用户名: 密码: 验证码:
中空纤维更新液膜用于青霉素G提取的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青霉素是一种重要的抗生素产品,我国的发酵生产能力已接近世界先进水平,但产物分离和纯化的“下游工程”尚难以跟上其发酵技术的发展步伐。目前,发酵液中青霉素提取方法主要是溶媒物理萃取法,但该提取方法存在操作条件苛刻、青霉素降解损失较大、回收率低、溶媒回收困难等问题,使得青霉素生产成本增高,经济效益下降。因此开发新型高效的提取工艺以提高收率、减少能耗、降低成本,是当前青霉素类抗生素药物工业生产中亟待解决的关键问题之一。
     基于表面更新理论提出的中空纤维更新液膜(HFRLM)技术实现了反应萃取和反萃过程的耦合,具有非平衡传质的特点,传质效率高,溶剂用量少。
     为了避免青霉素G在中空纤维更新液膜萃取/反萃过程中出现大量降解损失的问题,本文首先系统地考察了不同微量有机溶剂(萃取剂)及不同碱液环境(反萃剂)对于青霉素G稳定性的影响。结果表明,微量胺类萃取剂的存在对青霉素G稳定性的影响不大;碱液的pH值越高,青霉素G降解速度越快;青霉素G在低温、pH 6.0左右环境下较为稳定。由HFRLM循环实验研究表明青霉素G在HFRLM提取过程中降解较少,有较好的稳定性,为HFRLM工艺研究中获得理想的提取效果提供可能。
     以串级操作为基础,进行了中空纤维更新液膜提取青霉素G的工艺研究,考察了料液相pH、料液相中缓冲液浓度、料液相青霉素G浓度、反萃剂种类、反萃相浓度、两相流速、载体浓度等对中空纤维更新液膜提取效果的影响。结果表明,在料液相pH5.0-7.0范围内,pH值对提取效果影响不大;提取过程的传质通量随着料液中青霉素G的初始浓度、液膜相中载体浓度、壳程流速等的增大而增大;0.2 mol·L~(-1)的磷酸二氢钾缓冲溶液以及0.5 mol·L~(-1)的碳酸钾溶液可以使青霉素G在操作时间内保持较好的稳定性,降解损失少,提取效果可达90%以上。
     对发酵液中青霉素G的中空纤维更新液膜提取工艺进行了技术经济评价,并与溶媒萃取工艺进行了比较。结果表明,中空纤维更新液膜提取工艺的提取效率高、产量大、萃取剂消耗量较少、后续处理简单、能耗低。
Penicillin is a widely used antibiotic and also serves as an important raw material for semisynthetic penicillins. But its traditional recovery technologies have some disadvantages, such as low efficiency, high solvent consumption, loss of penicillin G, etc. It is necessary to develop a new technology to reduce production cost.
     A new liquid membrane technique, named hollow fiber renewal liquid membrane (HFRLM), is proposed based on surface renewal theory, which also integrates the advantages of fiber membrane extraction process, liquid film permeation process and other liquid membrane systems.
     Considering the sensitivity of penicillin G to the surroundings with slight amount of organic solvent (extractant) and alkaline solution (stripping agent), in this study, the effect of temperature, pH, organic solvents, stripping agents on the stability of penicillin G are investigated. It is proved that slight amount of amine extractant has no influence on the stability of penicillin G; in the alkaline solution with high concentration, penicillin G shows its instability; penicillin G is stable at low temperature and pH 6.0.
     Based on the series operation, recovery technology of penicillin G by hollow fiber renewal liquid membrane is studied. The effects of pH, concentration of penicillin G and buffer solution in the feed phase, K_2CO_3 concentration in the stripping phase, carrier concentration in the organic phase, flow rates of two sides on the recovery results by HFRLM are considered. The results show that the mass transfer flux increases with increasing the concentration of penicillin G in the initial feed phase, carrier concentration in the liquid membrane and flow rate of shell side. 0.2 mol·L~(-1) KH_2PO_4 buffer solution in the feed phase and 0.5 mol·L~(-1) K_2CO_3 solution as stripping agent can keep the stability of penicillin G during the operation period.
