用户名: 密码: 验证码:
机载/星载雷达地面动目标检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对机载/星载雷达的GMTI方法作了较为深入的研究,内容涉及:机载双通道雷达实测数据、双基机载雷达、同轨近距双星SAR-GMTI和天基稀疏孔径波束扫描干涉雷达等。主要工作有:
     1、针对机载双通道雷达的通道不一致性在脉冲间发生微变的情况,提出了一种将DBS图与信号子空间方法相结合的GMTI方法,即DBS-SSP方法。该方法是利用信号子空间投影方法完成两通道DBS图的精确盲配准,从而提高在DBS差图像上的动目标检测性能。通过实测数据处理,验证了该方法的有效性。
     2、提出一种在不损失训练样本数目的情况下,滤除样本中污染点(即强动目标或杂波孤立点)信息的方法,从而改善了杂波协方差矩阵的估计效果,提高STAP对弱动目标的检测能力。通过理论分析和对机载双通道雷达实测数据的处理,验证了该方法的正确性和有效性。
     3、发现了双基机载杂波谱与双基几何结构间的一个特殊关系——背面效应。它是一种近似线性的杂波谱特征。该特征使谱对齐更加简便和准确,将非常利于STAP技术在双基系统中的应用,如本文中所提出的旋转谱对齐法,可进一步提高收、发主波束在地面稍叉开时的GMTI性能。
     4、从矩阵扰动的角度剖析了PAMF方法在双基机载GMTI中性能较好的本质原因,并由条件数的概念进行性能分析,最终给出了PAMF方法阶数选择的依据。该内容将有助于双基机载雷达系统中关于PAMF方法的研究。
     5、针对同轨近距双星结构下SAR-GMTI方法的盲速问题,提出综合3个工作频率的成像检测结果以完成GMTI。该方法不仅能克服双星结构在单一工作频率下动目标检测的盲速现象,还能降低目标的最小可检测速度。并且,通过研究动目标在SAR图像上的特点,则可利用3幅SAR检测图像实现动目标定位。
     6、在天基稀疏孔径阵列雷达系统设计中,人们认为波束扫描干涉模式下的GMTI受方位多普勒模糊的限制。然而对波束扫描过程的点散布函数矩阵进行分解后发现,波束扫描模式下的GMTI在一定程度上不受方位模糊的限制,仍能在一定观测范围内实现杂波单元和动目标的空时重构,并能获得高于常规空时级联处理方法的GMTI性能。
This dissertation is focused on the research of airborne/spaceborne radar's ground moving target indication (GMTI). It concerns the respects as, airborne dual-channel radar measured data, bistatic airborne radar, dual-satellite radar system in the same orbit and near distance, and space based sparse array scanned pattern interferometric radar. The key contributions are:1. A joint method of Doppler beam sharpen (DBS) imaging and signal subspace processing (SSP) is proposed to achieve GMTI for the airborne dual-antenna radar. The method SSP is used to precisely calibrate the two antennas' DBS images, because the error of the two channels changes pulse-to-pulse. So the GMTI is well performed in the difference image of the two calibrated images.2. A method to eliminate pollutions (i.e. strong targets and large clutter discretes) without loss of the limited samples is proposed, so that the estimated clutter covariance matrix is more close to the actual one, and the performance of space-time adaptive processing (STAP) is improved for the detection of smaller targets. Through theoretical analysis and processing the real measured data, the new method is proved to be right and feasible.3. A rule on bistatic airborne spectrum is discovered. It is a clutter characteristic of bistatic radars — approximate linearity, and is named as backside effect. In such an effect, the range-dependent clutter can be easily aligned, and STAP is to be more applicable to bistatics. Also, a new spectrum rotation aligning method is induced, which can gain a further performance improvement on GMTI when transmit-mainlobe and receive-mainlobe cover the same area but a little staggered.4. Based on the theory of matrix perturbations, the reason for good bistatic GMTI quality of parametric adaptive matched filter (PAMF) is worked out, and the rules of how to determinate the PAMF's order is proposed.5. In order to overcome the problem of blind speed in the dual-satellite radar's SAR-GMTI, a method is designed to work at three different operating frequencies. The minimum detected velocity (MDV) is decreased. By researching the SAR characteristics for moving targets, the three SAR difference-images of different operating frequencies can be used for target location.6. The GMTI of space based sparse array scanned pattern interferometric radar (SPIR) has been thought to fail when there are ambiguities in azimuth. However, when decomposing the point spread function matrix it would be understood that SPIR can work to some degree no matter whether there are ambiguities in azimuth. In addition, SPIR can get higher detection performance than that of constant space-time serial processing.
