用户名: 密码: 验证码:
气体膨胀液体的热力学性质研究及其在碳纳米管功能化修饰中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今,大量溶剂的使用,给人类带来了沉重的环境和经济负担,寻找一种新的绿色溶剂是解决这一问题的一个途径。气体膨胀液体(GXLs)是最近几年来才在超临界流体基础之上发展起来的新型绿色介质,它的研究和应用具有十分重要的理论意义和实际价值,而了解气体膨胀液体复杂多样的性质以及如何让它为人们所利用仍是我们要解决的难题。据此,本论文主要围绕GXLs的溶剂性质及其GXLs作为介质在碳纳米管的功能化修饰方面的应用,进行了以下二个方面的工作,内容提要如下:
     GXLs的溶剂性质研究:在298.15K及313.15K下,沿着体系汽-液平衡的泡点线,测定了气体膨胀液体(C02+甲醇)在不同压力下的体积膨胀系数,用紫外分光光度计测定了乙酰乙酸乙酯(EAA)在气体膨胀液体(CO2+甲醇)中的异构化平衡,计算了CO2+甲醇中EAA的异构化平衡常数(Kc),研究了EAA的异构化平衡常数随压力及温度的变化规律。同时,根据所得平衡常数的结果分析了气体膨胀液体的溶剂性质变化规律。结果如下:
     (1)CO2+甲醇的体积膨胀系数(α)随压力增大而增大,低压时α变化不明显,高压时急剧变化;
     (2)Kc随体积膨胀系数(α)的增大而增大,α较小时Kc随之变化不明显,较大时Kc急剧增大;
     (3)由Kc的变化趋势可分析出,CO2+甲醇混合体系的极性随CO2含量的增大而逐渐减弱。
     GXLs作为介质在碳纳米管的聚合物功能化修饰方面的应用:我们利用氮氧稳定自由基聚合法合成了一系列不同分子量(2169,17290,29900)的聚4-乙烯基吡啶(P4VP),然后将聚4-乙烯基吡啶与多壁碳纳米管(MWNT)充分混合后,置于CO2/DMF的气体膨胀液体(GXLs)中,根据CO2-DMF混合流体的气液平衡数据,我们考察了125℃等温条件下,GXLs中CO2压力的变化,对碳纳米管上的聚合物接枝率的影响。拉曼光谱、热重和透射电镜的分析显示:(1)我们成功地在GXLs中实现了P4VP对多壁碳纳米管的功能化修饰,修饰后的MWNT既可分散于有机溶剂中(eg:二氯苯、DMSO)又可分散于酸性的水溶液中;(2)与在常规条件下相比,在GXLs中的优势更为明显,我们不仅可以大大减少有机溶剂的用量,而且还可以通过便捷地调节GXLs的压力,实现多壁碳纳米管上的聚合物接枝率的可控,最终实现MWNT的功能可控。
Solvent usage has been linked to waste generation and associated with environmental and economic burdens. To find a new green solvent is one of the solutions to solve our problem. Gas expanded liquids (GXLs) is a new and green media whose development is based on supercritical fluids in recent years. The research and applications of GXLs have great theoretical and practical value. To understand the versatile properties of GXLs and explore its potential applications is still a critical problem we have to face. Accordingly, the work in my thesis is described in the following two parts:the solvent property investigation of GXLs and its potential applications in MWNT functionalization as shown below:
     Part one:Tautomerism equilibrium of ethyl acetoacetate (EAA) in gas-expanded liquids (CO2+methanol) was measured by UV-Vis spectroscopy at 298.15K (or 313.15K) with pressures along the bubble point curve of the corresponding CO2+methanol phase diagram. The volume expansion coefficient (a) of the gas-expanded liquids was also determined at different pressures along the bubble point curve of the vapor-liquid equilibrium at 313.15K and 298.15K, respectively The equilibrium constant (Kc) of EAA in the binary mixtures was calculated, and the dependence of Kc as a function of pressure and temperature was also studied. The results are shown as follows:
     Firstly, it's found that the volume expansion coefficient is rising with the increasing pressure. The change in volume expansion coefficient isn't obvious at low pressures but dramatical at high pressures.
     Secondly, the pressure dependence of Kc in GXLs:Kc at 298.15K does not change significantly within low pressure range. However, Kc increases rapidly at high pressures when pressure is greater than 4.5 MPa. The similar trend is also observed at 313.15 K.
