用户名: 密码: 验证码:
肌肽的抗羰基应激作用:肌肽与丙二醛的反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长久以来,人类对健康长寿和衰老的探索都是生命科学和医学领域中的重要内容。几百年来无数的科学家们做了大量的研究,但由于衰老的进程非常复杂,影响衰老的因素也极其繁多,其具体的机制并不清楚。到现在为止,有关衰老的理论有几百种,从研究方向上可分为两大类:一类是遗传控制(先天因素)衰老学说,另一类是环境伤害(后天因素)衰老学说。这两大研究领域从不同侧面揭示了衰老的起因,提供了机体衰老的重要信息,但也都存在各自的局限。总而言之,衰老是遗传因素和环境因素共同作用的结果已逐渐成为衰老研究领域公认的科学事实。
     脂质过氧化与非酶糖基化反应中生成的具有反应活性的共同中间产物——活性羰基类物质能与生物体内的生物大分子发生反应(羰-氨交联反应),并进一步重排,形成难以降解和溶解的老年色素类的荧光物质。羰基应激衰老学说认为羰-氨交联反应所导致的生物大分子交联过程是积累性衰老损变的核心过程,可能是衰老的本质。
     肌肽(Carnosine)是一种天然的、具有高效生物活性的二肽,广泛地存在于哺乳动物的骨骼肌和大脑等组织中,在人的骨骼肌中浓度高达20 mM。肌肽的氨基能与活性羰基类物质发生反应,从而抑制毒性羰基类物质造成的蛋白交联反应,对生物体延缓衰老具有重要作用。
     本论文讨论了目前的一些最重要的衰老理论学说,例如自由基衰老学说、非酶糖基化衰老学说以及导师印大中教授在这二者基础上基于老年色素形成的生化机制而提出的羰基应激衰老学说。在本论文中我们探讨了肌肽的抗羰基应激作用,并研究了肌肽与脂质过氧化的典型中间产物——丙二醛(MDA)的反应机理。
     本学位论文主要研究工作总结如下:
     本论文主要研究肌肽与丙二醛的反应机理以探讨肌肽潜在的抗羰基应激的作用。肌肽与丙二醛温浴在37℃、pH7.4的0.2M磷酸缓冲液中,一段时间后反应液进行荧光分光光度计检测、紫外分光光度计检测、高效液相色谱分离等分析,生成的产物用液相色谱/质谱(LC/MS)鉴定。实验结果表明:肌肽能在生理条件下直接与丙二醛反应,生成两种不同的产物,产物1是无荧光特性的,最大吸收波长为280nm的烯胺衍生物;产物2是类似于脂褐素样的老年色素1、4-二氢吡啶荧光产物(激发波长为392nm,发射波长为452nm)。反应产生的荧光强度与丙二醛的浓度成正比。肌肽也能够极大地抑制丙二醛与小牛血清白蛋白反应体系中脂褐素样荧光类物质的生成。实验结果表明肌肽具有去羰基应激的功能,同时也阐述了肌肽去羰基应激保护蛋白质方面的分子机制。
Exploring healthy longevity and aging of human is playing a crucial role in the area of life sciences and medicine at all times. Because the aging processes is very complex and involves various factors, despite considerable researches over centuries, the exact mechanism underlying aging still remains to be elucidate. Until now, there are hundreds of theories of aging. Those theories from different research points can be summed up to two types:genetic factors and environmental damages on aging. Both of them provide important information of aging from different perspectives, but they have limits to explain the aging. In a word, senescence is a collective consequence of both heredity and environment.
     Reactive carbonyl species produced in lipid peroxidation and glycation can inevitably result in carbonyl-amino reaction with biomacromolecules in body, and then the products re-arrange. This process leads to the formation of the age pigment-like fluorescent substance which is difficult to be dissolved or degraded. According to the carbonyl stress theory of aging, the crosslink of biomacromolecule induced by carbonyl-amino reaction is the essential course of aging.
     Carnosine is a natural dipeptide that of highly efficient biological activity. It commonly presents, sometimes at a relatively high concentration (up to 20 mM in human muscle), in mammalian tissues, especially in muscle and brain. The amino group of carnosine can react with reactive carbonyl species thereby inhibiting crosslink of protein caused by toxic carbonyl species. Carnosine play important role in anti-aging of the organism.