     After economic evaluation of hollow fiber renewal liquid membrane technique, HFRLM is proved to have the advantages of high efficiency, low solvent and energy consumption, etc. And compared with solvent extraction for the recovery of penicillin G, HFRLM is considered to have a greater economic benefit.
引文
[1] Elander R P. Industrial production of β-lactam antibiotics [J]. Appl. Microbiol. Biotechnol., 2003, 61:385-392.
    [2] 上海第三制药厂.青霉素[M].上海:上海科学技术出版社,1960:10-70.
    [3] 方成开,周庆,卢志生.青霉素提炼新工艺的研究及经济效益评估[J].湿法冶金,2001,20(2):57-58.
    [4] 方金瑞.抗生素[M].北京:科学出版社,1988:229-230.
    [5] Mahesh V C, Gregory F P, Charles H R, et al. Equilibria for the adsorption onto neutral polymeric sorbents: Experimental and modeling studies [J]. Biotechnol. Bioeng., 1995, 47: 215-226.
    [6] Vyas S N, Patwardhan R, Padhye V M. Ion exchangers for the recovery of penicillin from its waste [J]. Sep. Sci. Tech, 1980,15 (2): 111.
    [7] 谌竞清,于立军,赵永欣等.强碱性树酯从水-正丁醇溶液中吸附青霉素G研究[J].化学工程,1999,27(3):8-13.
    [8] 严希康.生化分离技术[M].华东理工大学出版社,1996,12(第一版):29.
    [9] Guan Y X, Zhu Z Q, Mei L H. Technical aspects of extractive purification of penicillin fermentation broth by aqueous two-phase partition [J]. Sep. Sci. Tech., 1996,31 (18): 2589-2597.
    [10] Cull S G, Holbrey J D, More V, et al. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations [J]. Biotechnol. Bioeng., 2000, 69 (2): 227-233.
    [11] Gutowski E K, Broker A G, Rogers D R, et al. Controlling theaqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle metathesis and separations [J]. J. Am. Chem. Soc., 2003, 125:6632-6633.
    [12] 刘庆芬,胡雪生等.离子液体双水相萃取分离青霉素[J].科学通报,2005,50(8):30-33.
    [13] Chen J , Liu HZ, Wang B, et al. Study on the three-phase extraction of penicillin G with a single-step method [C]. Johannesburg: Proceedings of the international solvent extract ion conference, 2002,1, 602.
    [14] 陈继,王斌,刘庆芬.三相萃取一步法萃取纯化青霉素[P].中国专利:CN1324795A,2003-09.
    [15] 吴子生,贾颖萍,褚莹等.反胶团相转移法提取青霉素G的研究[J].高等学校化学学报,1993,14(10):1427-1431.
    [16] Weatherley L R, Campbell I, Kirton D, et al. Electrically enhanced extraction of penicillin G into dichloromethane [J]. J. Chem. Tech & Biotech, 1990, 48: 427-438.
    [17] Weatherley L R. Some fundamental innovations in directsolvent extraction of low molecular weight biological products [J]. Miner Processing Extr Metall Rev, 1998, 18:147.
    [18] Arnott I A, Weatherley L R. The stability of penicillin G during recovery by electrically enhanced extraction [J]. Process Biochemistry, 30 (5): 447-455.
    [19] Ko M, Shah V, Bienkowski P R, Cochran H D. Solubility of the antibiotic Penicillin V in supercritical CO_2 [J]. J. Supercrit. Fluids., 1991,4: 32-39.
    [20] Gordillo M D, Blanco M A , Molero A, Martinez E. Solubility of the antibiotic Penicillin G in supercritical carbon dioxide [J]. J. Supercrit. Fluids. , 1999, 15: 183-190.
    [21] Reschke M, Schugerl K. Reactive extraction of penicillin I: stability of penicillin G in the presence of carriers and relationships for distribution coefficients and degrees of extraction [J]. The Chemical Engineering Journal, 1984, 28: B1-B9.
    [22] Cascaval D, Oniscu C, Dumitru I F, et al. New extraction techniques in biotechnology [J]. Roum. Biotechnol. Lett., 2001, 6 (3): 207-232.