     Thirdly, through the pressure dependence of Kc, it is found that the polarity of CO2+methanol mixtures gradually decreases with increasing CO2 mole fraction.
     Part two:The free radical polymerization of poly-4-vinylpyridine(P4VP) was carried out using 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) radical as a capping agent. A series of different molecular weight (2169,17290 and 29900) of poly 4-vinyl pyridine (P4VP) were prepared. Then P4VP was mixed with multi-walled carbon nanotubes in a new and green system, the gas expanded liquids of CO2-DMF. A series of pressures (7.11MPa,9.56MPa,13.6MPa,14.6MPa and 16.0MPa) were chosen along the vapor-liquid bubble point curves of CO2-DMF at constant temperature 125℃. Finally, carbon nanotubes were successfully modified by P4VP in CO2-DMF. The P4VP modified MWNT can be dispersed not only in organic solvents but also in the aqueous solution of acid. Furthermore, the modified MWNT was characterised by TGA, TEM and Raman Spectra. The results show that it has more advantages in gas expanded liquids than in conventional solvents. We can not only much reduce the amount of organic solvent usage but also control the polymer grafting yield on MWNT by facile pressure tuning of GXLs.
引文
[1]Sheldon R. A., Consider the environmental quotient[J]. Chem Tech,1994,24,38-47.
    [2]DeSimone J. M., Practical approaches to green solvents., Science,2002,297,799-803.
    [3]Eckert C. A., Liotta C. L., Bush D., Sustainable Reactions in Tunable Solvents [J] J. Phys. Chem. B,2004,108,18108-18118
    [4]Tundo P., Black D. S., Breen J., Synthetic pathways and processes in green chemistry. Introductory overview[J]. Pure Appl.Chem.2000,72,1207-1228.
    [5]Adams D. J., Dyson P. J., TavenerS. J., Chemistry in Alternatie Reaction Media; Wiley:Chichester, England,2004
    [6]Leitner W., Jessop P. G., Chemica Synthesis Using Supercritical Fluids,1999.480pp
    [7]DeSimone J. M., Tumas W., Green Chemistry Using Liquid and Super critical Carbon Dioxide; Oxford University Press:New York,2003.
    [8]Amandi R., Hyde J.,Poliakoff M., Heterogeneous reactions in supercritical carbon dioxide[J]. Carbon Dioxide Recovery and Utilization,2003,169-179.
    [9]Cornils B., Herrmann W. A., State of the art on aqueous homogeneous two phase catalysis[J]. Aqueous-Phase Organometallic Catalysis, Wiley VCH:Weinheim,1998,585-596.
    [10]Li C. J., Chan T. H., Organic Reactions in Aqueous Media; Wiley:New York,1997,199pp.
    [11]Rogers R. D., Seddon K. R., Volkov S., Green Industrial Applications of Ionic Liquids; Springer, Boston, M A,2003,553 pp.
    [12]Wasserscheid P., Welton T., Biphasic hydroformylation using ionic liquids[J]. Ionic Liquids in Synthesis, VCH-Wiley, Weinheim, Germany,2002,373-386.
    [13]Jessop P. G., Heldebrant D. J., Xiao L., Green chemistry:reversible nonpolar-to-polar solvent[J]. Nature 2005,436,1102.
    [14]Heldebrant D. J.,Witt H.,Walsh S., Ellis T., Liquid polymers as solvents for catalytic reductions[J]. Green Chem.2006,8,807-815.
    [15]Panagiotopoulos A. Z.,Reid R. C., High-pressure phase equilibria in ternary fluid mixtures with a supercritical component[J]. Supercritical Fluids Chemical Engineering Principles and Applications,1987,329,115-129.
    [16]Bamberger A., Sieder G., Maurer G. J., High-pressure (vapor-liquid) equilibrium in binary mixtures of (carbon dioxide+water or acetic acid) at temperatures from 313 to 353 K[J]. Supercrit. Fluids,2000,17,97-110.
    [17]Chen J., Wu W., Han B., Gao L., Mu T., Liu Z., Phase Behavior, Densities, and Isothermal Compressibility of CO2+ Pentane and CO2 + Acetone Systems in Various Phase Regions[J]. J. Chem. Eng. Data 2003,48,1544-1548.
