用户名: 密码: 验证码:
丹参酮ⅡA对小鼠永久性局灶脑缺血的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑缺血是危害人类健康的严重疾病,已经成为继心脏疾病之后世界第二大致死因素。虽然目前关于脑缺血的研究已经越来越受到重视,但是脑缺血的治疗药物仍然非常缺乏。丹参是常用的活血化瘀中药,被广泛地应用于心脑血管疾病的治疗。丹参酮ⅡA(TSA)是丹参主要的脂溶性活性成分之一,近年来已有报道证明TSA对一过性脑缺血有很好的治疗效果,但其对于永久性脑缺血的作用及保护机制仍然未知。本实验目的在于研究TSA是否对小鼠永久性局灶性脑缺血损伤具有保护作用,并探讨其可能的作用机制。
     本实验共分为两个部分,第一部分通过整体模型评价TSA对小鼠永久性局灶性脑缺血的治疗效果。第二部分从体内和体外两方面入手,探讨TSA可能的作用机制。方法:动物主要分5个组:假手术组、模型组、TSA高剂量组(20mg/kg),TSA中剂量组(10mg/kg),TSA低剂量组(5mg/kg)。另外第一部分药效实验还添加了尼莫地平阳性对照组。实验采用永久性中动脉栓塞法造模(pMCAO),造模后24小时取材,通过行为学指标以及梗死面积评价脑损伤程度;生化检测用于测定血清中SOD活性、MDA含量以及脑组织匀浆中iNOS活性、NO含量;免疫组化用于检测脑冰冻切片中iNOS的表达情况。体外实验分5组:正常对照组、模型组、TSA高剂量组(8μM)、TSA中剂量组(4μM)、TSA低剂量组(2μM),采用过氧化氢损伤模型对星形胶质细胞进行研究。通过细胞存活率、细胞上清中的NO含量以及NF-κB的转录来进一步探讨TSA可能的作用机制。结果:TSA高、中剂量组均可显著减少梗死面积(P<0.01);在行为学方面,20mg/kgTSA给药组自缺血后8h起可显著缓解行为学症状(P<0.05),其余剂量组行为学指标相对于模型组均有不同程度的改善。TSA高、中剂量组小鼠血清中的MDA含量显著下降,SOD含量显著提高,脑组织匀浆中NO含量明显下降(P<0.01,0.05);三个药物剂量组均能显著降低脑组织匀浆中iNOS活性(P<0.01),免疫组化结果同时显示,缺血半球iNOS表达被抑制。体外实验中,三个TSA干预组(2,4and 8μM)均能显著减轻H_2O_2造成的星形胶质细胞损伤,并减少由此诱导产生的NO(P<0.01);免疫印记实验证明NF-κB的转录也被抑制。结论:TSA对小鼠永久性脑缺血损伤有一定的保护作用。这一保护作用可能由于TSA可以减少受损组织的ROS含量,减轻氧化应激损伤;进而抑制ROS下游炎症因子iNOS的表达来减少NO的产生,从而缓解脑缺血后的炎症损伤。
Stroke is one of the most frequent causes of disability and death worldwide, but the treatment of it was short of. Danshen is a commonly used traditional Chinese medicine for the treatment of cardiovascular and Cerebrovascular diseases. Tanshinone IIA (TSA), as a key compound of Danshen, has been proved to protect the brain from transient ischemia injury. But there was no report of its effects on brain injury after permanent focal cerebral ischemia and little is known about its mechanism. The objective of this study was to evaluate whether Tanshinone IIA (TSA) was neuroprotective in permanent focal cerebral ischemia and to determine the possible mechanisms of its neuroprotection.