    [23] 苗勇,亓平言,苏玉山.青霉素萃取工艺条件研究[J].清华大学学报,1999,39(10):78-81.
    [24] 方成开,周庆,卢志生.青霉素提炼新工艺的研究及经济效益评估[J].湿法冶金,2001,20(3):16-21.
    [25] Yang Z F, YuS Q, Chen J Y. Synergistic extraction of penicillin G with aliphatic alcohols and butylacetate [J]. J. Chem. Tech. Biotechnol, 1994, 61: 241-250.
    [26] 王斌,陈继,刘庆芬等.脂肪醇类溶剂对青霉素的萃取[J].过程工程学报,2001,1(2):157-161.
    [27] 杨智发,于淑秋,陈家铺.萃取青霉素的组合物及方法[P].中国专利:CN1047293A,1990-11-28.
    [28] 杨智发.溶剂萃取青霉素的机理及新工艺研究[D].北京:中国科学院化工冶金研究所,1989.
    [29] Yang Z F, Yu S Q, Chen J Y. Extraction of penicillin G with neutral phosphor rusesters [J]. Chem. Eng. J & Biochem. Eng. J., 1992, 50 (3):B39.
    [30] Bloch R, Finkelstein A, Kedem O, Metal ion separation by dialysis through solvent membranes [J]. Ind. Eng. Chem. Process Des. Develop, 1967, 6 : 231-237.
    [31] Li N N, Somerset N J. Separating hydrocarbons with liquid membrane [P]. US Pat: 3410794,1968-11-12.
    [32] Cussler E L, Evans D F, Matesich M A.. Theoretical and experimental basis for a specific contertransport system in membrane [J]. Science, 1971,172(3):377-384.
    [33] Cussler E L, Evans D F. Liquid membranes for separation and reactions [J]. J. Membr. Sci., 1980, 6:113-121.
    [34] Matulevicius E S, Li N N. Facilitated transport through liquid membranes [J]. Sep. Pur. Methods., 1975, 4 (1): 73-77.
    [35] GoTo M, Yamamoto H, Kondo K. Effect of new surfactants on zinc extraction with liquid surfactant membrane [J]. J. Membr Sci, 1991,57(2-3): 161-174.
    [36] Boyadzhiev L, Lazerova Z, Benenshek E. Mass transfer in three-liquid phase system [A]. Proceedings of ISEC'83[C], Denver Colorado: USA, 1983:391-393.
    [37] Tondre C, Xenakis A. Use of microemulsions as liquid membranes[J]. Faraday Discuss Chem Soc, 1984,77:115-126.
    [38] Sengupta A, Basu R, Sirkar K K. Separation of solutes from aqueous solutions by contained liquid membranes [J]. AIChE J, 1988,34:1689-1708.
    [39] 顾忠茂,周庆江,金兰瑞.静电式准液膜分离方法及其装置[P].中国专利:CN86101730,1988-04-13.
    [40] Teramoto M, Tohno N, Ohnishi N. Development of a spiral-type flowing liquid membrane module with high stability and its application to the recovery of chromium and zinc [J]. Sep Sci Technol, 1989,24(12-13): 981-999.
    [41] Teramoto M, Matsuyama H,et al. Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier [J]. J Membr Sci, 1989, 45(1-2): 115-136.
    [42] Raghuraman B J, Wiencek J. Extraction with emulsion liquid membranes in a Hollow-fiber contactor [J]. AIChE J, 1993, 39(11): 1885-1889.
    [43] Ho W S. Combined supported liquid membrane/ strip dispersion process for the removal and recovery of redionuclides and metals [P]. U S Pat: 6328782, 2001-12-11.
    [44] Ho W S, Poddar T K. New membrane technology for removal and recovery of chromium from waste wateres [J]. Environ Progr, 2001,20(1): 44-52.
    [45] 张卫东,李爱民,李雪梅,任钟旗.液膜技术原理及中空纤维更新液膜[J].现代化工,2005,25(4):66-68.
    [46] Zhang W D,li A M, Li X M.,Ren Z Q.Mass transfer characteristics of hollow fiber renewal liquid membrane [J]. J Chem Eng Chinese Univ, 2006,20(5):843-846.