    [18]Francis A. W., Ternary systems of liquid carbon dioxide[J]. J. Phys. Chem.1954,58, 1099-11114
    [19]Bartle K. D., Clifford A. A., Jafar S. A., et al., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide[J]. J. Phys. Chem. Ref. Data,1991,20,713-756.
    [20]Shieh, Y. T., Yang H. S., Morphological changes of polycaprolactone with high-pressure CO2 treatment[J]. J. Supercrit. Fluids,2005,33,183-192.
    [21]Houndonougbo Y., Jin H., Rajagopalan B., Wong K., Phase Equilibria in Carbon Dioxide Expanded Solvents:Experiments and Molecular Simulations[J]. J. Phys. Chem.B,2006, 110,13195-13202.
    [22]Thomas C. A., Bonilla R. J., Huang Y., Jessop P. G., Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes-Effect of gas pressure and additives on rate in the liquid phase[J]. Can. J. Chem.,2001,79,719-724.
    [23]Radosz M., Ber. Bunsen-Ges. Variable-volume circulation apparatus for measuring high-pressure fluid-phase equilibria[J].1984,88,859-862.
    [24]Wei M., Musie G. T., Busch D. H., Subramaniam B. J., CO2-Expanded Solvents:Unique and Versatile Media for Performing Homogeneous Catalytic Oxidations[J].Am.Chem.Soc. 2002,124,2513-2517.
    [25]Xue J., Al-Dahhan M., Dudukovic M. P., Mudde R. F., Bubble dynamics measurements using four-point optical probe[J]. Can. J. Chem. Eng.2003,81,375-381.
    [26]Houndonougbo Y., Guo J., Lushington G. H., Laird B., Mol. Phys. Monte Carlo simulations of CO2-expanded acetonitrile[J].2006,104,2955-2960.
    [27]Shukla C. L., Hallett J. P., Popov A. V., et al., Molecular Dynamics Simulation of the Cybotactic Region in Gas-Expanded Methanol-Carbon Dioxide and Acetone-Carbon Dioxide Mixtures[J]. J. Phys. Chem. B,2006,110,24101-24111.
    [28]Kazarian S. G., Briscoe B. J., Welton T., Combining ionic liquids and supercritical fluids:in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures[J]. Chem. Commun.,2000,2047-2048.
    [29]Huang X., Margulis C. J., Li Y., Berne B. J., Why Is the Partial Molar Volume of CO2 So Small When Dissolved in a Room Temperature Ionic Liquid Structure and Dynamics of CO2 Dissolved in [Bmim+] [PF6-][J]. J.Am. Chem. Soc.,2005,127,17842-17851.
    [30]Kamlet M. J., Abboud J. L., Taft R. W., The solvatochromic comparison method. Theα* scale of solvent polarities[J]. J. Am. Chem. Soc.1977,99,6027.
    [31]Heldebrant D. J., Witt H., Walsh S., Ellis T.,et al., Liquid polymers as solvents for catalytic reductions[J]. Green Chem.2006,8,807-815.
    [32]Paulaitis M. E., Kander R. G., DiAndreth J. R., Phase equilibria related to supercritical-fluid solvent extractions[J]. Ber. Bunsen Ges.1984,88,869-875.
    [33]deSwaanArons J., Diepen G. A. M., Immiscibility of gases. System He-Xe[J]. Rec.TraV.Chim. Pays-Bas,1963,82,806.
    [34]Madsen L. A., Plasticization of Poly(ethylene oxide) in Fluid CO2 Measured by in-Situ NMR[J]. Macromolecules 2006,39,1483-1487.
    [35]Kishimoto Y., Ishii R., Differential scanning calorimetry of isotactic polypropene at high CO2 pressures[J]. Polymer 2000,41,3483-3485.
    [36]Varma-Nair M., Handa P. Y., Mehta A. K., Agarwal P. Effect of compressed CO2 on crystallization and melting behavior of isotactic polypropylene[J].Thermo-chim.Acta 2003, 396,57-65.
    [37]Sassiat P. R., Mourier P., Caude M. H.,Rosset R. H., Measurement of diffusion coefficients in supercritical carbon dioxide and correlation with the equation of Wilke and Chang[J]. Anal. Chem.1987,59,1164-1170.
