用户名: 密码: 验证码:
3-羟基丁酸甲酯作为新型汽油添加剂的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基脂肪酸酯是一种已被证实的可生物降解的聚酯类生物材料,其单体酯化物具有与生物柴油组分类似的结构。本研究中,以甲醇为酯化剂,通过硫酸催化水解的方法,将聚-3-羟基丁酸酯转化成为3-羟基丁酸甲酯。利用核磁共振波谱仪(NMR)和气相色谱仪(GC)对制得的3-羟基丁酸甲酯分别进行定性和定量测定,HBME纯度达到96.4%。依据美国ASTM标准对HBME及其不同比例HBME-汽油混合物的理化性质和燃料相关性能进行了测定,测定结果表明HBME有可能被用作生物燃料或燃料添加剂。当HBME分别以5%、8.5%、10%、15%、20%的体积比与97#汽油混合时,我们发现HBME作为燃料添加剂在氧含量、动力粘度、闪点、沸点、凝固点和馏程等方面具有比乙醇更优异的性能。HBME-汽油混合物在辛烷值和燃烧热上只与97#汽油有微小的差别,特别是HBME以8.5%-10%体积比与汽油混合的时候,辛烷值的减少在5%范围内,燃烧热超过汽油的93%。各项研究结果都表明HBME具有作为燃料添加剂应用于生物燃料领域的潜能。
Polyhydroxyalkanoate (PHA) was demonstrated to be a family of biopolyester with good biodegradability. The structure of hydroxyalkanoate methyl ester was similar to biodiesel. In this study, 3-Hydroxybutyrate methyl ester (HBME) was prepared from hydrolysis of bacterial poly-3-hydroxybutyrate (PHB) using methanol as an esterification agent in the presence of sulfuric acid. nuclear magnetic resonance spectrometer (NMR) and Gas chromatography (GC) were used to have qualitative and quantitative analysis of the produced HBME. It was found that purity of HBME was 96.4%. Physicochemical and fuel related properties of HBME were studied for the possibility of using HBME as a biofuel or fuel additive according to the standard of ASTM. When HBME was blended with 97# gasoline in volume ratios of 5%, 8.5%, 10%, 15% and 20%, respectively, it was found that HBME had similar or better properties as a fuel additive compared with ethanol in terms of oxygen content, dynamic viscosity, flash point, boiling point, freezing point and distillation ranges. The blending of HBME and gasoline showed only little difference compared with the 97# gasoline in terms of octane number (RON) and heat of combustion, especially for the HBME 8.5% and 10% blends, which demonstrated an over 93% combustion heat of gasoline with less than 5% reduction in RON. HBME can be regarded as a fuel additive for developing into biofuel.
引文
[1] Gross Robert, Leach Matthew, Bauen Ausilio. Progress in renewable energy. Environment International 2003; 29 (1): 105-122.
    [2] Yokoyama S Y, Ogi T, Nalampoon A. Biomass energy potential in Thailand. Biomass and Bioenergy 2000; 18(5): 405-410.
    [3] Antoni D, Zverlov VV, Schwarz WH. Biofuels from microbes. Appl Microbiol Biotechnol 2007; 77:23–35.
    [4] Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 2006; 103(30): 6–10.
    [5] Kevin N Rask. Clean air and renewable fuels: the market for fuel ethanol in the US from 1984 to 1993. Energy Economics 1998; 20:325-345.
    [6]傅学政,朱薇,管天球.我国红薯生产燃料乙醇的综合效益分析.湖南科技学院学报2006; 27(11): 183-185.
    [7]刘翔,何国庆.利用木素纤维素生产燃料乙醇的微生物代谢工程.粮油加工与食品机械2003; 8: 67-69.
    [8]刘铁男.中国燃料乙醇产业发展.中国能源2002; 3: 6-10.
    [9] Ma F, Hanna M A, Biodiesel production : a review. Bioresour Technol 1999; 70(1): 1-15.
    [10] Harrington K J. Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 1996; 9: 1- 3.
    [11]苏有勇,戈振扬,施卫省.皂脚制备生物柴油的试验研究.农业工程学报2007; 23(2): 183-187.
    [12] Laureano Canoira, Ramon Alcantara, Jesus Carrasc, et al. Biodiesel from Jojoba oil - wax : Transesterification with methanol and properties as a fuel. Biomass and Bioenergy 2006; 30: 76-81.
    [13]徐桂转,刘会丽,张百良.响应面法优化酶催化酯交换反应研究.化学工程2007; 35(3): 63-67.
    [14] Madras G, Kolluru C, Kumar R. Synthesis of Biodiesel in Supereritical Fuids. Fuel 2004; 83: 2029-2033.
    [15] Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial use of bacterial polyhydroxyalkanoates. Microbiol Rev 1990; 54: 450-472.
    [16] Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 1999; 63: 21-53.
    [17] Dowes EA, Senior PJ. The role and regulation of energy reserve polymers in microorganisms. Adv Microb Physiol 1973; 10: 135-266.
    [18] Jendrossek D. Microbial degradation of polyesters. Adv Biochem Eng Biotechnol 2001; 71: 293-325.
