用户名: 密码: 验证码:
分布式卫星多相位中心SAR-GMTI技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)技术与地面运动目标检测(GMTI)技术相结合,可以在获得高分辨地面场景图像的同时完成地面动目标的检测及测速定位,具有重要的民用和军用价值。相比单通道SAR系统,多通道SAR的优势在于可以利用多个方位自由度有效的抑制主瓣杂波,改善动目标的检测性能,因而受到各国学者的广泛关注。本文针对分布式卫星多相位中心SAR实现GMTI功能,开展了关于沿航迹基线形式确定、时变混合基线预处理、与高分辨率宽测绘带成像兼容设计、模糊杂波抑制以及对误差稳健的动目标参数估计等关键技术研究。主要内容包括:
     1、分析了多通道SAR系统中多个相位中心之间可能存在的时空关系,以交替收发模式为例,建立了多通道动目标信号模型。通过理论推导明确了形成GMTI基线的必备条件,得到如下结论:不同时间处于不同方位的两个相位中心之间的沿航迹基线,等于以同一时间基准对这两个相位中心位置进行插值后得到的等效位置之间的沿航迹差。该结论为不同通道构成方式下沿航迹基线的确定提供了依据。通过对比同一系统采用不同天线孔径划分和交替收发方式下的GMTI性能,说明了合理选择天线孔径划分和交替方式对提升GMTI性能的重要性。
     2、提出了分布式卫星SAR-GMTI系统时变、混合基线的预处理方法。针对分布式卫星系统中星间基线时变导致SAR图像对相干性下降的问题,从分布式卫星SAR系统的观测几何构型出发,采用总体最小二乘法拟合航迹方程,并依据方程参数重构虚拟的新平行航迹。通过补偿原航迹和新航迹上的观测波程差,获得等效的固定基线回波数据。在此基础上,针对分布式卫星SAR系统中混合基线和雷达斜视导致沿航迹基线难以精确计算的问题,推导了存在混合基线和斜视情况下沿航迹基线的计算公式,提出了基于星历和回波数据的沿航迹基线计算方法。仿真实验结果表明,时变基线补偿后,能有效提高动目标检测性能;用所提方法计算得到的沿航迹基线长度作为测速定位的基线参数,可以获得高精度的测速定位结果。
     3、采用方位多通道抑制多普勒模糊是实现高分辨率宽测绘带(HRWS)成像的有效方式,如果这些自由度用于主瓣杂波抑制则可以实现GMTI功能。因此,在多通道SAR系统中,有望实现两种模式的兼容工作。但此时GMTI性能会受到方位降采样引起的多普勒模糊的影响。为分析这一影响,推导了存在多普勒模糊下的杂波和动目标的信号形式,给出了系统参数的设计考虑。结合盲速、空域模糊和动目标积累损失等因素,重点讨论了在多普勒模糊情况下,脉冲重复频率(PRF)对GMTI性能的影响,并给出了一个PRF的优化选择仿真示例。根据理论分析和仿真实验结果可以得到一个选择PRF的重要原则,即应避免抑制模糊杂波的凹口因为空域模糊而折回至感兴趣速度区间。实测数据的处理结果验证了理论分析的正确性。
     4、提出了多特征联合挑选样本的多通道SAR模糊杂波抑制方法。针对强弱对比明显的非均匀场景中模糊强杂波的抑制问题,分析推导了模糊杂波的多通道导向矢量,以邻近强陆地杂波的近岸水面区域为例,建立了SAR图像域多通道信号模型。以模糊杂波导向的推导结果和建立的模型为依据,联合模糊杂波的幅度/相位直方图统计特性和边缘检测挑选训练样本,并采用自适应匹配滤波方法抑制杂波。仿真实验验证了所提方法的有效性。
     5、实际处理环境中,图像配准误差和通道相位误差不可避免,这将导致多通道SAR-GMTI处理时动目标径向速度估计和定位精度下降。针对这一问题,提出了基于自适应数据重构和子空间投影的动目标径向速度估计方法。在联合像素信号模型下,利用抑制杂波的维纳权矢量自适应重构包含动目标单元的多通道数据,再采用子空间投影算法从重构的包含动目标的单次快拍数据中估计动目标的径向速度。仿真实验和某机载多通道SAR-GMTI实测数据的处理结果验证了所提方法的有效性和稳健性。
Synthetic aperture radar (SAR) combined with ground moving target indication(GMTI) can provide high resolution images of the stationary scene as well as thedetection and relocation of ground moving targets simultaneously, which has beenwidely used in many civilian and military applications. Compared with single channelSAR systems, multichannel SAR systems have the advantage that the cluttersuppression can be achieved by using the spatial degrees of freedom in azimuth, thusarousing extensive attention of the scholars in various countries. This dissertationaddresses some key techniques of GMTI for distributed satellite SAR systems withmultiple phase centers, such as the determination of the along-track baseline, the hybridand time-varying baseline preprocessing, the system design to make the GMTI becompatible with high-resolution wide-swath (HRWS) imaging, the ambiguous cluttersuppression and robust target motion parameter estimation. The main work can besummarized as follows:
     1. The possible temporal and spatial relationships between different phase centersin multichannel SAR systems are analyzed. The signal model of moving targets inmulti-channel SAR systems with alternate transmission and reception is established.Based on the theoretical derivation, the necessary condition for the existence of thealong-track baseline is indicated. And we can draw a conclusion that the along-trackbaseline between different phase centers whose azimuth positions are different fromeach other at different time is equal to the azimuth spacing between them after usinginterpolation to make them appear at the same time. This conclusion provides the basisto determine the along-track baseline for various multichannel formations. The GMTIperformance comparison with different antenna partitions and alternating strategiesshows that an appropriate antenna partition and alternating strategy is important inimproving the GMTI performance.