    [38]Kho Y. W., Conrad D. C.,Knutson B. L., Phase equilibria and thermophysical properties of carbon dioxide-expanded fluorinated solvents[J]. Fluid Phase Equilib.,2003,206,179-193.
    [39]Liu Z., Wu W., Han B., Dong Z., Chem. sEur. J 2003,9,3897.
    [40]Lu J., Liotta C. L.,Eckert C. A., Spectroscopically Probing Microscopic Solvent Properties of Room-Temperature Ionic Liquids with the Addition of Carbon Dioxide[J]. J. Phys. Chem.A,2003,107,3995-4000.
    [41]Gerhardt L. J.,Manke C. W.,Gulari E. J., Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide[J]. Polym. Sci., Part B:Polym. Phys.1997,35,523-534.
    [42]Tomasko D. L., Li H.,Liu D., Han X., A review of CO2 applications in the processing of polymers[J]. Wingert M. J., Ind. Eng. Chem. Res.2003,42,6431-6456.
    [43]Kanakubo M., Umecky T., Aizawa T., Ikushima Y., Development of high-pressure electric conductivity cell and its application:Pressure effect of carbon dioxide on electric conductivity of ionic liquid[J]. Electrochem-istry(Tokyo) 2004,72,703-705.
    [44]Bonilla R. J., James B. R., Jessop P. G., Use of supercritical or subcritical gases as solvent substitutes for homogeneous catalysis[J]. Chem. Commun.2000,941.
    [45]Hunter S. E., Savage P. E., Acid-Catalyzed Reactions in Carbon Dioxide-Enriched High-Temperature Liquid Water[J]. Ind. Eng. Chem. Res.2003,42,290-294.
    [46]Ganchegui B., Leitner W., Oxybromination of phenol and aniline derivatives in H2O/scCO2 biphasic media[J]. Green Chem.2007,9,26-29.
    [47]Mendez-Santiago J., Teja A. S., Solubility of Solids in Supercritical Fluids:Consistency of Data and a New Model for Cosolvent Systems[J]. Ind. Eng. Chem. Res.2000,39, 4767-4771.
    [48]Kaminishi G., Arai Y., Saito S., Maeda S., Vapor-liquid equilibriums for binary and ternary systems containing carbon dioxide. J. Chem. Eng. Jpn.1968,1,109-116.
    [49]Christov M., Dohrn R., High-pressure fluid phase equilibria Expeirmental methods and systems investigated (1994-1999)[J]. Fluid Phase Equilib.2002,202,153-218.
    [50]Jin H., Subramaniam B., Ghosh A., Tunge J., Intensification of catalytic olefin hydroformylation in CO2-expanded media[J]. AIChEJ.2006,52,2575-2581.
    [51]Solinas M., Pfaltz A., Cozzi P. G., Leitner W., Enantioselective Hydrogenation of Imines in Ionic Liquid/Carbon Dioxide Media[J]. J. Am. Chem. Soc.2004,126,16142-16147.
    [52]Elgin J. C.,Weinstock J. J., Phase equilibrium at elevated pressures in ternary systems of ethylene and water with organic liquids. Salting out with a supercritical gas[J]. J. Chem. Eng. Data,1959,4,3-12.
    [53]West K. N., Hallett J. P., Jones R. S., Bush D.,Liotta C. L., Eckert C. A., CO2-Induced Miscibility of Fluorous and Organic Solvents for Recycling Homogeneous Catalysts[J]. Ind. Eng. Chem. Res.2004,43,4827-4832.
    [54]Kokot K., Knez Z., Bauman D., S-L-G (solid-liquid-gas) phase transition of cocoa butter in supercritical CO2[J]. Acta Aliment.1999,28,197-208.
    [55]Graser F., Wickenhaeuser G., BASF:U.S.4,451,654,1982(CAN101:92903).
    [56]Fages J., Lochard H., Letourneau J., Particle generation for pharmaceutical applications using supercritical fluid technology [J]. Powder Technol.,2004,141,219-226.
    [57]Liu J., Han B., Liu Z., Wang J., Huo Q., Polymerization of styrene in solutions with compressed carbon dioxide an antisolvent [J]. J. Supercrit. Fluids 2001,20,171.
