary intervention by capture of endothelial progenitor cells promotes regression of neointimal growth at long term follow-up:final results of the Healing II trial using an endothelial progenitor cell capturing stent (Genous R stent). EuroIntervention,2007; 3:350-8.
    [93]Co M, Tay E, Lee CH. et al. Use of endothelial progenitor cell capture stent (Genous Bio-Engineered R Stent) during primary percutaneous coronary intervention in acute myocardial infarction:intermediate-to long-term clinical follow-up. Am Heart J,2008; 155:128-32.
    [94]Aicher A, Heeschen C, Mildner-Rihm C, et al,. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.,2003;9:1370-1376.
    [95]Thum T, Tsikas D, Stein S, et al. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine.J. Am. Coll. Cardiol.,2005; 46:1693-1701.
    [96]Ma FX, Zhou B, Chen Z, et al. Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase.J. Lipid Res.,2006; 47:1227-1237.
    [97]Cooney R, Hynes SO, Sharif F, et al. Effect of gene delivery of NOS isoforms on intimal hyperplasia and endothelial regeneration after balloon injury. Gene Ther.,2007.14:396-404.
    [98]Kong D, Melo LG, Mangi AA, et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation,2004; 109:1769-1775.
    [99]梁小卫,田福利,梁春,等.通心络体外促进人外周血内皮祖细胞的增殖、迁移、黏附的研究[J].国际心血管病杂志,2009;3:184-190.
    [100]孙承波,梁春,吴宗贵,等.通心络对晚期糖基化终产物诱导的内皮祖细胞存活的影响及其机制[J].上海医学,2008;31:712-714.
    [101]唐丽鹃.参麦注射液治疗冠心病疗效及患者内皮祖细胞的变化[J].中国医药导报,2009:6:35-36.
    [102]郭伟新,杨期东,谢晓云,等.参麦注射液对人外周血内皮祖细胞部分生物学的影响[J].卒中与神经疾病,2008;1:37-40.
    [103]陈图刚,谭维羚,马战清,等黄芪注射液对外周血内皮祖细胞数量及功能的影响[J].中药新药与临床药理,2007;05:364-368.
    [104]徐寒松,雷闽湘,刘泽灏,等.黄芪对人外周血内皮祖细胞增殖及细胞周期的影响[J].中医杂志,2008:2:160-162,166.
    [105]肖刚峰,张怀勤,黄晓燕,等.丹参的两种主要成分对培养内皮祖细胞药理作用研究[J].中医药学刊,2006;6:1035-1037.
    [106]陈晓锋,唐礼江,朱敏,等.丹参酮ⅡA对外周血内皮祖细胞增殖、粘附和迁移功能的影响[J].中国药理学通报,2007;2:274-275.
    [107]季亢挺,张怀勤,唐疾飞,等.丹参对高胆固醇血症患者内皮祖细胞数量及功能的影响[J].中国中药杂志,2007;12:1214-1217.
    [108]季亢挺,张怀勤,杨鹏麟,等.复方丹参注射液对内皮祖细胞数量和功能的影响[J].中国中药杂志,2006;3:246-249.
    [109]王兴祥,尚云鹏,陈君柱,等.银杏叶提取物对外周血内皮祖细胞数量和功能的影响[J].药学学报,2004:39:656-660.
    [110]张芙荣,陈君柱,朱军慧等.葛根素对外周血内皮祖细胞数量和功能的影响[J].中国中药杂志,2004;29:0777-05.
    [111]张敏州,王磊.邓铁涛对冠心病介入术后患者的辨证论治[J].中医杂志,2006:47(7):486-487.
    [112]吴伟康,邓铁涛.邓老“痰瘀相关”理论与冠心病防治[J].深圳中西医结合杂志,2006,16(1):13.
    [113]张高峰,程康林.通冠胶囊治疗不稳定性心绞痛临床观察[J].浙江中西医结合杂志,2003;03:8-9+16.
    [114]程康林,张敏州,李新玥.通冠胶囊治疗气虚血瘀型不稳定性心绞痛的临床观察[J].辽宁中医杂志,2006;07:811-812.