     2. A preprocessing method to deal with the hybrid and time-varying baseline indistributed satellite SAR-GMTI systems is proposed. The time-varying baseline makesthe correlation of SAR images decreases; and the hybrid baseline and squint make itdifficult to estimate the along-track baseline accurately. For the purpose ofcompensating the time-varying baseline, based on the geometrical configuration ofdistributed-satellite SAR systems, the total least squares algorithm is applied to fit thetrack equations of the satellites. And a new virtual parallel track is constructed with theparameters of the track equations. An equivalent constant baseline is obtained by the compensation of the path difference between the new and the original tracks. Then, theformula for calculating the along-track baseline in the case of hybrid baseline and squintis deduced, and an along-track baseline determination method based on ephemeris dataand radar echoes is proposed. Simulation results illustrate that the performance ofground moving target indication can be improved by the time-varying baselinecompensation and accurate velocity estimation and relocation of moving targets can beobtained by using the proposed method to determinate the along-track baseline.
     3. Using multichannel in azimuth to suppress the Doppler ambiguities allows forHRWS SAR. If the degrees of freedom in azimuth are used for the clutter suppression,the GMTI can be achieved. Therefore, a spaceborne multichannel SAR system has thepotential to offer GMTI and HRWS imaging capabilities simultaneously. However, inthis case, the GMTI performance may suffer from the Doppler ambiguity caused by theundersampling. To investigate the impact of Doppler ambiguity on GMTI performance,the multichannel signal models of the clutter and the moving target with Dopplerambiguity are derived in complex image domain. And the system design considerationsare given. Taking into account the blind velocity, the spatial ambiguity and thesignal-to-noise ratio (SNR) loss, the influence of pulse repetition frequency (PRF) onthe GMTI performance is dicussed in detail. Then a simulation example of PRFselection to optimize the system performance is provided. According to the theoreticalanalysis and the simulation example, an important principle is obtained that for the PRFselection, it is necessary to avoid the ambiguous clutter notches falling into the radialvelocity interval of interest due to the spatial ambiguity. Finally, the theoreticalinvestigations are verified by real data experiments.
     4. A new ambiguous clutter suppression method based on using multiplecharacteristics to select training samples with azimuth multichannel SAR systems isproposed. To deal with the ambiguous clutter suppression issue for a heterogeneousregion which contains two adjacent terrains having large reflectivity difference, such asthe near-shore water regions, the multichannel steering vector of the ambiguous clutteris derived, and the multichannel signal model in the image domain is established. Basedon the derived steering vector and the established signal model, the statisticcharacteristics of the magnitude and interferometric phase histograms combined withthe edge detection are used to select training samples, and then the adaptive matchedfiltering technique is used suppress the ambiguous clutter. The validities of the proposedmethods are verified by the simulation results.