引文
[1] E K. Sanyal, R. D. Brown, M. O. Little, R. A. Schneible, M. C. Wicks, Space-time adaptive processing bistatic airborne radar, The Record of the 1999 IEEE Radar Conference, 20-22 April 1999:114-118.
    [2] R. Klemm, Space-time adaptive processing: principles and applications, IEE Radar, Sonar, Navigation and Avionics 9, London: IEE press, 1998.
    [3] William L. Melvin, et al, Assessment of multicharmel airborne radar measurements for analysis and design of space-time processing architectures and algorithms. IEEE National Radar Conference, Ann Arbor, Michigan, May 1996: 130-135.
    [4] G. W. Titi, D. Marshall, The ARPA/NAVY mountaintop program-Adaptive signal processing for airborne early warning radar. Proc. ICASSP'96, Atlanta, GA, May 1996:1165-1168.
    [5] M. O. Little, W. P. Berry, Real-time multichannel airborne radar measurements. IEEE Proc. Int. Conf. Radar Syracuse, New York, 1997:138-142.
    [6] 李真芳,保铮,王彤,廖桂生,基于外场实测数据的地面慢速动目标检测(GMTI),电子学报,vol.31,No.9,2003:1437-1440。
    [7] R. D. Brown and M. C. Wicks, A space-time adaptive processing approach for improved performance and affordability, IEEE National Radar Conference, Ann Arbor, Michigan, May 1996: 321-326.
    [8] G. M. Herbert, P. G. Richardson, Benefits of space-time adaptive processing (STAP) in bistatic airbome radar, IEE Proc- Radar, Sonar, Navigation, Vol. 150, No. 1, Feb. 2003: 13-17.
    [9] Y. Zhang, and B. Himed, Effects of geometry on clutter characteristics of bistatic radars, Proc. of 2003 IEEE Radar Conf., Huntsville, Alabama, USA, 2003:417-424.
    [10] S. M. Kogon and M. A. Zatman, Bistatic STAP for airborne radar systems, ASAP Workshop, MIT Lincoln Laboratory, Lexington, MA, March 2001: 1-6.
    [11] S. D. Hayward, Adaptive beamforming for rapidly moving arrays, Proc. CIE int'1 conf of Radar (IEEE Press), Beijing, China, Oct. 1996:480-483
    [12] B. Himed, Y. Zhang and A. Hajjari, STAP with angle-Doppler compensation for bistatic airborne radars, Proc, 2002 IEEE Radar Conf., Long Beach, CA, April 2002:311-317
    [13] Fabian D. Lapierre, Jacques G. Verly and Marc Van Droogenbroeck, New solutions to the problem of range dependence in bistatic STAP radars, Proc. 2003 IEEE Radar Conf., Huntsville, Alabama, USA, 2003:452-459
    [14] Jame R. Roman, Muralidhar Rangaswamy, Dennis W. Davis, Qingwen Zhang, Braham Himed, James H. Michels, Parametric adaptive matched filter for airborne radar applications. IEEE Trans. on AES, Vol. 36, No. 2, Apr. 2000:677-692
    [15] John Garnham, RossWainwright, Rich Rums, Enabling research and development for flight demonstration of sparse aperture sensing, AIAA Space 2001 Conference and Exposition. Albuquerque, NM: Aug. 2001-4552.
    [16] Yolanda Jones King, John Garnham, and Bruce Preiss, Innovative space-based surveillance concepts, AIAA Space 2001 Conference and Exposition. Albuquerque, NM: Aug. 2001-4553.
    [17] Daniel A. Leatherwood, William L. Melvin, and John Garnham, High-fidelity MTI modeling and analysis of a distributed aperture spaceborne concept, AIAA Space 2000 Conference and Exposition. Long Beach, CA: Sep., 2000-5187.
    [18] Maurice W. Long, Airborne early warning system concepts, Boston: Artech House, 1992.
    [19] M. Skolnik, Radar handbook, McGraw-Hill, New York, 2nd Ed, 1990.
    [20] L. E. Brennan, I. S. Reed, Theory of adaptive radar, IEEE Tran. Aerosp. Electron, Sys. 9. (2), 1973: 237-252.
    [21] I. S. Reed, J. D. Mallett, and L. E. Brennan, Rapid convergence rate in adaptive arrays, IEEE Trans. AES-10(6), 1974: 853-863.