     In this paper we discussed the free radical theory of aging, the glycation theory of aging and carbonyl stress theory of aging that proposed by my tutor professor Yin, based on the biochemical mechanisms of aging pigment formation. We investigated the anti-aging effects of carnosine and studied the reaction mechanisms of carnosine with malondialdehyde (MDA), the typical secondary products in lipid peroxidation.
     The studies included in the thesis are summarized as follows:
     In this thesis we study the reaction mechanisms between carnosine and MDA to explore the potential de-carbonylation function of carnosine. The carnosine was incubated with MDA in 0.2M phosphate buffer solution at pH7.4,37℃. The mixture of MDA and carnosine was assayed by high performance liquid chromatography (HPLC), spectrophotometry and spectrofluorometry. The reaction products were assayed by LC/MS. The results indicated that carnosine reacted readily with MDA at supra-physiological condition to form different products, such as a non-fluorescent enamine with an absorption peak at 280 nm (productl) and a lipofuscin-like fluorescent (Excite.392nm/Emission.452nm) 1,4-dihydropyridine(product2). The fluorescence intensity of reaction mixture was in direct proportion to the MDA concentration. Carnosine also greatly inhibited the formation of lipofuscin-like fluorescence induced by MDA reacted with bovine serum albumin (BSA). This study suggested that the reaction of carnosine with MDA may reveal toxic effect of unsaturated carbonyls and provided insight into the reaction mechanism of carnosine in protecting proteins against carbonyl stress.
引文
[1]Yin, D.,Chen, K. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions [J]. Exp Gerontol,2005,40(6):455-465.
    [2]王永雁,田清涞,马瑾瑜.人类衰老学[M].上海:上海医科大学出版社;1995:154-184.
    [3]Hayflick, L. How and why we age[J]. Exp Gerontol, 1998,33(7-8):639-653.
    [4]陈可冀.我国老年学研究中的若干重大问题和思考[J].中国老年学杂志,2004,24(1):1-3.
    [5]印大中.破解衰老之谜[M].北京:科学出版社;2002
    [6]Olshansky, S.J., Hay flick, L.,Carnes, B.A. No truth to the fountain of youth[J]. Sci Am,2002,286(6):92-95.
    [7]de Grey, A.D.,Baynes, J.W.,Berd, D.et al. Is human aging still mysterious enough to be left only to scientists?[J]. Bioessays, 2002,24(7):667-676.
    [8]Medvedev, Z.A. An attempt at a rational classification of theories of ageing[J]. Biol Rev Camb Philos Soc, 1990,65(3):375-398.
    [9]Warner, H.R. Longevity genes:from primitive organisms to humans[J]. Mech Ageing Dev,2005,126(2):235-242.
    [10]Finch, C.E.,Tanzi, R.E. Genetics of aging[J]. Science, 1997,278(5337):407-411.
    [11]Hamet, P.,Tremblay, J. Genes of aging[J]. Metabolism, 2003,52(10 Suppl 2):5-9.
    [12]Johnson, T.E. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging[J]. Science,1990,249(4971):908-912.
    [13]Walker, D.W.,McColl, G.,Jenkins, N.L.et al. Evolution of lifespan in C. elegans[J]. Nature,2000,405(6784):296-297.
    [14]Dorman, J.B.,Albinder, B.,Shroyer, T.et al. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans[J]. Genetics,1995,141(4):1399-1406.
    [15]Duhon, S.A.,Johnson, T.E. Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans[J]. J Gerontol A Biol Sci Med Sci,1995,50(5):B254-261.
    [16]Apfeld, J.,Kenyon, C. Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span[J]. Cell, 1998,95(2):199-210.
    [17]Wistrom, C.,Villeponteau, B. Cloning and expression of SAG:a novel marker of cellular senescence [J]. Exp Cell Res, 1992,199(2):355-362.
    [18]Jazwinski, S.M.,Conzelmann, A. LAG1 puts the focus on ceramide signaling[J]. Int J Biochem Cell Biol, 2002,34(11):1491-1495.