    [47] 张卫东,李爱民,应讷江,于丽丽.中空纤维更新液膜与膜萃取传质性能对比[A].第一届全国化学工程与生物工程年会论文集[C].南京:南京工业大学,2004:306.
    [48] Shih Sheng Wang, Chau Jen Lee. Kinetics of penicillin G extraction by Amberlite LA-2 as a mobile carrier in a constant-interface-area cell [J]. The Chemical Engineering Journal, 1995,58:285-290.
    [49] Ruey Shin Juang, Yuh Sheng Lin. Distribution equilibrium of penicillin G between water and organic solutions of Amberlite LA-2 [J]. The Chemical Engineering Journal, 1996, 62: 231-236.
    [50] Ruey Shin Juang, Yuh Sheng Lin. Investigation on interfacial reaction kinetics of penicillin G and Amberlite LA-2 from membrane flux measurements [J]. J. Membr. Sci. 1998,4:19-30.
    [51] Sang Cheol Lee, Jae Hwa Chang, Byoung Sung Ahn, Won Kook Lee. Mathematical modeling of penicillin G extraction in an emulsion liquid membrane system containing only a surfactant in the membrane phase [J]. J. Membr. Sci., 1998, 149: 39-49.
    [52] Lee K H, Lee S C, Lee W K. Penicillin G extraction from model media using an emulsion liquid membrane: A theoretical model of product decomposition [J]. J. Chem. Technol. Biotechnol., 1994,59:365-370.
    [53] Young Sun Mok, Won Kook Lee, Yong Kuk Lee. Modeling of liquid emulsion membranes facilitated by two carriers [J]. The Chemical Engeering Journal, 1996, 63:127-137.
    [54] Sang Cheol Lee. Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions [J]. Chemical Engineering Journal 2000,79: 61-67.
    [55] Sang Cheol Lee. Comparison of extraction efficiencies of penicillin G at different w/o ratios in the emulsion liquid membrane systems with dilute polymer solutions [J]. J. of Membr. Sci., 2004,237:225-232.
    [56] Sang Cheol Lee. Effect of volume ratio of internal aqueous phase to organic membrane phase (w/o ratio) of water-in-oil emulsion on penicillin G extraction by emulsion liquid membrane [J]. J. of Membr. Sci., 1999, 63:193-201.
    [57] Hano T, Ohtake T, Matsumoto M, Ogawa S, Hori F. Extraction of penicillin with liquid surfactant membrane [J]. J. Chem. Eng. Jpn., 1990, 23: 772-775.
    [58] Sang Cheol Lee, Kwi Ho Lee, Gun Ho Hyun, Won Kook Lee. Continuous extraction of penicillin G by an emulsion liquid membrane in a countercurrent extraction column [J]. J. of Membr. Sci., 1997,124: 43-51.
    [59] Lee K H, Lee S C, Lee W K. Penicillin G extraction from model media using an emulsion liquid membrane: Determination of optimum extraction conditions [J]. J. Chem. Tech. Biotechnol., 1994, 59:365-370.
    [60] 朱澄云,莫凤奎,朱金良等.乳状液膜法从发酵液中提取青霉素的研究[J].膜科学与技术,2000,20(6):57-59+63.
    [61] 吴汉奇,刘兴荣,王小恒.乳状液膜提取青霉素及其溶胀的研究[J].水处理技术,2005,31(6):4-7.
    [62] Marchese J; Lopez J L, Quinn J A. Facilitated transport of benzylpenicillin through immobilized liquid membrane [J]. J. Chem. Tech. Biotechnol., 1989, 46: 149-159.
    [63] Lee C J, Yeh H J, Yang W J, Kan C R. Extractive separation of penicillin G by facilitated transport via carrier supported liquid membranes [J]. Biotechnol. Bioeng., 1993, 42 (4): 527-534.
    [64] Lee C J, Yeh H J, Yang W J, Kan C R. Separation of penicillin G from phenylacetic acid in a supported liquid membrane system [J]. Biotechnol. Bioeng. , 1994, 43 (4): 309-313.
