用户名: 密码: 验证码:
降雨过程中不同粗糙度土表微地貌特征演变与三维模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土表粗糙度作为反映土表微地貌形态和物理性状的指标,在水土保持工作和土壤侵蚀研究中是一个重要因子。然而,关于土表粗糙度在侵蚀过程中详细的定量信息极其有限。本文以3-5mm、2-3mm、小于2mm紫色土团聚体为供试土样制造不同粗糙度土表,从水力侵蚀过程中土表粗糙度及最大填洼量定量化特征演变角度出发,通过室内人工降雨模拟试验,研究了不同坡度下三种不同粗糙土表上中下坡位糙度、最大填洼量时空变化特征,以期进一步明确其在水蚀过程中的变化及其作用。研究坡面土表微地貌对土壤侵蚀过程的影响及其在坡面侵蚀过程的变化对于建立基于过程的土壤侵蚀模型有重要意义,并通过改进高斯模型和分形模型,建立适合不同粗糙度土表的描述模型,以期丰富土壤侵蚀过程和机理的定量化研究内容。
     1.通过评价随机糙度计算法、微地形指数法、弯曲度指数法、平均上坡凹陷量法、平均绝对高差法在微域土表上的适用性,选择土表粗糙度评价指标,用聚合洼地法和漫水法评价最大填洼量的测算方法,结果表明:平均绝对高差法是土表粗糙度最佳评价指标;采用聚合洼地法和漫水法计算得到的最大填洼量基本相等,这两种算法在最大填洼量的计算上无显著性差异。采样精度越高越能捕捉微小的洼地,越能准确反映最大填洼量。
     2.以激光微地貌扫描为手段,定量研究降雨过程中土表微地貌的演变过程,结果表明:四种坡度三种不同粗糙度土表上中下坡位微地貌特征时空变化规律表现出不一致性;坡度对平滑土表微地貌特征演变过程影响最大,中等粗糙土表次之,粗糙土表影响最小;随着坡度的增加,三种不同粗糙度土表上坡、中坡、下坡土表粗糙度及最大填洼量均呈增加趋势;同一坡面不同坡位土表粗糙度及最大填洼量的下降幅度:中坡>下坡>上坡,或增加幅度:中坡<下坡<上坡。
     3.MNG法模拟的粗糙土表的MDS、LD·LS与实测土表基本相等,虽然高程频率分布、偏度和半变异函数与实测土表存在差异,但是就微地貌的特征描述来说已经到达了模拟的要求,因此,MNG法适用于粗糙土表的模拟。MRMD法模拟的中等粗糙和平滑土表的MDS、LD·LS与实测土表基本相等,且半变异函数与实测土表基本一致,因此,MRMD法适用于中等粗糙和平滑土表的模拟。
As an indicator to reflect the form of microrelief and physical characteristics, soil surface roughness plays an important part in water and soil conservation and the soil erosion research. However, the quantitative information about the soil surface roughness in erosion process is very limited. The paper made three different soil surface roughness according to the soil samples of purple soil aggregates which are 3-5mm,2-3mm and less than 2mm. From the measurable changing aspect of soil surface roughness and MDS in hydraulic erosion process, the paper also studied the temporal and spatial variation features of the soil surface roughness and MDS for the three different soil surface roughness in the different parts of slope throughout the indoor artificial rainfall so as to make sure the changes in the erosion process and its function. The research of the influence of microrelief on the erosion process and its change during the process has great significance on establishing the soil erosion model based on the process.What's more, it enriched the quantitative research on the process and mechanism of soil erosion by improving Gaussian model and Fractal model and establishing the simulate model that can be suitable for different soil surface roughness.
     1.Roughness index was selected by evaluating the applicability of random roughness, microrelief index an peak frequency, tortuosity, mean upslope depression and limiting elevation different and slope in the microzone. The method of calculating MDS was evaluated by J&D algorithm and M&V algorithm.The results indicated limiting elevation different and slope was the best roughness index, the difference between MDS calculated by J&D algorithm and calculated by M&V algorithm was not statistically significant, the higher the sampling precision was, the more small depression can be obtained, and the more precise MDS can be.
     2.Using laser scan to study quantitatively the changes of characteristics of microrelief during rainfalls. The results illustrated that the temporal and spatial variation features of roughness and MDS of different parts of slope under different slopes for three different soil surface roughness showed inconsistency. Slopes had significant effects on the changes of characteristics of microrelief for smooth soil surface, the medium rough soil surface took second place, and the rough soil surface had minimum effects on the changes of characteristics of microrelief. With the increase of slope, the roughness and MDS of different parts of slope for three different soil surface roughness showed an increasing trend. The roughness and MDS of different parts of slope for one slope showed the trend:the middle of slope decreased larger or increased smaller than the bottom of slope, the bottom of slope dropped off larger or increased less than the upper of slope.