    [19]D'Mello N, P.,Childress, A.M.,Franklin, D.S.et al. Cloning and characterization of LAG1, a longevity-assurance gene in yeast[J]. J Biol Chem,1994,269(22):15451-15459.
    [20]DeFeo-Jones, D.,Tatchell, K.,Robinson, L.C.et al. Mammalian and yeast ras gene products:biological function in their heterologous systems[J]. Science,1985,228(4696):179-184.
    [21]Gottlieb, S.,Esposito, R.E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA[J]. Cell,1989,56(5):771-776.
    [22]Tissenbaum, H.A.,Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans[J]. Nature, 2001,410(6825):227-230.
    [23]Kennedy, B.K.,Austriaco, N.R., Jr.,Zhang, J.et al. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae[J]. Cell, 1995,80(3):485-496.
    [24]Orr, W.C.,Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster[J]. Science,1994,263(5150):1128-1130.
    [25]Brown, R.E.,Singh, P.B.,Roser, B. The major histocompatibility complex and the chemosensory recognition of individuality in rats[J]. Physiol Behav,1987,40(1):65-73.
    [26]张洪泉,余文新.中华抗衰老医药学[M].北京:科学出版社;2000
    [27]Strasser, A.,Harris, A.W.,Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship [J]. Cell, 1991,67(5):889-899.
    [28]Wang, W.,Wu, J.,Zhang, Z.et al. Characterization of regulatory elements on the promoter region of p16(INK4a) that contribute to overexpression of p16 in senescent fibroblasts[J]. J Biol Chem,2001,276(52):48655-48661.
    [29]de Magalhaes, J.P. Open-minded scepticism:inferring the causal mechanisms of human ageing from genetic perturbations [J]. Ageing Res Rev,2005,4(1):1-22.
    [30]Harman, D. Aging:a theory based on free radical and radiation chemistry[J]. J Gerontol,1956,11(3):298-300.
    [31]Harman, D. The free radical theory of aging[J]. Antioxid Redox Signal,2003,5(5):557-561.
    [32]Cerami, A. Hypothesis. Glucose as a mediator of aging[J]. J Am Geriatr Soc,1985,33(9):626-634.
    [33]Chio, K.S.,Reiss, U.,Fletcher, B.et al. Peroxidation of subcellular organelles:formation of lipofuscinlike fluorescent pigments[J]. Science,1969,166(3912):1535-1536.
    [34]Sohal, R.S.,Allen, R.G. Oxidative stress as a causal factor in differentiation and aging:a unifying hypothesis [J]. Exp Gerontol, 1990,25(6):499-522.
    [35]印大中.衰老研究的新纪元[J].生命科学研究,2000,4(2):95-101.
    [36]印大中.自由基伤害衰老理论的严重缺陷[J].中国老年学杂志,2003,23(2):123-126.
    [37]Baynes, J.W. Role of oxidative stress in development of complications in diabetes[J]. Diabetes,1991,40(4):405-412.
    [38]Singh, R.,Barden, A.,Mori, T.et al. Advanced glycation end-products:a review[J]. Diabetologia,2001,44(2):129-146.
    [39]Brownlee, M. Advanced protein glycosylation in diabetes and aging[J]. Annu Rev Med,1995,46:223-234.
    [40]Kristal, B.S.,Yu, B.P. An emerging hypothesis:synergistic induction of aging by free radicals and Maillard reactions [J]. J Gerontol,1992,47(4):B107-114.
    [41]Yin, D. Studies on age pigments evolving into a new theory of biological aging[J]. Gerontology,1995,41 Suppl 2:159-172.
    [42]Yin, D. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores[J]. Free Radic Biol Med, 1996,21(6):871-888.
    [43]Glomb, M.A.,Monnier, V.M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction[J]. J Biol Chem, 1995,270(17):10017-10026.
    [44]Uchida, K.,Kanematsu, M.,Sakai, K.et al. Protein-bound acrolein:potential markers for oxidative stress [J]. Proc Natl Acad Sci USA,1998,95(9):4882-4887.