     This experiment contains two parts. The first part was to measure the neuroprotection of TSA and the second part was to find the possible mechanisms of its function. Method: Animals were randomly divided into 5 groups: sham, vehicle, TSA 20mg/kg, TSA 10mg/kg and TSA 5mg/kg. In addition, there was a positive control group in the first part of the experiment. Mice were subjected to permanent middle cerebral artery occlusion for 24h. The neuroprotection of TSA was investigated with respect to neurological deficit scores and infarct volume. Biochemical analysis for malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in serum, and nitric oxide (NO) content and the inducible nitric oxide synthase (iNOS) activity in brain tissue were performed at 24h after ischemia. Immunohistochemistry was used to measure the expression of iNOS. In vitro, 5 groups were used: control, model, TSA 8μM, TSA 4μM and TSA 2μM. The effects of TSA were tested in the cultured astrocytes exposed to hydrogen dioxide (H_2O_2). Result: TSA (10 and 20 mg/kg, i.p.) significantly reduced the infarct volume and TSA 20mg/kg improve neurological deficit 8h after ischemia remarkably. TSA (10 and 20 mg/kg, i.p.) significantly increased the activity of SOD after 24h of ischemia and decreased the MDA level in serum, and suppressed the NO content in brain tissue. All of the three treatment groups remarkably reduced the activity of iNOS in brain, and the expression of iNOS was also inhibited. In vitro, the translocation of NF-κB was inhibited by TSA and the survival rate of astrocytes was markedly increased as well as the NO production was decreased.
     Conclusion: These results illustrated that TSA protected brain from ischemic injury by suppressing the oxidative stress and the radical-mediated inflammatory insult.
引文
1.Organization,W.H.,Would Health Report 2004.2004.
    2.Organization,W.H.,Mortality country fact sheet 2006:China.2006.
    3.Appelros,P.,I.Nydevik,and M.Viitanen,Poor outcome afterfirst-ever stroke:predictors for death,dependency,and recurrent stroke within the first year Stroke,2003.34(1):p.122-6.
    4.Lawrence,E.S.,et al.,Estimates of the Prevalence of Acute Stroke Impairments and Disability in a Multiethnic Population.2001.p.1279-1284.
    5.Srikanth,V.K.,et al.,Increased Risk of Cognitive Impairment 3 Months After Mild to Moderate First-Ever Stroke:A Community-Based Prospective Study of Nonaphasic English-Speaking Survivors.2003.p.1136-1143.
    6.Silvestrelli,G.,et al.,The Perugia hospital-based Stroke Registry:report of the 2nd year.Clin Exp Hypertens,2002.24(7-8):p.485-91.
    7.Alexandrov,A.V.,et al.,Ischemic stunning of the brain:early recanalization without immediate clinical improvement in acute ischemic stroke.Stroke,2004.35(2):p.449-52.
    8.赵兴茹,付超美,梁佳然,张云,樊.,中药治疗缺血性脑卒中的研究进展.脑与神经疾病杂志,2006.14(4):p.318-319.
    9.Du,G.,J,Zhang,The general situation and progress of the modern research of red sage root(Radix Salviae miltiorrhizae).Zhong Yao Cai,2004.28:p.301-304.
    10.Lam,B.Y.,et al.,Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice.Phytomedicine,2003.10(4):p.286-91.
    11.Shuaib,A.and M.S.Hussain,The Past and Future of Neuroprotection in Cerebral Ischaemic Stroke.European Neurology,2008.59:p.4-14.
    12.Furlan AJ,K.I.,Caplan LR,Thrombolytic therapy in acute ischemic stroke.Curr Treat Options Cardiovasc Med,2003.5:p.171-180.
    13.Lo,E.H.,T.Dalkara,and M.A.Moskowitz,Mechanisms,challenges and opportunities in stroke.Nature Reviews Neuroscience,2003.4(5):p.399-415.
    14.Gilgun-Sherki Y,R.Z.,Melamed E,Often D.,Antioxidant therapy in acute central nervous system injury:current state.Pharmacol Rev.,2002.54(2):p.271-84.
    15.Chan,P.H.,Reactive Oxygen Radicals in Signaling and Damage in the Ischemic Brain.J Cereb Blood Flow Metab,2001.21(1):p.2-14.
    16.Serteser,M.O.,T.;Gumuslu,S.et al,Lipid peroxidation in rat brain during focal cerebral ischemia:prevention of malondialdehyde and lipid conjugated diene production by a novel antiepileptic,lamotrigine.Neurotoxicology,2002.23:p.111-119.
    17.Mizui,T.K.,H.;Chan,P.H.,Depletion of brain glutathione by buthione sulfoximine enhances cerebral ischemic injury in rats.Am.J.Physiol.,1992.262:p.H313-317.