    [22] 廖桂生,保铮,张玉洪,机载雷达时—空二维部分联合自适应处理,电子科学学刊,1993 15(6)。
    [23] R. Dipietro, Extended factored space-time processing for airborne radar systems, Proceedings of the 26th Asilomar Conference on Signals, Systems, and Computing, Pacific Grove, CA, October, 1992: 425-430.
    [24] H. Wang, L. Cai, On adaptive spatial-temporal processing for airborne surveillance radar systems, IEEE Trans. On AES-30(3), 1994: 660-669.
    [25] 王永良,彭应宁,空时自适应信号处理,北京:清华大学出版社,2000.9。
    [26] H. Wang, Y. Zhang, Q. Zhang, B. D. Brown, M. C. Wicks, An improved and affordable space-time adaptive processing approach, Proceedings of CIE International Conference of Radar, 1996: 72-77.
    [27] Yuhong Zhang, Hong Wang, Further study on space-time adaptive processing with sum and difference beams, 1997 IEEE Antennas and Propagation Society International Symposium, Volume: 4, 1997:2422-2425.
    [28] 王彤,机载雷达简易STAP方法及其应用,博士学位论文,西安电子科技大 学,2001.12。
    [29] W. L. Melvin, Eigenbased modeling of nonhomogeneous airbome radar environments, Proceedings of the 1998 IEEE National Radar Conf., Dallas, 1998: 171-176.
    [30] W. L. Melvin, Space-time adaptive radar performance in heterogeneous clutter, IEEE Trans. AES, vol. 36, No. 2, April, 2000:621-633
    [31] W. L. Melvin, J. R. Guerci, M. J. Callahan, M. C. Wicks, Design of adaptive detection algorithms for surveillance radar, Proe. IEEE 2000 International Radar Conf. VA. May 2000: 608-613.
    [32] 董瑞军,机载雷达非均匀STAP方法及其应用,博士学位论文,西安电子科技大学,2002.9。
    [33] P. P. Gandhi, S. A. Kassam, Analysis of CFAR processors in nonhomogeneous background, IEEE Trans. AES, vol. 24, No. 4, July 1998: 427-445.
    [34] P. Chen, On testing equality of covariance matrices under singularity, Report for AFOSR summer faculty research program, Roma Lab, Rome, NY, August 1994.
    [35] P. Chen, Partitioning procedure in radar signal processing problems, Final report for AFOSR summer faculty research program, Rome Lab, Rome, NY, August 1995.
    [36] D. J. Rabideau, A. O. Steinhardt, Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training, Proc. 30th Asilomar Conf. on signal, systems and computers, Pacific Grove, CA, Nov. 1996.
    [37] D. J. Rabideau, A. O. Steinhardt, Improved adaptive clutter cancellation through data-adaptive training, IEEE Trans. AES, vol. 35, No. 3, July 1999: 879-891.
    [38] 吴仁彪,机载相控阵雷达时空二维自适应滤波的理论与实现,博士学位论文,西安电子科技大学,1993.12。
    [39] C. D. Richmond, The theoretical performance of a class of space-time adaptive detection and training strategies for airborne radar, Proc. 32th Asilomar Conf. on signal, systems and computers, vol. 2, 1998:1327-1331.
    [40] C. D. Richmond, Performance of a class of adaptive detection algorithms in nonhomogeneous environments, IEEE Trans. SP, vol. 48, No. 5, May 2000:1248-1262.
    [41] R. S. Adve, T. B. Hale, M. C. Wicks, A two stage hybrid space-time adaptive processing algorithm, Proc. of the 1999 IEEE national radar conf., Boston, MA, April 1999: 279-284.
    [42] T. K. Sarkar, H. Wang, S. Park, R. Adve, J. Koh, K. Kim, Y. Zhang, M. C. Wicks, R. D. Brown, A deterministic least-squares approach to space-time adaptive processing (STAP), IEEE Trans. AP, vol. 49, No. 1, January 2001: 91-103.
    [43] R. S. Adve, M. C. Wicks, T. B. Hale, P. Antonik, Ground moving target indication using knowledge based space time adaptive processing, Pr0c. of the 2000 IEEE international radar conf., VA, May 2000: 735-740.
    [44] R. S. Adve, T. B. Hale, M. C. Wicks, Transform domain localized processing using measured steering vectors and non-homogeneity detection, Proc. of the 1999 IEEE national radar conf., Boston, MA, April 1999: 285-290.
    [45] William L. Melvin, Michael J. Callahan, Michael C. Wicks, Adaptive clutter cancellation in bistatic radar, Proc. of the 2000 IEEE international radar conf., VA, May 2000:1125-1130.