    [45]Anderson, M.M.,Hazen, S.L.,Hsu, F.F.et al. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde,2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation[J]. J Clin Invest,1997,99(3):424-432.
    [46]Thornalley, P.J.,McLellan, A.C.,Lo, T.W.et al. Negative association between erythrocyte reduced glutathione concentration and diabetic complications [J]. Clin Sci (Lond),1996,91(5):575-582.
    [47]Wells-Knecht, K.J.,Zyzak, D.V.,Litchfield, J.E.et al. Mechanism of autoxidative glycosylation:identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose[J]. Biochemistry,1995,34(11):3702-3709.
    [48]Esterbauer, H.,Schaur, R.J.,Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes[J]. Free Radic Biol Med,1991,11(1):81-128.
    [49]Stadtman, E.R. Protein oxidation and aging[J]. Science, 1992,257(5074):1220-1224.
    [50]Stadtman, E.R.,Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins [J]. Amino Acids,2003,25(3-4):207-218.
    [51]Sayre, L.M.,Smith, M.A.,Perry, G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease [J]. Curr Med Chem,2001,8(7):721-738.
    [52]印大中,陈可冀.衰老机制:生化副反应损变的失修性累积[J].中国老年学杂志,2005,25(1):1-6.
    [53]Markesbery, W.R. The role of oxidative stress in Alzheimer disease[J]. Arch Neurol,1999,56(12):1449-1452.
    [54]Lovell, M.A.,Xie, C., Markesbery, W.R. Acrolein is increased in Alzheimer's disease brain and is toxic to primary hippocampal cultures[J]. Neurobiol Aging,2001,22(2):187-194.
    [55]李国林,李莉,印大中.羰基应激与阿尔茨海默病的上游分子病因[J].中国老年医学杂志,2004,23(8):591-594.
    [56]Vitek, M.P.,Bhattacharya, K.,Glendening, J.M.et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease[J]. Proc Natl Acad Sci U S A, 1994,91(11):4766-4770.
    [57]Hensley, K.,Hall, N.,Subramaniam, R.et al. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation[J]. J Neurochem, 1995,65(5):2146-2156.
    [58]Jenner, P.,Olanow, C.W. Oxidative stress and the pathogenesis of Parkinson's disease[J]. Neurology,1996,47(6 Suppl 3):S161-170.
    [59]Sian, J.,Dexter, D.T.,Lees, A.J.et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia[J]. Ann Neurol, 1994,36(3):348-355.
    [60]Castellani, R.,Smith, M.A.,Richey, P.L.et al. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease[J]. Brain Res,1996,737(1-2):195-200.
    [61]Boldyrev, A.A. Biological role of histidine-containing dipeptides[J]. Biokhimiia,1986,51(12):1930-1943.
    [62]Quinn, P.J.,Boldyrev, A.A.,Formazuyk, V.E. Carnosine:its properties, functions and potential therapeutic applications [J]. Mol Aspects Med,1992,13(5):379-444.
    [63]Chasovnikova, L.V.,Formazyuk, V.E.,Sergienko, V.I.et al. The antioxidative properties of carnosine and other drugs [J]. Biochem Int,1990,20(6):1097-1103.
    [64]Decker, E.A. The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidants[J]. Nutr Rev,1995,53(3):49-58.
    [65]Decker, E.A.,Livisay, S.A.,Zhou, S. A re-evaluation of the antioxidant activity of purified carnosine [J]. Biochemistry (Mosc), 2000,65(7):766-770.
    [66]Chan, W.K.,Decker, E.A.,Chow, C.K.et al. Effect of dietary carnosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle[J]. Lipids, 1994,29(7):461-466.
    [67]Boldyrev, A.A. Problems and perspectives in studying the biological role of carnosine[J]. Biochemistry (Mosc), 2000,65(7):751-756.
    [68]沈杰,刘超,陈钧辉.肌肽在医药方面的研究进展[J].中国生化药物杂志,2008,29(2):134-137.
    [69]McFarland, G.A.,Holliday, R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine[J]. Exp Cell Res, 1994,212(2):167-175.