    18.Chan,Reactive oxygen radicals in signaling and damage in the ischemic brain.J Cereb Blood Flow Metab,2001.21(1):p.2-14.
    19.Song,Y.S.L.,Y.S.Chan,P.H.,Oxidative stress transiently decreases the IKK complex(IKKalpha,beta,and gamma),an upstream component of NF-kappaB signaling,after transient focal cerebral ischemia in mice.J Cereb Blood Flow Metab.,2005.25:p.1301-11.
    20.Stephenson,D.Y.,T.Smalstig,EB.et al.,Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia.J Cereb Blood Flow Metab.,2000.20:p.592-603.
    21.Sutcliffe,I.S.,HA.Stanimirovic D.et al.,Effects of moderate hypothermia on IL-1β-induced leukocyte rolling and adhesion in pial microcirculation of mice and on proinflammatory gene expression in human cerebral endothelial cells..J Cereb Blood Flow Metab.,2001.21:p.1310-9.
    22.Nurmi,A.L.,P.J.Koistinaho,M.,Nuclear factor-kappaB contributes to infarction after permanent focal ischemia.Stroke,2004.35:p.987-91.
    23.Huang,K.J.,et al.,Investigation of the effect of tanshinone ⅡA on nitric oxide production in human vascular endothelial cells by fluorescence imaging.Spectrochim Acta A Mol Biomol Spectrosc,2007.
    24.Tang,F.,et al.,Tanshinone ⅡA attenuates atherosclerotic calcification in rat model by inhibition of oxidative stress.Vascul Pharmacol,2007.46(6):p.427-38.
    25.Zhang,H.-S.and S.-Q.Wang,Nrf2 is involved in the effect of tanshinone ⅡA on intracellular redox status in human aortic smooth muscle cells.Biochemical Pharmacology,2007.73(9):p.1358-1366.
    26.Bai,A.,et al.,Tanshinone ⅡA Ameliorates Trinitrobenzene Sulfonic Acid (TNBS)-Induced Murine Colitis.Dig Dis Sci,2007.
    27.Choi,H.S.,et al.,Molecular mechanisms of inhibitory activities of tanshinones on lipopolysaccharide-induced nitric oxide generation in RAW 264.7 cells.Arch Pharm Res,2004.27(12):p.1233-7.
    28.Jang,S.I.,et al.,Tanshinone ⅡA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells:possible involvement of the NIK-IKK,ERK1/2,p38 and JNK pathways.Eur J Pharmacol,2006.542(1-3):p.1-7.
    29.Love,S.,Oxidative stress in brain ischemia.Brain Pathol,1999.9(1):p.119-31.
    30.Demirkaya,S.,et al.,Malondialdehyde,glutathione peroxidase and superoxide dismutase in peripheral blood erythrocytes of patients with acute cerebral ischemia.Eur J Neurol,2001.8(1):p.43-51.
    31.Kim,G.W.,et al.,Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice:implications for the production and role of superoxide radicals.Stroke,2002.33(3):p.809-15.
    32.Kondo,T.,et al.,Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.J Neurosci,1997.17(11):p.4180-9.
    33.Fujimura,M.,et al.,Reduction of copper,zinc-superoxide dismutase in knockout mice does not affect edema or infarction volumes and the early release of mitochondrial cytochrome c after permanent focal cerebral ischemia.Brain Res,2001.889(1-2):p.208-13.
    34.Murakami,K.,et al.,Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency.J Neurosci,1998.18(1):p.205-13.
    35.Fu,J.,et al.,Tanshinone ⅡA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis.Eur J Pharmacol,2007.568(1-3):p.213-21.
    36.Cao,E.H.,et al.,Effect of natural antioxidant tanshinone ⅡA on DNA damage by lipid peroxidation in liver cells.Free Radic Biol Med,1996.20(6):p.801-6.
    37.Lin,R.,et al.,Protective effect of tanshinone ⅡA on human umbilical vein endothelial cell injured by hydrogen peroxide and its mechanism.Journal of Ethnopharmacology,2006.108(2):p.217-222.