     3.The MDS and LD·LS of rough soil surface simulated with MNG were equal to observed soil. Although there were differences on frequency distributions of heights, coefficient of skewness, semivariogram between simulated soil surface and observed soil, the simulated requirements according to the features of microrelief were reached. Thus the method was fit for the simulation of rough soil surface. The MDS and LD·LS of the medium rough and smooth soil surface simulated with MRMD were equal to observed soil.Besides, there were a little differences on semivariogram between simulated soil surface and observed soil.Therefore this method was fit for the simulation of medium rough and smooth soil surface.
引文
1.陈洪松,邵明安,张兴昌等.野外模拟降雨条件下坡面降雨入渗、产流试验研究.水土保持学报,2005,19(2):5-8
    2.丁国栋.地表粗糙度的含义本质.中国沙漠,1993,3(4):39-43
    3.段建南,李保国,石元春等.应用于土壤变化的坡面侵蚀过程模拟.土壤侵蚀与水土保持学报,1998,4(1):47-53
    4.高秀荣.基于FBM的可控性真实感地形的生成方法研究.[硕士学位论文].青岛:中国海洋大学图书馆,2007
    5.郭建华,吴发启,梁心兰.坡耕地地表糙度对降水分配的实验研究.水土保持研究,2008,15(3):11-14
    6.郭建华.地表粗糙度与填洼量关系研究.[硕士学位论文].杨凌:西北农林科技大学图书馆,2008
    7.李静,景旭,段军彪等.基于分形理论的坡面土壤侵蚀过程的情景模拟.西北农业学报,2008,17(1):292-295
    8.李振山,陈广庭.粗糙度研究的现状及展望.中国沙漠,1997,17(1):99-102
    9.梁俊,王琪,刘坤良等.基于随机中点位移法的三维地形模拟.计算机仿真,2005,22(1):213-215
    10.吕悦来,李广毅.地表粗糙度与土壤风蚀.土壤学进展,1992,6:35-42
    11.裴韬.条件模拟方法近期研究进展.天然气地球科学,2000,11(2):37-40
    12.彭仪普,刘文熙.分形地形模拟研究.长沙铁道学院学报,2001,19(4):95-98
    13.佘龙华,沈林成,常文森.基于FBM的分形地形模拟原理研究.宇航学报,1999,20(3):21-25
    14.史志华,闫峰陵,李朝霞等.红壤团聚体破碎方式对坡面产流过程的影响.自然科学进展,2007,17(2):217-224
    15.宋炜,刘普灵,杨明义.利用REE示踪法研究坡面侵蚀过程.水科学进展,2004,15(2):197-201
    16.陶闯,林宗坚,卢健.分形地形模拟.计算机辅助设计与图形学学报,1996,8(3):178-186
    17.万民,熊立华,卫晓婧.数字高程模型预处理方法的研究进展.水文,2008,28(5):11-17
    18.王建平,任立良,吴益.一种新的DEM填洼处理算法.地球信息科学,2005,7(3):51-54
    19.王礼先,吴斌,洪惜英译.土壤侵蚀.北京:水利电力出版社,1986
    20.吴长文,陈法扬.坡地土壤侵蚀机理研究进展与现状.中国水土保持,1996,21-24
    21.吴发启,赵晓光,刘秉正.地表粗糙度的量测方法及对坡面径流和侵蚀的影响.西北林学院学报,1998,13(2):15-19
    22.吴发启,郑子成,何淑勤.坡耕地地表粗糙度的研究进展.西北林学院学报,2002,17(3):38-43
    23.吴发启,郑子成.坡耕地地表粗糙度的量测与计算.水土保持通报,2005,25(5):71-74
    24.吴正.风沙地貌学.北京:科学出版社,1987:23-25
    25.谢顺平,都金康,王腊春.利用DEM提取流域水系时洼地与平地的处理方法.水科学进展,2005,16(4):535-540
    26.杨春霞,吴卿,杨剑峰等.人工模拟坡面产流试验研究.中国水土保持,2003,6:24-25
    27.杨明义,田均良.坡面侵蚀过程定量研究进展.地球科学进展,2000,15(6):649-653
    28.于淼,任立良.基于DEM模型的新填洼算法.地球信息科学学报,2009,11(1):50-55
    29.张萍.三维分形地形真实感绘制.[硕士学位论文].无锡:江南大学图书馆,2007
    30.赵军,雷廷武,张晴雯.激光微地貌扫描仪的开发研制及在坡面侵蚀研究应用初步.山东农业大学学报(自然科学版),2001,32(2):201-206