    [70]McFarland, G.A.,Holliday, R. Further evidence for the rejuvenating effects of the dipeptide L-carnosine on cultured human diploid fibroblasts[J]. Exp Gerontol,1999,34(1):35-45.
    [71]Yuneva, A.O.,Kramarenko, G.G.,Vetreshchak, T.V.et al. Effect of carnosine on Drosophila melanogaster lifespan[J]. Bull Exp Biol Med,2002,133(6):559-561.
    [72]Yuneva, M.O., Bulygina, E.R., Gallant, S.C., Kramarenko, G.G., Stvolinsky, S.L.,Semyonova, M.L., Boldyrev, A.A. Effect of carnosine on age-induced changes in senescence-accelerated mice.[J]. J Anti-aging Med,1999,2:337-342.
    [73]Boldyrev, A.,Koudinov, A.,Berezov, T.et al. Amyloid-beta induced cell death is independent of free radicals [J]. J Alzheimers Dis,2004,6(6):633-638; discussion 673-681.
    [74]Seidler, N.W.,Yeargans, G.S. Albumin-bound polyacrolein: implications for Alzheimer's disease[J]. Biochem Biophys Res Commun,2004,320(1):213-217.
    [75]Hipkiss, A.R. Could carnosine or related structures suppress Alzheimer's disease?[J]. J Alzheimers Dis,2007,11(2):229-240.
    [76]Zhou, S.,Decker, E.A. Ability of carnosine and other skeletal muscle components to quench unsaturated aldehydic lipid oxidation products [J]. J Agric Food Chem,1999,47(1):51-55.
    [77]Hipkiss, A.R.,Chana, H. Carnosine protects proteins against methylglyoxal-mediated modifications[J]. Biochem Biophys Res Commun,1998,248(1):28-32.
    [78]Hipkiss, A.R. Glycation, ageing and carnosine:are carnivorous diets beneficial?[J]. Mech Ageing Dev, 2005,126(10):1034-1039.
    [79]Hipkiss, A.R. Would carnosine or a carnivorous diet help suppress aging and associated pathologies?[J]. Ann N Y Acad Sci, 2006,1067:369-374.
    [80]Thorpe, S.R.,Baynes, J.W. Role of the Maillard reaction in diabetes mellitus and diseases of aging[J]. Drugs Aging, 1996,9(2):69-77.
    [81]Boldyrev, A.,Fedorova, T.,Stepanova, M.et al. Carnosine increases efficiency of DOPA therapy of Parkinson's disease:a pilot study[J]. Rejuvenation Res,2008,11(4):821-827.
    [82]Dobrota, D.,Fedorova, T.,Stvolinsky, S.et al. Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury:after-stroke-effect[J]. Neurochem Res, 2005,30(10):1283-1288.
    [83]Baynes, J.W.,Thorpe, S.R. Glycoxidation and lipoxidation in atherogenesis[J]. Free Radic Biol Med,2000,28(12):1708-1716.
    [84]Miyata, T.,Horie, K.,Ueda, Y.et al. Advanced glycation and lipidoxidation of the peritoneal membrane:respective roles of serum and peritoneal fluid reactive carbonyl compounds [J]. Kidney Int,2000,58(1):425-435.
    [85]Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury [J]. Free Radic Biol Med, 1990,9(6):515-540.
    [86]Dalle-Donne, I.,Giustarini, D.,Colombo, R.et al. Protein carbonylation in human diseases [J]. Trends Mol Med, 2003,9(4):169-176.
    [87]Poli, G.,Schaur, R.J.4-Hydroxynonenal in the pathomechanisms of oxidative stress[J]. IUBMB Life, 2000,50(4-5):315-321.
    [88]Nair, V.,Cooper, C.S.,Vietti, D.E.et al. The chemistry of lipid peroxidation metabolites:crosslinking reactions of malondialdehyde[J]. Lipids,1986,21(1):6-10.
    [89]Requena, J.R.,Fu, M.X.,Ahmed, M.U.et al. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein[J]. Biochem J, 1997,322 (Pt 1):317-325.
    [90]Shipanova, I.N.,Glomb, M.A.,Nagaraj, R.H. Protein modification by methylglyoxal:chemical nature and synthetic mechanism of a major fluorescent adduct[J]. Arch Biochem Biophys,1997,344(1):29-36.