    [115]Li J, Zhang MZ, Chen BJ, et al.Effect of Tongguan capsule on post-intervention patients of coronary heart disease with qi-deficiency and blood stasis syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi,2008;28 (1):32-35.
    [116]陈伯钧,苏学旭,孟丽琴,等.通冠胶囊对急性心肌梗死患者PCI术后气虚血瘀证的影响[J].中国中医急症,2008;08:1095-1096.
    [117]乔志强,张敏州,张翔炜,等.通冠胶囊改善冠心病介入术后病人生命质量的随机双盲及安慰剂对照研究[J].中西医结合心脑血管病杂志,2006;01:4-5.
    [118]张敏州,刘泽银,邹旭.通冠胶囊治疗冠心病及对左心舒张功能的影响[J].实用中医内科杂志,2003;02:81-82.
    [119]王磊,张敏州,程康林,等.通冠胶囊对冠心病PCI术后左心室收缩功能影响的临床研究[J].中药材,2007:02:247-250.
    [120]杨广,张敏州,李松.通冠胶囊对冠心病患者PCI术后心肌微循环灌注的影响[J].第八次全国中西医结合心血管病学术会议论文集,2007.
    [121]乔志强,张敏州,刘慧,等.通冠胶囊改善冠心病介入术后患者心功能指标的随机双盲安慰剂对照的临床研究[J].中医药学刊,2006;09:1667-1668.
    [122]曹爱琴,杨广,张敏州.通冠胶囊对冠心病冠脉介入术患者P波离散度及QT间期离散度的影响[J].中国中医药信息杂志,2007;11:9-10.
    [123]陈伯钧,苏学旭,孟丽琴,等.通冠胶囊对气虚血瘀型急性心肌梗死患者PCI术后心功能的影响[J].中华中医药学刊,2008;09:1935-1937.
    [124]陈伯钧,苏学旭,潘宗奇,等.通冠胶囊抑制急性心肌梗死后左心室重构的临床研究[J].江苏中医药,2006;04:23-24.
    [125]郭力恒,张军,张敏州,等.冠心病心力衰竭患者BNP水平及通冠胶囊的影响[J].辽宁中医杂志,2009:11:1825-1827.
    [126]陈俊林,吴伟康,韩玉莲,等.邓氏通冠胶囊改善缺血心肌供血的时效量效关系及NO机制研究[J].广州中医药大学学报,2007;04:301-305
    [127]陈伯钧,苏学旭,潘宗奇,等.通冠胶囊对急性心肌梗死大鼠心功能的影响[J].陕西中医,2009:02:229-231.
    [128]陈伯钧,苏学旭,孟丽琴,等.通冠胶囊对急性心肌梗塞大鼠心室重构的影响[J].时珍国医国药,2009;03:524-526.
    [129]张敏州,张军,温春瑜,等.胶囊后适应对AMI患者介入治疗缺血再灌注损伤保护作用的研究[J].第一届全国中西医结合心血管病中青年医师论坛论文汇编,2008.
    [130]祁建勇,张敏州,陈伯钧,等.通冠胶囊对冠脉再狭窄疗效及血液流变学的影响[J].中医药学刊,2003;21(6):882-883.
    [131]祁建勇,张敏州,程康林,等.通冠胶囊对兔球囊血管成形术后血管病理形态的影响[J].中国中医急症,2006;06:630-631+688.
    [132]林晓忠,程康林,邹旭等.通冠胶囊对动脉内膜损伤后胶原表达及血管平滑肌细胞增殖的影响[J].新中医,2007;11:101-103.
    [133]杨广,张敏州,江巍.通冠胶囊对兔血管平滑肌细胞增殖的影响[J].中国中医急症,2007;05:574-575.
    [134]訾勇,张敏州,王磊,等.通冠胶囊对大鼠颈动脉球囊损伤术后血管内膜VEGF表达的影响[J].时珍国医国药,2009:09:2138-2140.
    [135]訾勇,张敏州,王磊,等.通冠胶囊对颈动脉球囊损伤后大鼠血清基质细胞衍生因子-1和血管内皮生长因子表达的影响[J].广州中医药大学学报,2009;04;355-358.