    [46] William L. Melvin, Braham Himed, Mark E. Davis, Doubly adaptive bistatic clutter filtering, 2003 IEEE radar conf., Huntsville, AI, May 2003: 171-178.
    [47] Y. Zhang, B. Himed, Effects of geometry on clutter characteristics of bistatic radars, Proc. of 2003 IEEE Radar Conf., Huntsville, Alabama, USA, 2003:417-424.
    [48] G. K. Borsari, Mitigating effects on STAP processing caused by an inclined array, IEEE nation radar conf., Dallas, May 1998: 135-140.
    [49] M. A. Zatman, Circular array STAP, IEEE Trans. AES. vol. 36, No. 2, April 2000: 510-517.
    [50] Braham Himed, James H. Michels, Yuhong Zhang, Bistatic STAP performance analysis in radar applications. Proc. 2001 IEEE Radar Conf., Atlanta, GA, May 2001: 198-203.
    [51] Jame R. Roman, Dennis W. Davis, James H. Michels, Multichannel parametric models for airborne phased array clutter, Proc. of 1997 IEEE national radar conf., Syracuse, NY, May 1997: 72-77.
    [52] 王万林,非均匀环境下的相控阵机载雷达STAP研究,博士学位论文,西安电子科技大学,2004.3。
    [53] William L. Melvin, Michael J. Callahan and Michael C. Wicks, Bistatic STAP: application to airborne radar, Proc, 2002 IEEE Radar Conf., Long Beach, CA, April 2002: 1-7.
    [54] E. Yadin, Evaluation of noise and clutter induced relocation errors, Record of IEEE 1995 international radar conf., Alexandria Virginia, May 1995: 650-655.
    [55] E. Yadin, A performance evaluation mode for a two port interferometer SAR-MTI, Proc. 1996 IEEE national radar conf., Ann Arbor, Michigan, May 1996: 261-266.
    [56] Tim J.Nohara, Peter Weber, A1 Premji, Chuck Livingstone. SAR-GMTI Processing with Canada's Radarsat 2 Satellite. Adaptive systems for signal processing, communications, and control symposium 2000 AS-SPCC, Lake Louise, Alta, Canada: IEEE, 2000:.379-384.
    [57] Nathan A. Goodman, SAR and MTI processing of sparse satellite clusters, Dissertation for the Degree of Doctor of Philosophy, University of Kansas, USA, July. 2002.
    [58] Stephen M. Kogon, Daniel J. Rabideau, Richard M. Barnes, Clutter mitigation techniques for space-based radar, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing,, Volume: 4,15-19 March 1999:2323 - 2326.
    [59] Daniel J. Rabideau, Stephen M. Kogon, A signal processing architecture for space-based GMTI radar, The Record of the 1999 IEEE Radar Conference, 20-22 April 1999:96 - 101
    [60] Tim J. Nohara, Comparison of DPCA and STAP for space-based radar, 1995 IEEE international radar conference, May 1995:113-119.
    [61] Tim J. Nohara, A1 Premji, Peter Weber, Space-based radar signal processing demonstrator: Preliminary experiment results, IEEE International Symposium on Phased Array Systems and Technology, 15-18 Oct. 1996:307 -312.
    [62] Dephine J. E. Cerutti-Maori, Joachim H. G Ender, An approach to multistatie spacebome SAR/MTI processing and performance analysis, 2003 IEEE Geoseienee and Remote Sensing Symposium, IGARSS '03., Proceedings. Volume: 7, 21-25 July 2003: 4446- 4449.
    [63] Maurice Martin, Steve Kilberg, Techsat 21 and revolutionizing space missions using microsatellites, American Institute of Aeronautics and Astronautics SSC01-1-3, pp: 1-10.
    [64] Paul A. Rosen, Mark E. Davis, A joint space-borne radar technology demonstration mission for NASA and the air force, Proceedings of IEEE Aerospace Conference, Volume: 1,2003: 437-444.
    [65] Tim J. Nohara, Peter Weber, A1 Premji, Space-based radar signal processing baselines for air, land and sea applications, 2000 Electronics & Communication Engineering Journal, Volume: 12, Issue: 5, Oct. 2000: 229-239.
    [66] Raymond J. Sedwick, Troy L. Hacker, Karen Marais, Performance and analysis for an interferometric space-based GMTI radar system, 2000 IEEE International Radar Conference, 2000: 689-694.
    [67] Karen Marais, Raymond Sedwick, Space based GMTI using scanned pattern interferometric radar (SPIR), Aerospace Conference, 2001 IEEE Proceedings, Vol. 4, 2001: 2047-2055.