    [91]Baynes, J.W.,Thorpe, S.R. Role of oxidative stress in diabetic complications:a new perspective on an old paradigm[J]. Diabetes,1999,48(1):1-9.
    [92]Aldini, G.,Dalle-Donne, I.,Colombo, R.et al. Lipoxidation-derived reactive carbonyl species as potential drug targets in preventing protein carbonylation and related cellular dysfunction[J]. ChemMedChem,2006,1(10):1045-1058.
    [93]Li, L.,Li, G.,Sheng, S.et al. Substantial reaction between histamine and malondialdehyde:a new observation of carbonyl stress[J]. Neuro Endocrinol Lett,2005,26(6):799-805.
    [94]Kang, Z.,Li, H.,Li, G.et al. Reaction of pyridoxamine with malondialdehyde:mechanism of inhibition of formation of advanced lipoxidation end-products [J]. Amino Acids, 2006,30(1):55-61.
    [95]Ogasawara, M.,Nakamura, T.,Koyama,I.et al. Reactivity of taurine with aldehydes and its physiological role[J]. Chem Pharm Bull (Tokyo),1993,41(12):2172-2175.
    [96]West, J.D.,Marnett, L.J. Endogenous reactive intermediates as modulators of cell signaling and cell death[J]. Chem Res Toxicol, 2006,19(2):173-194.
    [97]Kikugawa, K., Machida, Y., Kida, M., and Kurechi, T. Study on peroxidized lipids Ⅲ:Fluorescent pigments derived from the reaction of malonaldehyde and amino acids.[J]. Chem Pharm Bull 1981,29:3003-3011.
    [98]Kwon, T.W.,Watts, B.M. Malonaldehyde in aqueous solution and its role as a measure of lipid oxidation in foods. [J]. J Food Sci,1964(29):294-302.
    [99]Sawicki, E.,Sawicki, C.R. Aldehydes-photometric analysis[M]. London:Academic Press; 1975
    [100]Glantz, S.A., editor. Primer of Biostatistics. New York:: McGraw-Hill Press; 1981.
    [101]Xu, D.,Thiele, G.M.,Kearley, M.L.et al. Epitope characterization of malondialdehyde-acetaldehyde adducts using an enzyme-linked immunosorbent assay[J]. Chem Res Toxicol, 1997,10(9):978-986.
    [102]Tuma, D.J.,Thiele, G.M.,Xu, D.et al. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration[J]. Hepatology, 1996,23(4):872-880.
    [103]Itakura, K.,Uchida K,T., O. A novel fluorescent malondialdehyde-lysine adduct[J]. Chem Phys Lipids, 1996(84):75-79.
    [104]Burcham, P.C.,Kuhan, Y.T. Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde [J]. Biochem Biophys Res Commun,1996,220(3):996-1001.
    [105]Pocernich, C.B.,Cardin, A.L.,Racine, C.L.et al. Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes:relevance to brain lipid peroxidation in neurodegenerative disease [J]. Neurochem Int, 2001,39(2):141-149.
    [106]Shapiro, H.K. Carbonyl-trapping therapeutic strategies [J]. Am J Ther,1998,5(5):323-353.
    [107]Totlani, V.M.,Peterson, D.G. Epicatechin carbonyl-trapping reactions in aqueous maillard systems:Identification and structural elucidation[J]. J Agric Food Chem,2006,54(19):7311-7318.
    [108]Tojino, M.,Uenoyama, Y.,Fukuyama, T.et al. Intramolecular nucleophilic carbonyl trapping of alpha-ketenyl radicals by an amino group[J]. Chem Commun (Camb),2004(21):2482-2483.
    [109]Li, G.,Li, L.,Yin, D. A novel observation:melatonin's interaction with malondiadehyde[J]. Neuro Endocrinol Lett, 2005,26(1):61-66.
    [110]Fang, C.,Peng, M.,Li, G.et al. New functions of glucosamine as a scavenger of the lipid peroxidation product malondialdehyde[J]. Chem Res Toxicol,2007,20(6):947-953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700