    38.Calabrese,V.,et al.,Nitric oxide in the central nervous system:neuroprotection versus neurotoxicity.Nat Rev Neurosci,2007.8(10):p.766-775.
    39.Zhu,D.Y.,Deng,Q.,Yao,H.H.,Wang,D.C.,Deng,Y.,Liu,G.Q.,,Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice.Life Science,2002.71:p.1985-1996.
    40.Zhu,D.Y.,Liu,S.H.,Sun,S.H.,Lu,Y.M.,,Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult animal dentate gyrus.J.Neurosci.,2003.23:p.223-229.
    41.Zhao,X.,et al.,Gene-dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase.Brain Research,2000.872(1-2):p.215-218.
    42.Iadecola,C.,et al.,Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene.J Neurosci,1997.17(23):p.9157-64.
    43.Nurmi,A.L.,P.J.Koistinaho,M.,Nuclear factor-kappaB contributes to infarction after permanent focal ischemia.Stroke,2004.35:p.987-91.
    44.Sharp FR.Lu,A.T.,Y.,Multiple molecular penumbras after focal cerebral ischemia.J Cereb Blood Flow Metab.,2000.20:p.1011-32.
    45.Sutcliffe,I.S.,HA.Stanimirovic D.,Effects of moderate hypothermia on IL-1β-induced leukocyte rolling and adhesion in pial microcirculation of mice and on proinflammatory gene expression in human cerebral endothelial cells.J Cereb Blood Flow Metab.,2001.21:p.1310-9.
    46.Han,H.K.,M.Kelly,S.,Mild hypothermia inhibits nuclear factor-kappa B translocation in experimental stroke..J Cereb Blood Flow Metab.,2003.23:p.589-98.
    47.Kim,E.K.,KJ.Park,JY.et al.,Effect of peroxisome preliferators-activated receptor agonisis on LPS-induced neuronal death in mixed cortical neurons:associated with iNOS and COX-2.Brain Res.,2002.941:p.1-10.
    48.Ryu,J.P.,H.Jou,L.et al.,Thrombin induces NO release from cultured rat microglia via protein kinase C,mitogen-activated protein kinase,and NF-kappa B.J Biol Chem.,2000.275:p.2955-9.
    49.Domanska-Janik,K.B.-K.,A.Zajac,H.et al.,Interrelations between unclear-factor kappa B activation,glial response and neuronal apoptosis in gerbil hippocampus after ischemia..Acta Neurobiol Exp(wars).,2005.61:p.45-51.
    50.Togashi,H.,et al.,Neuronal(type Ⅰ) nitric oxide synthase regulates nuclear factor kappaB activity and immunologic(type Ⅱ) nitric oxide synthase expression.Proc Natl Acad Sci U S A,1997.94(6):p.2676-80.
    51.Endoh,M.,K.Maiese,and J.Wagner,Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia.Brain Res,1994.651(1-2):p.92-100.
    52.Zhang,N.,et al.,Edaravone Reduces Early Accumulation of Oxidative Products and Sequential Inflammatory Responses After Transient Focal Ischemia in Mice Brain.2005.p,2220-2225.
    Dong KN,Xu W,Yang J,Qiao HX,Wu LM.Neuroprotective effects of Tanshinone ⅡA on permanent focal cerebral ischemia in mice.Phytotherapy Research (revise)
    1.Organization,W.H.,Would Health Report 2004.2004.
    2.Organization,W.H.,Mortality country fact sheet 2006:China.2006.
    3.Silvestrelli,G.,et al.,The Perugia hospital-based Stroke Registry:report of the 2nd year.Clin Exp Hypertens,2002.24(7-8):p.485-91.
    4.Lo,E.H.,T.Dalkara,and M.A.Moskowitz,Mechanisms,challenges and opportunities in stroke.Nature Reviews Neuroscience,2003.4(5):p.399-415.
    5.Serteser,M.O.,T.;Gumuslu,S.et al,Lipid peroxidation in rat brain during focal cerebral ischemia:prevention of malondialdehyde and lipid conjugated diene production by a novel antiepileptic,lamotrigine.Neurotoxieology,2002.23:p.111-119.