    [58]Liu J., Han B., Zhang R., Liu Z., Jiang T., Yang G., Effect of antisolvent carbon dioxide on the polymerization of methyl methacrylate in different solvents [J]. J.Supercrit. Fluids,2003, 25,91-97.
    [59]Yagi Y., Saito, S., Inomata H., Tautomerization of 2,4-pentanedione in supercritical carbon dioxide [J]. J. Chem. Eng. Japan.1993,26,116-118.
    [60]O'Shea K. E., Kirmse K. M., Fox, M. A., Johnston, K.P., Polar and hydrogen-bonding interactions in supercritical fluids:effects on the tautomeric equilibrium of 4-(phenylazo)-1-naphthol [J]. J. Phys. Chem.,1991,95,7863-7867.
    [61]Lu J., Han B. X., Yan H. K., Phys. Chem.1999,1,3269.
    [62]Ke J., Lu J., Zhong M. H., Han B. X., Yan H. K., Acta Physico-Chimica Sinica,1997,13, 351-356.
    [63]Yamasaki K., Kajimoto O., Solvent effect in supercritical fluids:keto-enol equilibria of acetylacetone and ethyl acetoacetate [J]. Chem. Phys. Lett.1990,172,271-277.
    [64]Keum S. R., Hur M. S., Kazmaier P. M., Buncel, E., Thermo-and photochromic dyes: indolino-benzospiropyrans. Part 1. UV-VIS spectroscopic studies of 1,3,3-spiro(2H-1-benzopyran-2,2'-indolines) and the open-chain merocyanine forms; solvatochromism and medium effects on spiro ring formation [J]. Can. J. Chem.1991,69, 1940-1947.
    [65]Burk M. J., Feng S., Gross M. F., Tumas W., Asymmetric catalytic synthesis of-branched amino acids via highly enantioselective hydrogenation of α-enamides [J]. J. Am. Chem. Soc.,1995,117,9375-9376.
    [66]Brunner E., Hueltenschmidt W., Schlichthaerle, G., Fluid mixtures at high pressures. Ⅳ. Isothermal phase equilibria in binary mixtures consisting of (methanol+hydrogen or nitrogen or methane or carbon monoxide or carbon dioxide) [J]. J. Chem. Thermodynamics 1987,19,273-291.
    [67]Chang C. J., Day C.Y., Ko C. M., Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures [J]. Fluid Phase Equilibria,1997, 131,243-258.
    [68]Rao C. N. R., Ultra-Violet and Visible Spectroscopy [J]. Chemical Application.1961, 163pp.
    [69]The Sadtler Standard Spectra, Sadtler Research Laboratories, Inc., USA,1975, p.54.
    [70]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348),56-58.
    [71]Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature,1993,363, 603~605.
    [72]Bethune D. S., Klang C. H., de Vries M. S., et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature,1993,363,605~607.
    [73]Ebbesen T. W. Carbon nanotubes. Physics Today, New York,1996,49,26.
    [74]Bower C., Rosen R., Jin L., et al. Deformation of carbon nanotubes in nanotube-polymer omposites [J]. Applied Physics Letters,1999,74(22),3317-3319.
    [75]Zhou X., Zhou J., Ou-Yang Z., Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-bandtheory [J].Phys Rev B,2000,62(20), 13692-13696
    [76]董树荣,张孝彬,涂江平等.新型纳米材料——纳米碳管[J].材料科学与工程,1998,16(2),19-22
    [77]Berber S., Kyum K., Tomanek D., Unusually high thermal conductivity of carbon nanotubes [J].Phys Rev Lett,2000,84(20),4613-4619.
    [78]Langer L., Bayot V., Grivei E., et al. Quantu transport in a multiwalled carbon nanotube [J]. Phys Rev Lett,1996,76(3),479-482
    [79]Berber S., Kyum K., Tomanek D., Unusually high thermal conductivity of carbon nanotubes [J].Phys Rev Lett,2000,84(20),4613-4619.
    [80]Biswas S. K., Vajtai R., Wei B. Q., et al. Vertically aligned conductive carbon nanotube junctions and arrays for device applications. Applied Physics Letters,2004,84(15), 2889-91.
    [81]Nojeh A., Lakatos G. W., Peng S., Cho K., A carbon nanotube cross structure as a nanoscalequantum device (vol 3, pg 1190,2003). Nano Letters,2003,3(10),1469-69.