    31.郑子成.坡耕地地表粗糙度及其作用研究.[硕士学位论文].杨凌:西北农林科技大学图书馆,2002
    32.郑子成,何淑勤,吴发启.降雨对地表粗糙度影响的研究.水土保持研究,2003,10(2):151-154
    33.郑子成,何淑勤,吴发启.侵蚀过程中地表粗糙度变化特征的研究.水土保持学报,2003,17(5):165-168
    34.郑子成,何淑勤,吴发启.人为管理措施对产流产沙作用的研究.水土保持学报,2003,17(6):150-152
    35.郑子成,何淑勤,吴发启.地表糙度与水利糙率系数的关系.山地学报,2004,22(2):236-239
    36.郑子成,吴发启,何淑勤.不同地表条件下土壤侵蚀的坡度效应.节水灌溉,2006,6:23-26
    37.郑子成.坡面水蚀过程中地表粗糙度的作用及变化特征研究.[博士学位论文].杨凌:西北农林科技大学图书馆,2007
    38.郑子成,吴发启,何淑勤.地表糙度对径流和产沙影响的室内试验研究.农业工程学报,2007,23(10):19-24
    39.郑子成,何淑勤,吴发启.坡面水蚀过程中地表粗糙度的研究进展.节水灌溉,2008,8:8-11
    40.周贵云.基于格网数字高程模型的沟谷提取算法研究.[硕士学位论文].北京:北京大学图书馆,2002
    41.朱元骏,邵明安.不同碎石含量的土壤降雨入渗和产沙过程初步研究.农业工程学报,2006,22(2):64-67
    42.Abrahams A D, Parsons A J.Determining the mean depth of overland flow in field studies of flow hydraulics.Water Resour Res,1990,26:501-503
    43.Abrahams A D, Parsons A J. Resistance to overland flow on desert pavement and its implications for sediment transport modeling. Water Resour Res,1991,27:1827-1836
    44.Adrie F G, Jacobs, EmileSehols. Surface roughness Parameter estimates with a drag teenique. Am Meteorol Soc,1986,25:1577-1582.
    45.Allmaras R R, Burwell R E, Larson W E, Holt R F. Total porosity and random roughness of the interrow zone as influenced by tillage. Cons Res Rep,1966,7:1-14
    46.Allmaras R R, Burwell R E, Holt R F. Plow-layer porosity and surface roughness tillage as affeeted by initial porosity and soil moisture at tillage time. Soil Sci Soc Am Proc,1967,31:550-556.
    47.Bertuzzi P, Garcia-Sanchez L, ChadKuf J, Guerif J, Goulard M, Monestiez P.Modelling surface roughness by a Boolean approach. Soil Sci,1995,46:215-220
    48.Burrough P A. Multiscale sources of spatial variation in soil:Ⅰ The application of fractal concepts to nested levels of soil variation. Soil Sci,1983,34:577-597
    49.Burwell R E, Allmaras R R, Sloneker L L. Structural alteration of soil surfaces by tillage and rainfall.Soil and Water Cons,1966,21(2):61-63
    50.Burwell R E, Larson W E. Infiltration as influenced by tillage-induced random roughness and pore space. Soil Sci Sco Am Proe,1969,33:449-452
    51.ChadKuf J, Monestiez P, Bertuzzi P, Stengel P. Parameter estimation in a Boolean model of rough surface:application to soil surfaces. ACTA Stereol Proc ECS 5 8/2/1989 Freiburg I BR,1989,635-640
    52.ChadKuf J, Goulard M, Garcia-Sanchez L. Modelling soil surface roughness by Bool eanrandom functions.Microsc, Microanal,1996,7:557-563.