    6.Mizui,T.K.,H.;Chan,P.H.,Depletion of brain glutathione by buthione sulfoximine enhances cerebral ischemic injury in rats.Am.J.Physiol.,1992.262:p.H313-317.
    7.Gilgun-Sherki Y,R.Z.,Melamed E,Often D.,Antioxidant therapy in acute central nervous system injury:current state.Pharmacol Rev.,2002.54(2):p.271-84.
    8.Chan,P.H.,Reactive Oxygen Radicals in Signaling and Damage in the Ischemic Brain.J Cereb Blood Flow Metab,2001.21(1):p.2-14.
    9.Huang,Z.,et al.,Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase.Science,1994.265(5180):p.1883-5.
    10.Iadecola,C.,et al.,Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene.J Neurosci,1997.17(23):p.9157-64.
    11.Huang,P.L.,Neuronal and endothelial nitric oxide synthase gene knockout mice.Braz J Med Biol Res,1999.32(11):p.1353-9.
    12.Hashiguchi A,Y.S.,Morioka M,Hamada J,Ushio Y,Takeuchi Y,Fukunaga K,Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus.J Cereb Blood Flow Metab.,2004.24(3):p.271-9.
    13.Wang JY,S.A.,Ho YJ,Wang JY.,Oxidative neurotoxicity in rat cerebral cortex neurons:synergistic effects of H2O2 and NO on apoptosis involving activation of p38mitogen-activated protein kinase and caspase-3.J Neurosci Res.,2003.72(4):p.508-19.
    14.Lipton S,C.Y.,Pan Z,Lei S,Chen H,Sucher N,,A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 1993.364:p.626-32.
    15.Virag L,S.E.,Gergely P,Szabo C.,Peroxynitrite-induced cytotoxicity:mechanism and oportunities for intervention.Toxicol Lett.,2003.140-141:p.113-24.
    16.Kim,G.W.,et al.,Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice:implications for the production and role of superoxide radicals.Stroke,2002.33(3):p.809-15.
    17.Kondo,T.,et al.,Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.J Neurosci,1997.17(11):p.4180-9.
    18.Fujimura,M.,et al.,Reduction of copper,zinc-superoxide dismutase in knockout mice does not affect edema or infarction volumes and the early release of mitochondrial cytochrome c after permanent focal cerebral ischemia.Brain Res,2001.889(1-2):p.208-13.
    19.Murakami,K.,et al.,Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency.J Neurosci,1998.18(1):p.205-13.
    20.Iwata-Ichikawa,E.,et al.,Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis.J Neurochem,1999.72(6): p.2334-44.
    21.Weisbrot-Lefkowitz,M.,et al.,Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage.Brain Res Mol Brain Res,1998.53(1-2):p.333-8.
    22.Flentjar,N.J.,et al.,Mice lacking glutathione peroxidase-1 activity show increased TUNEL staining and an accelerated inflammatory response in brain following a cold-induced injury.Exp Neurol,2002.177(1):p.9-20.
    23.Crack,P.J.,et al.,Glutathione peroxidase-1 contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic mouse in response to ischemia/reperfusion injury.J Cereb Blood Flow Metab,2003.23(1):p.19-22.
    24.Hewett,S.J.,et al.,Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture.J Pharmacol Exp Ther,2000.293(2):p.417-25.25.Cao,J.,et al.,The PSD95-nNOS interface:a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death.J Cell Biol,2005.168(1):p.117-26.
    26.Wen,J.,et al.,Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats.Biol Pharm Bull,2006.29(4):p.713-8.
    27.Shen,H.-M.and Z.-g.Liu,JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species.Free Radical Biology and Medicine,2006.40(6):p.928-939.
    28.Sugino,T.,K.Nozaki,and N.Hashimoto,Activation of mitogen-activated protein kinases in gerbil hippocampus with ischemic tolerance induced by 3-nitropropionic acid.Neurosci Lett,2000.278(1-2):p.101-4.
    29.Poh Loh,K.,et al.,Oxidative Stress:Apoptosis in Neuronal Injury.Current Alzheimer Research,2006.3:p.327-337.