    [19] Reusch RN, Hiske TW, Sadoff HL. Poly-β-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J Bacteriol 1986; 168: 553-562.
    [20] Huang R, Reusch RN. Poly(3-hydroxybutyrate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli. J Biol Chem 1996; 271: 22196-22202.
    [21] Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 1995; 128: 219-228.
    [22] Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol 1998; 180: 6459-6467.
    [23] Matsusaki H, Abe H, Doi Y. Biosynthesis and properties of poly(3-hydroxy- butyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 2000; 1: 17-22.
    [24] Wallen LL, Rohwedder WK. Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol 1974; 8: 576-9.
    [25] Findlay RH, White DC. Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 1983; 45: 71-8.
    [26] Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 1983; 154: 870-8.
    [27] Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B. Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkanoates. Appl Environ Microbiol 1988; 54: 2924-32.
    [28] Brandl H, Gross RA, Lenz RW, Fuller RC. Pseudomonas oleovorans as a source of poly (β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 1988; 54: 1977-82.
    [29] Fritsche K, Lenz RW, Fuller RC. Bacterial polyesters containing branched poly (β-hydroxyalkanoates) units. Int J Biol Macromol 1990; 12: 92-101.
    [30] He W, Tian W, Zhang G, Chen GQ, Zhang Z. Production of novel polyhydroxyal- kanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett 1998; 169: 45-9.
    [31]陈国强,赵锴.生物工程与生物材料.中国生物工程杂志2002; 22: 1-8.
    [32] Lee S Y. Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 1996; 49: 1-14.
    [33] Kunioka M, Doi Y. Thermal degradation of microbial copolyesters: poly (3-hy- droxybutyrate-co-4-hydroxybutyrate). Macromolecules 1990; 23: 1933-1936.
    [34] Avella M, Martuscelli E, Orsello G. et al. Poly (3-hydroxybutyrate)/poly (methyleneoxide) blends: thermal, crystallization and mechanical behaviour. Polymer 1997; 38(25): 6135-6143.
    [35] Iwata T, Tsunoda K, Aoyagi Y, et al. Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybutyrate). Polym. Degrad. Stab 2003; 79(2): 217-224.
    [36] Kusaka S, Iwata T, Doi Y. Properties and biodegradability of ultra-high- molecular-weight poly [(R)-3-hydroxybutyrate] produced by a recombinant Escherichia coli. Int. J. Biol. Macromolecules 1999; 25: 87-94.
    [37] Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 1995; 28: 4822-4828.
    [38] Abe H, Kikkawa Y, Aoki H, et al. Crystallization behavior and thermal properties of melt-crystallized poly [(R)-3-hydroxybutyric acid-co-6-hydroxyhexanoic acid]. Int. J. Biol. Macromolecules 1999; 25: 177-183.
    [39] Ageveen R G, Huisman G W,Preusting H et al. Formation of polysters by Pseudomona oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalakanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol 1988; 54: 2924-2932.
    [40] Haywood G.W, Anderson A.J., Dawes E.A. Characterization of two 3-ketothiolases possessing differering substrates specificities in the polyhydroxyalkanoate synthesizing oganism Alcaligenus eutrophus. FEMS Microbiol. Lett 1988; 57: 1-6.
    [41] Williamson D.H. and Wilkinson J.F. The Isolation and Estimation of Poly-β- hydroxybutyrate Inclusions of Bacillus Species. J gen. Microbiol 1958; 19: 198-209.
    [42] Ward A. C. and Dawes E. A. A Disk Assay of Poly-?-hydroxyburate. Biochem. 1973; 52: 607-613.
    [43] Kato M, Bao HJ, Kang CK, Fukui T and Doi Y. Production of a novel copolyester of 3- hydroxybutyric acid and medium chain length 3- hydroxyalkanoatic acids by Pseudomonas sp.61-3 from sugars. Appl. Microbiol
    [44] Tadahisa Iwata, Yoshiharu Doi, Fumiaki Kokubu, Shinya Teramachi, Alkaline hydrolysis of solution-grown poly[(R)-3-hydroxybutyrate] single crystals, Macromolecules 1999; 32: 8325-8330.
    [45] Hideki Abe, Yoshihiro Kikkawa, Hiromichi Aoki, Takashi Akehata, Tadahisa Iwata, Yoshiharu Doi. Crystallization behavior and thermal properties of melt-crystallized poly[(R)-3-hydroxybutyric acid-co-6-hydroxyhexanoic acid], International Journal of Biological Macromolecules 1999; 25: 177-183.
    [46] Ohkoshi, H. Abe, Y. Doi. Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R, S)-3-hydroxybutyrate]. Polymer 2000; 41: 5985-5992.
    [47] Yoichiro Azuma, Naoko Yoshie, Minoru Sakurai, Yoshio Inoue and Riichiro Chujo. Thermal behaviour aand miscibility of poly((3-hydroxybutyrate)/poly (vinyl alcohol) blends. Polymer 1992; 22: 4763-4767.
    [48] Kim B S, Kim J S, Lee B H. Production of poly(3-hydroxybutyrate-co- 4-hydroxybutyrate) by Ralstonia eutropha. Biochem. Engineering 2005; 23: 169-174.