    [68] Jim Stiles, Nathan Goodman, SiChung Lin, Performance and processing of SAR satellite clusters, 2000 IEEE Proceedings of IGARSS-International Geoscience and Remote Sensing Symposium, Volume: 2,24-28 July 2000: 883- 885.
    [69] Karen Marais, Raymond J. Sedwick, The development and analysis of scanned pattern interferometric radar. Dissertation for the Degree of Master of Science, M.I.T., USA, Sep. 2001.
    [70] Hans Steyskal, John K. Schindler, Peter Franchi, Robert J. Mailloux, Pattern synthesis for TechSat21 - A distributed space-based radar system, 2001 IEEE Proceedings of Aerospace Conference, Volume: 2,10-17 March 2001: 2/725-2/732.
    [71] Proceedings of the 2001 IEEE Radar Conference, Atlanta, GA, 1-3 May 2001
    [72] J. Ward, Space-time adaptive processing for airborne radar, MIT tech report, 13 December 1994.
    [73] R. Klemm, Adaptive clutter suppression for airborne phased array radar, IEE Proc. F. Radar Signal Process, 130(1), 1983: 125-132.
    [74] 丁鹭飞,耿富录,雷达原理,西安电子科技大学出版社,1995。
    [75] Mehrdad Soumekh, Braham Himed, SAR-MTI Processing of Multi-Channel Airborne Radar Measurement (MCARM) Data, Radar Conference, 2002, Proceedings of IEEE, 2002: 24-28.
    [76] Mehrdad Soumekh, Synthetic Aperture Radar Signal Processing with Matlab Algorithms, New York: Wiley, 1999.
    [77] Mehrdad Soumekh, Signal subspace fusion of uncalibrated sensors with applications in SAR and diagnostic medicine, IEEE Trans. on image processing, Vol. 8, No. 1, January 1999: 127-137.
    [78] John N. JR. Entzminger, Charles A. Fowler, William J. Kenneally, JointSTARS and GMTI: Past, present and future. IEEE Transactions on Aerospace and Electronic Systems, Volume: 35, Issue: 2, April 1999: 748-761.
    [79] Stephen M. Kogon and Michael A. Zatman, STAP adaptive weight training using phase and power selection criteria. Conference Record of 35th Asilomar Conference on Signals, Systems and Computers, Vol. 1, 2001:.98-102.
    [80] Thomas E. Morton, Techniques to screen for moving and large stationary discretes in space-time adaptive estimation data. IEEE Proceedings, Aerospace Conf., Vol. 2, 2001: 853-863.
    [81] 刘林,航天器轨道理论,北京:国防工业出版社,2000。
    [82] 张贤达,信号处理中的线性代数,北京:科学出版社,1997.7。
    [83] H. Lütkepohl, Handbook of Matrices, JOHN WILEY & SONS, 1996.
    [84] James Ward, Space-time adaptive processing for airborne radar, ICASSP-95, Volume: 5, 9-12 May 1995: 2809-2812.
    [85] Richard Klemm, Comparison between monostatic and bistatic antenna configurations for STAP, IEEE Trans. on A. E. S., Vol. 36, No 2, April 2000: 596-608.
    [86] 刘永坦等,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999。
    [87] B. Himed, Effects of bistatic clutter dispersion on STAP systems, IEE Proc.-Radar Sonar Navig., Vol. 150, No. 1, February 2003: 28-32.
    [88] 保铮,廖桂生,吴仁彪,张玉洪,王永良,相控阵机载雷达杂波抑制的时空二维自适应滤波,电子学报,Vol.21,No.9,1993:1-7.
    [89] 保铮,张玉洪,廖桂生,王永良,吴仁彪,机载雷达空时二维信号处理,现代雷达,Vol.16,No.1,Feb.1994:38-48.
    [90] 保铮,张玉洪,廖桂生,王永良,吴仁彪,机载雷达空时二维信号处理,现代雷达,Vol.16,No.2,April,1994:17-27.
    [91] D. Curtis Schleher, MTI and pulsed Doppler radar, Boston: Artech House, 1991.
    [92] William L. Melvin, Michael C. Wicks, Improving practical space-time adaptive radar, 1997 IEEE national radar conference, 13-15 May 1997: 48-53.
    [93] Paul Antonik, Harvey Schuman, Ping Li, William Melvin, Michael Wicks, Knowledge-based space-time adaptive processing, 1997 IEEE national radar conference, 13-15 May 1997: 372-377.
    [94] David K. Fenner, William F. Hoover. Jr, Test results of a space-time adaptive processing system for airborne early warning radar, Proceedings of the 1996 IEEE National Radar Conference, 13-16 May 1996: 88-93.