    [65] Ruey Shin Juang, Shwu Hwa Lee, Ruey Chang Shiau. Carrier-facilitated liquid membrane extraction of penicillin G from aqueous streams [J]. Journal of Membrane Science, 1998,146: 95-104.
    [66] 吕元元,液膜法提取青霉素G的实验研究[D].北京:北京化工大学,2008.
    [67] Nii S, Takshashi K. Penicillin G separation by bulk liquid membrane with porous partition [C]. Melbourne: Proceedings of the international solvent extraction conference, 1996,2, 839.
    [68] Yang Z F, Rindfleisch D, Scheper T, Schuegerl K. Separation of penicillin G with hollow fiber contained liquid membrane system [C]. Effective Membrane Processes-New Perspectives BHR Group Conference Series Publication, 1993, 3: 49.
    [69] Miesiac I., Szymanowski. Pertraction of Penicillin G in Hollow Fiber Contained Liquid Membranes [J]. J. Radioanal. Nucl. Ch., 1998,228(1-2): 77-81.
    [70] Fischer D R. Verfahren zur Reinigung yon Phenoxymethyl Penicillin [P]. DE 1131677,1962.
    [71] George F B. Phenoxymethyl Penicillin Manufacture [P]. GB 833060,1960.
    [72] 徐兵.一种青霉素的提纯方法[P].中国专利:CN 1432572A,2003.
    [73] 邬行彦.抗生素生产工艺学[M].北京:化学工业出版社,1991:200-211.
    [74] 刘学文,李秋元,李艳平.Decanter萃取机在青霉素生产中的应用[J].中国医药工业杂志,1994,25(2):85-89.
    [75] 俞文和.新编抗生素工艺学[M].北京:中国建材工业出版社,1996:197-205.
    [76] Kheirolomoom A, Kazemi-Vaysari A, Ardjmand M, Baradar-Khoshfetrat A. The combined effects of pH and temperature on penicillin G decomposition and its stability modeling [J]. Process Biochemistry, 1999, 35: 205-211.
    [77]程能林.溶剂手册(第三版)[M].北京:北京化学工业出版社,2002.
    [78]Chen J, Liu H Z, Wang B, et al. Application of spontaneous suction phase-dispersing (SSPD) extractors in the extraction of penicillin G [J]. Appl. Biochem. Biotechnol, 2002, 97: 660-671.
    [79]蔡卫滨,王玉军,朱慎林.纤维膜萃取器的传质特性[J].清华大学学报(自然科学版),2003,43(6):738-741.
    [80]李爱民,中空纤维更新液膜用于Cu(Ⅱ)回收的传质性能研究[D].北京:北京化工大学,2005.
    [81]杜昌顺,中空纤维更新液膜稳定性及传质机理研究[D].北京:北京化工大学,2006.
    [82]李皓淑,中空纤维更新液膜分离柠檬酸的传质性能及小试研究[D].北京:北京化工大学,2007.
    [83]吕元元,任钟旗,张卫东.高效液相色谱法测定青霉素G的方法改进[J].中国药业,2008,17(13):18-19.
    [84]Lu X B, Xing H B, Su B G, Ren Q L. Effect of buffer solution and temperature on the stability of penicillin G [J]. J. Chem. Eng. Data 2008, 53:543-547.
    [85]叶红,潘玲丽.头孢类抗菌素在输液中的作用[J].中国药师,2006,9(11):1069-1071.
    [86]薛哲,李刚,李少华等.β-内酰胺类抗生素对热的稳定性的研究[J].江西医学院学报,2008,48(4):42-43.
    [87]Muller B, Bischoff L. Reactive extraction of penicillin G in a pilot plant Karr-column [J]. Appl Microbiol Biotechnol, 1987, 26:206-210.
    [88]任钟旗,吕元元,张卫东.青霉素提取工艺的研究[J].中国科技论文在线,2007,2(12):893-896.
    [89]Ren Z Q, Lv Y Y, Zhang W D. Simultaneous extraction and concentration of Penicillin G by Hollow Fiber Renewal Liquid Membrane [J]. Biotechnol. Prog. , 2008, DOI: 10.1021/bp.l52.
    [90]李十中.青霉素的提取与纯化[P].中国专利:CN94116070X,2000-5-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700