    [136]张敏州,李松,邹旭,等.通冠胶囊对冠心病介入术后血脂含量和凝血功能的影响[J].广州中医药大学学报,2004;02:93-97.
    [137]Zhang XW, Zhang MZ. Effect of tongguan capsule on coagulant and fibrinolysis system in patients with coronary heart disease after percutaneous coronary intervention. Zhongguo Zhong Xi Yi Jie He Za Zhi,2004; 12:1065-1068
    [138]曹爱琴,田文杰,李松,等.通冠胶囊对冠心病介入术后病人GMP-140和vWF的影响[J].中西医结合心脑血管病杂志,2004;12:685-686.
    [139]程康林,陈仁山,林晓忠,等.通冠胶囊对不稳定型心绞痛患者炎症因子的影响[J].第八次全国中西医结合心血管病学术会议论文集,2007.
    [140]赵新军,张敏州,等.通冠胶囊对高脂大鼠血脂水平和血浆炎症因子的影响[J].中西医结合心脑血管病杂志,2007;10:951-952 [J].中国中药杂志,2004:29:0777-05.
    [141]辛华,马午,刘鲁华,等.现代细胞生物学技术.北京:科学出版社,2009,1:153.
    [142]张军平,张伯礼,山本清高.中药药物血清的制作方法探讨.天津中医药,2004:21(4):274-276
    [143]Yamaguchi J, Kusano KF, Masuo 0, et al.Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation,2003;117:1322-1328
    [144]Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation,2004;109:220-226.
    [145]Rehman J, Li J, Parvathaneni L, et al.2004. Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells.J. Am. Coll. Cardiol.,2004; 43:2314-2318.
    [146]Huang PH, Chen YH, Tsai HY, et al. Intake of red wine increases the number and functional capacity of circulating endothelial progenitor cells by enhancing nitric oxide bioavailability. Arterioscler Thromb Vasc Biol.,2010 Apr;30(4):869-7
    [147]Bahlmann F H, De Groot K, Spandau JM, et al. Erythropoietin regulates endothelial progenitor cells. Blood,2004; 103:921-926.
    [148]Urao N, Okigaki M, Yamada H, et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ. Res. 2006:98:1405-141
    [149]Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors alpha and beta mediate contribution of bone marrowderived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation,2006;114:2261-2270.
    [150]Bolego C,Rossoni G, Fadini GP. Selective, et al. Estrogen receptor-{alpha} agonist provides widespread heart and vascular protection with enhanced endothelial progenitor cell mobilization in the absence of uterotrophic action. FASEB J.,2010;Mar.9
    [151]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBOJ.1999; 18(14):3 964-972.
    [152]Zhang Q X, Magovern CJ, Mack CA. et al. Vasculer endothelial growth factor is the major angionenic factor in omentum:Mechanism of the omentum-mediated angionenesis,Jstag Res,1997; 67 (2) 147-154.
    [153]Simons D, Grieb G, Hristov M;Pallua N;Weber C,et. al. Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. [J]. J Cell Mol Med.,2010 Feb 22.
    [154]Maeng YS, Choi HJ, Kwon JY, Park YW, et al. Endothelial progenitor cell homing:prominent role of the IGF2-IGF2R-PLCbeta2 axis. Blood.2009;113: 233-43.
    [155]Vandervelde S, van Luyn MJ, Rozenbaum MH, et al. Stem cell-related cardiac gene expression early after murine myocardial infarction. Cardiovasc Res.,2006:73:783-793
    [156]Huang, L. E. Regulation of hypoxia-inducible factor la is mediated by an 02-dependent degradation domain via the ubiquitinproteasome pathway. Proc. Natl. Acad. Sci. U. S. A.,1998;95:7987-7992
    [157]Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization:recruitment, retention, and role of accessory cells. Cell, 2006:124:175-189.
    [158]Morimoto H, Takahashi M, Shiba Y, et al. Bone marrow-derived CXCR4+ cells mobilized by macrophage colony-stimulating factor participate in the reduction of infarct area and improvement of cardiac remodeling after myocardial infarction in mice. Am. J. Pathol.,2007; 171:755-766
    [159]Capoccia BJ, Gregory AD, Link DC. Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashion.J. Leukoc. Biol.,2008; 84:760-768.