    [95] Muralidhar Rangaswamy, Braham Himed, James H. Michels, Performance analysis of the nonhomogeneity detector for STAP application, Proceedings of the 2001 IEEE Radar Conference, 1-3 May 2001: 193-197.
    [96] Ernesto Conte, Antonio De Maio, Giuseppe Ricci, Space-time adaptive radar detection of distributed targets, The Record of the IEEE 2000 International Radar Conference, 7-12 May 2000: 614-619.
    [97] Michael Zatman, The effect of bandwidth on STAP, 1996 International Symposium Antennas and Propagation Society, AP-S., Digest, Vol. 2,21-26 July 1996: 1188-1191.
    [98] P. J. Wright, M. Wells, STAP for airborne target detection using a space based phased array radar, IEE Colloquium on Space-Time Adaptive Processing (Ref. No. 1998/241), 6 April 1998: 8/1-8/6.
    [99] Geoffrey M. Herbert, Space-time adaptive processing (STAP) for wide-band airborne radar, The Record of the IEEE 2000 International Radar Conference, 7-12 May 2000: 620-625.
    [100] M. Zatman, E. Baranoski, Time delay steering architectures for space-time adaptive processing, 1997 IEEE Antennas and Propagation Society International Symposium, 1997 Digest, Vol. 4, 13-18 July 1997: 2426-2429.
    [101] M. Zatman, Production of adaptive array troughs by dispersion synthesis, IEE electronics letters, Vol. 31, No. 25, 7 December, 1995: 2141-2142.
    [102] R. J. Mailloux, Covariance matrix augmentation to produce adaptive array pattern troughs, IEE electronics letters, Vol. 31, No. 10, 11 May 1995: 771-772.
    [103] Didier Massonnet, Eric Thouvenot, Sophie Ramongassie, Laurent Phalippou, A wheel of passive radar microsats for upgrading existing SAR projects, IEEE 2000 International Geoscience and Remote Sensing Symposium, Proceedings of IGARSS 2000, Vol. 3, 24-28 July 2000: 1000-1003.
    [104] S. Ramongassie, L. Phalippou, E. Thouvenot, D. Massonnet, Preliminary design of the payload for the interferometrie cartwheel, IEEE 2000 International Geoscience and Remote Sensing Symposium, Proceedings. IGARSS 2000, Vol.3, 24-28 July 2000: 1004-1006.
    [105] Muralidhar Rangaswamy, James H. Michels, A parametric multichannel detection algorithm for correlated non-gaussian randam processes, IEEE 1997 National Radar Conference, 13-15 May 1997: 349-354.
    [106] William L. Melvin, A STAP overview, IEEE A&E systems magazine, Vol. 19, No. 1, Jan. 2004: 19-35.
    [107] S. D. Berger, B. M. Welsh, Dual channel matched filter system-a performance analysis, The Record of the 1999 IEEE Radar Conference, 20-22 April 1999: 295-299.
    [108] Probal K. Sanyal, Russell D. Brown, M. O. Little, R. A. Schneible, M. C. Wicks, Space-time adaptive processing bistatic airborne radar, The Record of the 1999 IEEE Radar Conference, 20-22 April 1999:114-118.
    [109] Nicholas J. Willis, Bistatic Radar, Artech House, 1991.
    [110] R. Klemm, Ambiguities in bistatic STAP radar, IEEE 2000 International Geoscience and Remote Sensing Symposium, Proceedings, Vol. 3, 24-28 July 2000: 1009-1011.
    [111] D. A. Whelan, Discoverer Ⅱ program summary, The Record of the IEEE 2000 International Radar Conference, 7-12 May 2000: 7-8.
    [112] John W. Gamham, Application of digital beamforming for look-down, clutter limited, MRI radar- with specific application to space based radar, 1998 IEEE Proceedings of Aerospace Conference, Vol. 3, 21-28 March 1998: 349-357.
    [113] Tim J. Nohara, P. Scarlett, B. C. Eatock, A radar signal processor for space-based radar, Record of the 1993 IEEE National Radar Conferenc, 20-22 April 1993: 12-16.
    [114] John Maher, Michael Callahan, Doug Lynch, Effects of clutter modeling in evaluating STAP processing for space-based radar, The Record of the IEEE 2000 International Radar Conference, 7-12 May 2000: 565-570.
    [115] M. E. Davis, B. Himed, L-band wide area surveillance radar design alternatives, Proceedings of the International Radar Conference, 3-5 Sept. 2003: 554-559.