    30.Ferrer,I.,et al.,Early modifications in the expression of mitogen-activated protein kinase(MAPK/ERK),stress-activated kinases SAPK/JNK and p38,and their phosphorylated substrates following focal cerebral ischemia.Acta Neuropathol,2003.105(5):p.425-37.
    31.Mehta,S.L.,N.Manhas,and R.Raghubir,Molecular targets in cerebral ischemia for developing novel therapeutics.Brain Research Reviews,2007.54(1):p.34-66.
    32.Okuno,S.,et al.,The c-Jun N-terminal protein kinase signaling pathway mediates Box activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia.J Neurosci,2004.24(36):p.7879-87.
    33.Guan,Q.H.,et al.,Brain ischemia/reperfusion-induced expression of DP5 and its interaction with Bcl-2,thus freeing Bax from Bcl-2/Bax dimmers are mediated by c-Jun N-terminal kinase(JNK)pathway.Neurosci Lett,2006.393(2-3):p.226-30.
    34.Brecht,S.,et al.,Specific pathophysiological functions of JNK isoforms in the brain.Eur J Neurosci,2005.21(2):p.363-77.
    35.Pan,J.,Q.G.Zhang,and G.Y.Zhang,The neuroprotective effects of K252a through inhibiting MLK3/MKK7/JNK3 signaling pathway on ischemic brain injury in rat hippocampal CA1 region.Neuroscience,2005.131(1):p.147-59.
    36.Umemoto,S.,et al.,Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats.Hypertens Res,2004.27(11):p.877-85.
    37.Goto,S.,et al.,Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery.Stroke,2002.33(4):p.1101-6.
    38.Sugawara,T.,et al.,Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway ofcaspase activation.J Neurosci,2002.22(1):p.209-17.
    39.Fujimura,M.,et al.,Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidinic endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice.Stroke,1999.30(11):p.2408-15.
    40.Gunther,A.,et al.,Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia.Eur J Neurosci,2005.21(11):p.3189-94.
    41.Golde,S.,et al.,Different pathways for iNOS-mediated toxicity in vitro dependent on neuronal maturation and NMDA receptor expression.J Neurochem,2002.82(2):p.269-82.
    42.Zhang,N.,et al.,Edaravone Reduces Early Accumulation of Oxidative Products and Sequential Inflammatory Responses After Transient Focal Ischemia in Mice Brain.2005.p.2220-2225.
    43.Block,M.L.,L.Zecca,and J.-S.Hong,Microglia-mediated neurotoxicity:uncovering the molecular mechanisms.Nat Rev Neurosci,2007.8(1):p.57-69.
    44.Crack,P.J.and J.M.Taylor,Reactive oxygen species and the modulation of stroke.Free Radical Biology and Medicine,2005.38(11):p.1433-1444.
    45.Terai,K.,et al.,Enhancement of immunoreactivity for NF-kappa B in human cerebral infarctions.Brain Res,1996.739(1-2):p.343-9.
    46.Nurmi,A.,et al.,Nuclear factor-kappaB contributes to infarction after permanent focal ischemia.Stroke,2004.35(4):p.987-91.
    47.Khan,M.,et al.,S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke.J Cereb Blood Flow Metab,2005.25(2):p.177-92.
    48.Dringen,R.,Metabolism and functions of glutathione in brain.Prog Neurobiol,2000.62(6):p.649-71.
    49.Anderson,M.F.,et al.,Astrocytes and stroke:networking for survival? Neurochem Res,2003.28(2):p.293-305.
    50.Thoren,A.E.,et al.,Astrocytie function assessed from 1-14C-acetate metabolism after temporary focal cerebral ischemia in rats.J Cereb Blood Flow Metab,2005.25(4):p.440-50.
    51.Pekny,M.and M.Nilsson,Astrocyte activation and reactive gliosis.Glia,2005.50(4):p.427-34.
    52.Yuanshu Dong,E.N.B.,Immune function of astrocytes.2001.p.180-190.
    53.Endoh,M.,K.Maiese,and J.Wagner,Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia.Brain Res,1994.651(1-2):p.92-100.
    54.Heales,S.J.,et al.,Nitric oxide,mitochondria and neurological disease.Biochim Biophys Acta,1999.1410(2):p.215-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700