    53.Currence H D, Lovely W G. The analysis of soil surface roughness.Trans Am Soc Agri Eng,1970,13:710-714
    54. Darboux F, Davy P, Gascuel-Odoux C.Effect of depression storage capacity on overland-flow generation for rough horizontal surfaces:water transfer distance and scaling. Earth Surf Proc Landf,2002a,21:177-191
    55.Darboux F, Gascuel-Odoux C, Davy P. Effects of surface water storage by soil roughness on overland-flow generation. Earth Surf Proc Landf, 2002b,27:223-233
    56.Darboux F, Huang C H. An instantaneous-profile laser scanner to measure soil surface microtopography. Catena,2003,64:174-192
    57.Dexter A R. Effect of rainfall on the surface microrelief of tilled soil.Terramech,1977,14:11-22
    58.Dunne T, Zhang W H, Aubry B F. Effects of rainfall,vegetation, and microtopography on infiltration and runoff. Water Resour Res,1991,27:2271-2285
    59.Einstein H A, Barbarossa N L. River channel roughness.Trans Am Soc Civ Eng,1951,117:1121-1132
    60.Foster G R. Modeling the erosion process.In:Haan C T(ed), Hydrologic modeling of small watersheds,ASAE Monogr, vol 5 Am Soc Agric Eng,St Joseph,MI,1982,295-380
    61.Govers G, Takken I, Helming K. Soil roughness and overland flow. Agrono,2000,20:131-146
    62.Hairsine P B, Rose C W. Modeling water erosion due to overland flow using physical principles:I Sheet Flow.Water Resour Res,1992,28(1):237-243
    63.Hairsine P B, Moran C J,Rose C W. Recent development regarding the influence of soil surface characteristics on overland flow and erosion.Soil Res,1992,30:249-264
    64.Hansen B, Schjonning P, Sibbesen E. Roughness indices for estimation of depression storage capacity of tilled soil surfaces. Soil Till Res,1999,52:103-111
    65.Helming K, Romkens M J M, Prasad S N. Surface roughness related processes of runoff and soil loss:A flume study.Soil Sci Soc Am, 1998,62:243-250
    66.Helming K. Wind speed effects on rain erosivity.In:Sustaining the Global Farm,Perdue University,2001
    67.Huang C H, Bradford J M. Depressional storage for Markov-Gaussian surfaces. Water Resour Res,1990,26:2235-2242
    68.Huang C H, Bradford J M. Application of a laser scanner to quantify soil microtopography. Soil Sci Sot Am,1992,56:14-21
    69.Huang C, Gascuel-Odoux C, Craas-Cayot S.Hillslope topographic and hydrologic effects on overland flow and erosion. Catena,2001,46:177-188
    70.Kamphorst E C, Jetten V, Guerif J, Pitkanen J, Iversen B I, Douglas J T, Paz A. Predicting depressional storage from soil surface roughness.Soil Sci Soc Am,2000,64:1749-1758
    71. Kamphorst E C, Duval Y. Validation of a numerical method to quantify depression storage by direct measurementson moulded surfaces. Catena,2001,43:1-14
    72.Larson W E. Tillage requirements for corn. Soil Water Cons,1962.17(1):3-7
    73.Lehrseh G A, Whisler E D, Romkens M J M. Soil surface roughness as influenced by selected soil Physical properties.Soil Till Res,1987,10:197-212
    74.Linden D K,D M Van Doren J R.Parameter for charaeterizingt illage-indueed soil surface roughness.Soil Sci Soc Am,1986,50:1561-1565
    75.Mitchell J K, Jones B A. Micro-relief surface depression storage:analysis of models to describe the depth storage function. Water Resour Bull, 1976,12:1205-1222
    76.Moldehauer W C, Kemper W D.Interdependence of water drop energy and clod size on infiltration and clod stability. Proc-Soil Sci Soc Am,1969,33:297-301
    77.Moore I D, Larson C L. Estimating micro-relief surface storge from point data. Trans Am Soc Agric Eng,1979,22:1073-1077
    78.Moore D C, Singer M J.Crust formation effects on erosion processes. Soil Sci Soc Am,1990,54:1117-1123
    79.Onstad C A. Depressional storage on tilled soil surfaces. Trans Am Soc Agric Eng,1984a,27:729-732
    80.Onstad C A. Effect of rainfall on tilled soil properties.Am Soc Agric Eng, 1984b,84:2525-2531
    81.Renard K G,Forster G R. Soil Conservation:Principle of Erosion by Water.1983
    82.Renard K G, Foster G R, Weesies G A, McCool D K, Yoder D C. Predicting soil erosion by water:a guide to conservation planning with the revised universal soil loss equation (RUSLE).USDA-ARS Agric Handb, vol 703 U S' Gov Print Office Washington DC,1997
    83.Richards P L, Grimm R, Cannon D.Depression storage in land uses common to the Finger Lakes Region.In:1st Annual Finger Lakes Research Conference. Finger Lakes Institute, Geneva, NY,2005
    84.Romkens M J M, Wang J Y.Effect of tillage on surface roughness.Trans ASAE,1986,29:429-433
    85.Romkens M J M, Helming K, Prasad S N.Soil erosion under different rainfall intensities, surface roughness, and soil water regimes.Catena,2001,46:103-123
    86.Rudolph A, Helming K, Diestel H. Effect of antecedent soil water content and rainfall regime on microrelief changes.Soil Technol,1997,10:69-81
    87.Takken I, Govers G, Jetten V, Nachtergaele J, Steegen A, Poesen J.Effects of tillage on runoff and erosion patterns.Soil Till Res,2001,61:55-60
    88.Ullah W, Dickenson W T. Quantitative description of depression storage using a digital surface model.Hydrol,1979,42:77-90
    89.Zobeck T M, Onstad C A. Tillage and rainfall effects on random roughness:a review. Soil Till Res,1987,9:1-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700