    [116] Nathan A. Goodman, James M. Stiles, Resolution and synthetic aperture characterization of sparse radar array, IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, Issue: 3, July 2003: 921-935.
    [117] J. Xie, Y. Yuan, Y. Liu, Experimental analysis of sea clutter in shipborne HFSWR, IEE proceadings of Radar, Sonar, Navig., Vol. 148, No. 2, April 2001: 67-71.
    [118] Joseph Guerci, Esko Jaska, ISAT-innovative space-based-radar antenna technology, IEEE International Symposium on Phased Array Systems and Technology, 14-17 Oct. 2003: 45-51.
    [119] M. E. Davis, Space based radar moving target detection challenges, IEEE RADAR 2002,15-17 Oct. 2002: 143-147.
    [120] Thomas Schetter, Mark Campbell, Derek Surka, Multiple agent-based autonomy for satellite constellations, Presented at the Second International Symposium on Agent Systems and Applications, September 2000, Zurich, Switzerland.
    [121] 林来兴,小卫星编队飞行及其轨道设计,中国空间科学技术,2001,21(1):23-28。
    [122] Jean-Marc Goutoule, Frédéric de Boer, Large interferometer antennas synthesized by satellites in formation for earth remote sensing, IEEE 2000 International Geoscience and Remote Sensing Symposium, Proceedings of IGARSS 2000, Vol. 2, 24-28 July 2000: 869-870.
    [123] 李真芳,黄源宝,保铮,廖桂生,利用分布式InSAR进行地形高程测量性能分析,系统工程与电子技术,2003,25(6):697-700。
    [124] Joachim H. G. Ender, Space-time adaptive processing for synthetic aperture radar, IEE Colloquium on Space-Time Adaptive Processing (Ref. No. 1998/241), 6 April 1998: 6/1-618.
    [125] M. Costantini, F. Malvarosa, F. Minati, L. Pietranera, V. Giammarioli, M. Jahjah, A space-time analysis technique for monitoring terrain displacements from SAR differential intererometric measurements, IEEE 2001 International Geoscience and Remote Sensing Symposium, 2001. IGARSS '01,Vol. 6,9-13 July 2001: 2634-2636.
    [126] P. G. Tomlinson, Modeling and analysis of monostatic/bistatic space-time adaptive processing airborne and space-based radar, The Record of the 1999 IEEE Radar Conference, 20-22 April 1999:102-107.
    [127] 沈永欢,梁在中,许履瑚,蔡蓓蓓,实用数学手册,北京:科学出版社,2002。
    [128] Mehrdad Soumekh, Moving target detection in foliage using along track monopulse synthetic aperture radar imaging, IEEE Transactions on Image Processing, Vol. 6, Issue: 8, Aug. 1997:1148-1163.
    [129] Mehrdad Soumekh, Moving target detection and imaging using an Ⅹ band along-track monopulse SAR, IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, Issue: 1, Jan. 2002: 315-333.
    [130] Mehrdad Soumekh, Signal subspace fusion of uncalibrated sensors with application in SAR, diagnostic medicine and video processing, Proceedings of International Conference on Image Processing, Vol.3, 26-29 Oct. 1997: 280-283.
    [131] Into the future, IEEE Aerospace and Electronic Systems Magazine, Vol. 15, Issue: 10, Oct. 2000: 144-148.
    [132] S. U. Pillai, Y. L. Lim, J. R. Guerci, Generalized forward/backward subaperture smoothing techniques for sample starved STAP, IEEE Transactions on Signal Processing, Vol. 48, Issue: 12, Dec. 2000: 3569-3574.
    [133] P. M. Techau, J. R. Guerci, T. H. Slocumb, L. J. Griffiths, Performance bounds for interference mitigation in radar systems, The Record of the 1999 IEEE Radar Conference, 20-22 April 1999: 12-17.
    [134] Karl Gerlach, Michael L. Picciolo, Airbome/spacebased radar STAP using a structured covariance matrix, IEEE transactions on aerospace and electronic systems, Vol. 39, No. 1, Jan. 2003: 269-281.
    [135] Tapan K. Sarkar, Raviraj Adve, Space-time adaptive processing using circular arrays, IEEE antennas and propagation magazine, Vol. 43, No. 1, Feb. 2001: 138-143.
    [136] Joseph M. Francos, Arye Nehorai, Interference mitigation in STAP using two-dimensional wold decomposition model, IEEE Transactions on Signal Processing [see also IEEE Transactions on Acoustics, Speech, and Signal Processing], Vol. 51, Issue: 10, Oct. 2003: 2461-2470.