    [49] Pohlmann A, Fricke WF, Reinecke F), Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nature Biotechnol 2006; 1257-1262.
    [50] Kim J S, Lee B H, Kim B S. Production of poly(3-hydroxybutyrate-co- 4-hydroxybutyrate) by Ralstonia eutropha Biochemical engineering journal 23 2005 169-174.
    [51] Byrom D. Production of poly-β-hydroxybutyrate and poly-β-hydroxyvalerate copolymers. FEMS Microbiol 1992; 103: 247-250.
    [52] Chen G. Q, Zhang G., Park S J, Lee S Y. Industrial scale production of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) Appl. Microbiol Biotechnol 2001; 57: 50-55.
    [53] Ahn WS, Park SJ, Lee SY. Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett 2001; 23: 235-240.
    [54] Yu J. Production of PHA from starchy wastewater via organic acids. J. Biotechnol. 2001; 86: 105-112.
    [55] Johnson K, Jiang Y, Kleerebezem R, Muyzer G., van Loosdrecht MC. Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 2009; 10: 670–76.
    [56] Harrison, S. T. L. et al. The disruption of Alcaligenes eutrophus by high poressure homogenization: key factors involved in the process. bioseparation 1991; 2: 155-166.
    [57] Reddy C S K, Ghai R, Kalia R V C. Polyhydroxyalkanoates: an overview. Bioresource Technology 2003; 87: 137-146.
    [58] Zhang B, Carlson R, Srienc F. Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol 2006; 72: 536-43.
    [59] Wang Y W, Mo W, Yao H, et al. Biodegradation studies of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate). Polymer Degra and Stabi 2004; 85: 815-821.
    [60] De Konig GJ M, Witholt B. A process for the recovery of polyhydroxyalkanoates from Pseudomonas. Part l: solublization J. Bioprocess Engineering 1997; 17: 7-13.
    [61] Williams S. F., Martin D. P., Horowitz D. M., et al. PHA applications: addressing the price performance issue I Tissue engineering. Int. J. Biol. Macromol 1999; 25: 111-121.
    [62] Yang X. S., Zhao K., Chen G. Q., Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials 2002; 23(5): 1391-1397.
    [63] Reusch GN, Sparrow A W, Gardiner J. Transport of poly-β-hydroxybutyrate in human plasma J. Biochem Biophysics Acta 1992; 1123: 33-40.
    [64] Depalma A. Chiral chemistry is still evolving, driven by techniques and business demands. Genetic Engineering News 1997; 17: 19.
    [65] Lee S. Y., Lee Y., Wang F. L. Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol. Bioeng 1999; 65: 363-368.
    [66] Alvarez H M, Pucci O H, Steinbuchel A. Lipid storage compound in marine bacteria. J. Appl Microbiol 1997; 47: 132-139.
    [67] Zhang XJ, Luo RC, Wang Z, Deng Y, et al. Application of hydroxyalkanoate methyl esters as a novel biofuels. Biomacromolecules 2009; 10:707–11.
    [68] Nath A, Dixit M, Bandiya A, Chavda S, Desai AJ. Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol 2008; 99:5749–55.
    [69] Yu PH, Chua H, Huang AL, Lo W, Chen GQ. Conversion of food industrial wastes into bioplastics. Appl Biochem Biotechnol 1998; 70: 603-14.
    [70] Seebach DH, Buerger M, Mueller HM, Boernsen KO, Schar M, Widmer HM. Matrix-assisted laser desorption and ionization as a mass spectrometric tool for the analysis of poly [(R)-3-hydroxybutanoates]. Comparison with gel permeation chromatography. Macromolecules 1993; 26: 4783–90.
    [71] De Roo G., Kellerhals MB, Ren Q, Witholt B, Kessler B.. Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters viahydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 2002; 77: 717–22.
    [72] Kato M, Bao HJ, Kang CK, Fukui T, Doi Y. Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl Microbiol Biotechnol 1996; 45: 363–70.
    [73] Chen G.Q. A polyhydroxyalkanoates based bio- and materials industry. Chem Soc Rev 2009; DOI: 10.1039/b812677c.
    [74] Shi Q, Tan ZC, Di YY, Tong B, Li YS, Wang SX. Thermal analysis and calorimetric study of 4-dimethylaminopyridine. J Chem Eng 2007; 52: 941–947.
    [75] Wu CW, Chen RH, Pu JY, Lin TH. The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline- blended fuels. Atmospheric Environ 2004; 38: 7093-7100.
    [76] Ali Y, Hanna MA, Cuppett SL. Fuel properties of tallow and soybean oil esters. JAOCS 1995; 72: 1557-64.
    [77] Ott LS, Smith BL, Bruno TJ. Composition-explicit distillation curves of mixtures of diesel fuel with biomass-derived glycol ester oxygenates: A fuel design tool for decreased particulate emissions. Energy Fuel 2008; 22: 2518-26.
    [78] Hsieh WD, Chen RH, Wu TL, Lin TH. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environ 2002; 36: 403-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700