    [160]Hattori, K. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenicandhematopoietic stemcells.J. Exp. Med.,2001;193:1005-1014
    [161]Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood,2003:102:1340-1346.
    [162]Peled, A. Expression of a-smooth muscle actin in murinebone marrow stromal cells. Blood,1991; 78:304-309.
    [163]Wallez, Y. and Huber, P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim. Biophys. Acta,2008;1778:794-809.
    [164]Gavard, J. and Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the b-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol.,2006:8:1223-1234.
    [165]Stamatovic SM, Dimitrijevic OB, Keep RF, et al. Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J. Biol. Chem.,2006:281:8379-8388.
    [166]Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, et al. Contribution of monocytes/macrophages to compensatory neovascularization the drilling of metalloelast asepositive tunnels in ischemic myocardium. Circ. Res.,2000;87:378-384.
    [167]Anghelina M, Krishnan P, Moldovan L, et al. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am. J. Pathol.,2004; 168, 529-541.
    [168]Krenning G;van der Strate BW;Schipper M, et al. CD34+ cells augment endothelial cell differentiation of CD14+ endothelial progenitor cells in vitro.J. Cell. Mol. Med,2009:13:2521-33
    [169]Smadja DM, Basire A, Amelot A, et al. Thrombin bound to a fibrin clot confers angiogenic and hemostatic properties on endothelial progenitor cells. J. Cell. Mol. Med,2008:12:975-986.
    [170]van Amerongen MJ, Harmsen MC, van Rooijen N, et al. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol.,2007; 170:818-829.
    [171]Rehman J, Li J, Orschell CM, et al. Peripheral blood'endothelial progenitor cells'are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation,2003;107:1164-1169.
    [172]Awad 0, Dedkov EI, Jiao C, et al. Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler. Thromb. Vasc. Biol.,2006:26:758-764.
    [173]Sieveking DP, Buckle A, Celermajer DS, et al. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations:insights from a novel human angiogenesis assay. J. Am. Coll. Cardiol.,2008; 51:660-668.
    [174]Majka M, Janowska-Wieczorek A, Ratajczak J, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood,2001;97:3075-3085.
    [175]Sieveking DP, Buckle A, Celermajer DS,et al. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations:insights from a novel human angiogenesis assay. J. Am. Coll. Cardiol,2008; 51:660-668.
    [176]Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixedtransplantation of early endothelial progenitor cells and late outgrowth endothelial cells:the role of angiogenic cytokines and matrix metalloproteinases. Circulation,2005;112:1618-1627.
    [177]Ii M, Takeshita K, Ibusuki K, Luedemann C;et al, Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. [J], Circulation,2010;121(9):1104-12.
    [178]Janmaat ML, Heerkens JL, de Bruin AM, et al. Erythropoietin accelerates smooth muscle cell-rich vascular lesion formation in mice through endothelial cell activation involving enhanced PDGF-BB release. Blood,2010; 115:1453-60.
    [179]Haghighat, A, Weiss, D, Whalin MK, et al. Granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice. Circulation,2007;115: 2049-2054.
    [180]Lucerna, M, Zernecke, A, de Nooijer, R, et al. Vascular endothelial growth factor-A induces plaque expansion in ApoE knockout mice by promoting de novo leukocyte recruitment. Blood,2007; 109:122-129.
    [181]Daub K, Langer H, Seizer P, et al. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. Faseb J,2006 20,2559-2561.
    [182]Daub K, Langer H, Seizer P, et al. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. Faseb J, 2006; 20:2559-256.
    [183]Stellos K, Langer H, Daub K, et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation,2008; 117:206-215.
    [184]刘志刚,柴程芝.冠心病症候分布的地域特征.中医研究,2008;21(12):30-32.
    [185]张敏州,王磊.邓铁涛对冠心病介入术后患者的辨证论治[J].中医杂志,2006:47(7):486-487.
    [186]张敏州,杨广.通冠胶囊的急性毒理实验[J].中西医结合心脑血管病杂志,2006;4(9):787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700