    [137] James Ward, Space-time adaptive processing for airborne radar, IEE Colloquium on space-time adaptive processing (Ref., No. 1998/241), 6 April 1998: 2/1-2/6.
    [138] Alexander Haimovich, The eigencanceler: adaptive radar by eigenanalysis methods, IEEE transactions on aerospace and electronic systems, Vol. 32, No. 2, April 1996: 532-542.
    [139] P. G. Richardson, STAP covariance matrix structure and its impact on clutter plus jamming suppression solutions, IEE eletronics letters, Vol. 37, No. 2, 18 Jan. 2001: 118-119.
    [140] P. D. Beaulne, C. H. Gierull, C. E. Livinstone, I. C. Sikaneta, S. Chiu, S. Gong, M. Quinton, Preliminary design of a SAR-GMTI processing system for radarsat-2 modex data, 2003 IEEE International Geoscience and Remote Sensing Symposium, IGARSS '03. Proceedings, Vol. 2, 21-25 July 2003: 1019-1021.
    [141] R.A. DeLap, Recent and Current air force space based radar efforts, 1999 IEEE Aerospace Conference, Proceedings, Vol. 3, 6-13 March 1999:185-194.
    [142] Peter Zulch, Mark Davis, Larry Adzima, Robert Hancock, Sid Theis, The earth rotation effect on a LEO L-band GMTI SBR and mitigation strategies, Proceedings of the IEEE Radar Conference, 26-29 April 2004: 27-32.
    [143] William L. Melvin, Joseph R. Guerci, Adaptive detection in dense target environments, Proceedings of the 2001 IEEE Radar Conference, 1-3 May 2001: 187-192.
    [144] 魏钟铨等,合成孔径雷达卫星,北京:科学出版社,2001。
    [145] J. Meyer-Hilberg, B. Bickert, K. -P. Schmitt, Results of flight tests of a two-channel radar system with real-time MTI processing, IEE Proceedings- Radar, Sonar and Navigation, Vol. 150, Issue: 1, Feb. 2003: 23-27.
    [146] E. Rodriguez, J. M. Martin, Theory and design of interferometric synthetic aperture radars, Radar and Signal Processing, IEE Proceedings F, Vol. 139, Issue: 2, April 1992: 147-159.
    [147] Q. Zhang, W. B. Mikhael, Estimation of the clutter rank in the case of subarraying for space-time adaptive processing, IEE electronics letters, Vol. 33, No. 5, 27 Feb. 1997: 419-420.
    [148] William C. Morchin, Airborne early warning radar, Boston: Artech House, 1989.
    [149] S. A. Hovanessian, L. B. Jocic, J. M. Lopez, Spacebome radar design equations and concepts, IEEE Proceedings of Aerospace Conference, Vol. 1, 1-8 Feb. 1997: 125-136.
    [150] R. L. Fante, Ground and airborne target detection with bistatic adaptive space-based radar, 1999 IEEE Radar Conference Record, 20-22 April 1999: 7-11.
    [151] Nathan A. Goodman, James M. Stiles, A general signal processing algorithm for MTI with multiple receive aperture, Proceedings of the 2001 IEEE Radar Conference, 1-3 May 2001: 315-320.
    [152] Nathan A. Goodman, Chung Lin Sih, D. Rajakdshna, J. M. Stiles, Processing of multiple-receiver spaceborne arrays for wide-area SAR, IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, Issue: 4, April 2002: 841-852.
    [153] Michael P. Hartnett, Mark E. Davis, Bistatic surveillance concept of operations, Proceedings of the 2001 IEEE Radar Conference, 1-3 May 2001: 75-80.
    [154] Michael P. Hartnett, Mark E. Davis, Operations of an airborne bistatic adjunct to space based radar, Proceedings of the 2003 IEEE Radar Conference, 5-8 May 2003: 133-138.
    [155] 任迎舟,机载雷达时-空二维杂波仿真和空时级联信号处理系统的性能仿真,硕士学位论文,西安电子科技大学,1993。
    [156] G.H.戈卢布,C.F.范洛恩,矩阵计算,北京:科学出版社,2002。
    [157] H. K. Schuman, P. G. Li, W. Szczepanski, J. Graham, Space-time adaptive processing for space based radar, 2004 IEEE Aerospace Conference, Proceedings, Vol. 3, 6-13 March 2004: 1910.
    [158] Q. Guo, G Liao, Y. Wu and J. Li, Pattern synthesis method for arbitrary arrays based on LCMV criterion, Electronics Letters, 13th November 2003, Vol. 39, No. 23, 2003: 1628-1630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700