    [82]Wei Y. D., Wang J., Guo H., Roland C., Carbon nanotube parametric electron pump:A molecular device.Physical Review B,2001,6411(11).
    [83]Chiang W. H., Sankaran R M., Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Applied Physics Letters 2007,91(12).
    [84]Moradian R., Azadi S., Boron and nitrogen-doped single-walled carbon nanotube [J]. Physica E-Low-Dimensional Systems & Nanostructures,2006,35(1),157-60.
    [85]Saito Y., Uemura S., Hamaguchi K., Cathode ray tube lighting elements with carbon nanotube field emitters [J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 1998,37(3B), L346-L48.
    [86]Reddy A. L. M., Ramaprabhu S. Design and fabrication of carbon nanotube-based microfuel cell and fuel cell stack coupled with hydrogen storage device. International Journal of Hydrogen Energy,2007,32(17),4272-78.
    [87]Jiang Y., Wu Y., Qiang Y. T., A Catalytic-Assembly Solvothermal Route to Multiwall Carbon Nanotubes at a Moderate Temperature [J]. Journal of the American Chemical Society, 2000,122,12383-12384.
    [88]Vander wal R. L., Ticih T. M., Flame Synthesis of Single-Walled Carbon Nanotubes and Nanofibers [J]. The Journal of Physics Chemistry Part B,2001,105,10249-10256.
    [89]Oloughlin J. L., Kiang C. H, Wallace C. H., Rapid Synthesis of Carbon Nanotubes by Solid-State Metathesis Reactions [J]. The Journal of Physics Chemistry Part B,2001,105, 1921-1924.
    [90]Motieim Hacoheny R., Caldenron Moreno J., Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction [J]. Journal of the American Chemical Society,2001,123,8624-8265.
    [91]Ago H., Ohshima S., Uchid A. K., Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles [J]. The Journal Physic Chemistry Part B, 2001,105,10453-10456.
    [92]Ago H., Ohshima S., Uchid A. K., Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles [J]. The Journal Physic Chemistry Part B,2001, 105,10453-10456.
    [93]Li W. Z., Wen J. G., Ren Z. F., Straight carbon nanotube Y junctions [J]. Applied Physics Letter,2001,79,1879-1881.
    [94]Liu S., Boeshore S., Fernandez A., Study of Cobalt-Filled Carbon Nanoflasks [J]. The Journal of Physical Chemistry B,2001,105,7606-7611.
    [95]Tsang S. C., Chen Y. K., Green M. L. H., A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372(10),159-162.
    [96]Hiura H., Ebbesen T. W., Tanigaki K., Opening and purification of carbon nanotubes in high yields [J]. Adv Mater,1995,7(3),275-276.
    [97]Wang Q., Xia H. S., Zhang C. H., Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation[J]. J. Appl. Poly Sci.,2001,80(9),1478-1488.
    [98]Huang W. Z., Zhang X. B., Tu J. P., The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes [J]. Materials Chemistry and Physics,2003,78 (1),144-148
    [99]Chen J. H., Huang Z. P., Wang D. Z., Electrochemical synthesis of polypyrrole films over each of well-aligned carbon naotubes [J]. Synth.Met.,2002,125(3),289-294.
    [100]Cui D. X., Ozkan C. S., Kong Y., Encapsulating pt-labelled DNA molecule inside CNT[J]. Mechanism and chemistry of biological system,2004,1(2),112-121.
    [101]Lii C.Y.,Stobinski L.,Tomasik P.,Single-walled carbon nanotube-potato amylose complex [J]. Carbohydrate Polymers,2003,124,51(1),93-98.
    [102]Ma X.,Wang E. G., CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition [J]. Appl Phys Lett,2001,78(26),978-980
    [103]Liu J., Rinzler A. G., Smalley R. E., Fullerene pipes [J]. Science,1998,280(5367), 1253-1256.
    [104]Qin S., Qin D., Ford W. T., et al. [J].Macromolecules,2004,37,752-757.
    [105]Xia H., Wang Q., Qiu G., [J].Chemistry of Materials,2003,15,3879-3886.
    [106]Byun H. S., Kim N. H., Kwak C., Measurements and modeling of high-pressure phase behavior of binary CO2-amides systems [J]. Fluid Phase Equilibria,2003,208,53-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700