     5. In practice, inevitable image coregistration error and channel phase mismatch will significantly degrade the estimation performance of the target radial velocity in theGMTI processing with multichannel SAR systems, making it difficult to relocate themoving target accurately. To overcome the influence of these non-ideal factors, a newradial velocity estimation method using the subspace projection algorithm with adaptivedata reconstruction is proposed. Based on the joint-pixel signal model, the Wienerweight vector is used to reconstruct the multichannel data vector of the pixel containingthe moving target. Then, the subspace projection algorithm is adopted to deal with theradial velocity estimation with this reconstructed single―snapshot‖data. The validityand robustness are verified by both simulations and real SAR data experiments.
引文
[1] Maurice W. Airborne Early Warning System Concepts[M]. Artech House, Boston,1992.
    [2] Skolnik M. Radar Handbook, McGraw-Hill[M]. New York,2nd Ed,1990.
    [3] Schleher D. MTI and Pulsed Doppler Radar[M]. Artech House, Boston,1991.
    [4]罗守贵,金林.机载预警雷达的发展趋势分析[J].现代雷达,2008,30(12):1-5.
    [5] Wang H S C. Mainlobe clutter cancellation by DPCA for space-based radars[C].Aerospace Applications Conference,1991:1-128.
    [6] Brennan L and Reed I. Theory of adaptive radar[J]. IEEE Transactions onAerospace and Electronic Systems,1973,9(5):237-252.
    [7] Reed I, Mallett J, Brennan L. Rapid convergence rate in adaptive arrays[J]. IEEETransactions on Aerospace and Electronic Systems,1974,10(6):853-863.
    [8] Brennan L, Mallett J, Reed I. Adaptive arrays in airborne MTI radar[J]. IEEETransactions on Antennas and Propagation,1976,24(5):607-615.
    [9] Cantafo L J. Space-Based Radar Handbook[M]. Artech House, Boston,1989.
    [10] Curlander J and McDonough R. Synthetic Aperture Radar: Systems and SignalProcessing[M]. New York: Wiley,1991.
    [11] Soumekh M. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms[M]. John Wiley&Sons Inc,1999.
    [12]刘永坦.雷达成像技术[M].哈尔滨工业大学出版社, l999.
    [13]张直中.机载和星载合成孔径雷达导论[M].电子工业出版社,2004.
    [14] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture RadarData: Algorithms and Implementation[M]. Norwood, MA: Artech House,2005.
    [15]保铮,邢孟道,王彤.雷达成像技术[M].电子工业出版社,2005
    [16] Gabele M and Younis M. Comparison of techniques for future spaceborneGMTI[C]. Proc. EUSAR, Aachen, Germany,2010:386-389.
    [17] Raney R K. Synthetic aperture imaging radar and moving targets[J]. IEEETransactions on Aerospace and Electronic Systems,1971,7(3):499-505.
    [18] Entzminger J, Fowler Jr, Kenneally W. JointSTARS and GMTI: past, present andfuture[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(2):748-761.
    [19] Iwashashi, Tanaka Tsutomu, Hirokazu. Satellite technology for environmentalobservation[J]. Mitsubishi Electric Advance,1996,74(3):8-10.
    [20] Breit H, Eineder M, Holzner J, et al.. Traffic monitoring using SRTM along-trackinterferometry[C]. IGARSS,2003:1187-1189.
    [21] Pitz W, Miller D. The TerraSAR-X satellite[J]. IEEE Transactions on Geoscienceand Remote Sensing,2010,48(2):615-622.
    [22] Chiu S, Livingstone C, Sikaneta I, et al.. Radarsat-2moving object detectionexperiment (MODEX)[C]. IGARSS2008, Boston, Massachusetts,2008:13-16.
    [23] Lombardo P, Colone F, and Pastina D. Monitoring and surveillance potentialitiesobtained by splitting the antenna of the COSMO-SkyMed SAR into multiplesub-apertures[J]. IEE Proc Radar Sonar Navig,2006,153(2):104-116.
    [24] Romeiser R, Runge H, Eineder M, et al.. Current measurements by SARalong-track interferometry from a space shuttle[J]. IEEE Transactions onGeoscience and Remote Sensing,2005,43(10):2315-2324.
    [25] Romeiser R, Runge H. Theoretical evaluation of several possible along-trackInSAR modes of TerraSAR-X for ocean current measurements[J]. IEEETransactions on Geoscience and Remote Sensing,2007,45(1):21-35.
    [26] Drago evi M and Livingstone C. Demonstration of RADARSAT-2movingobject detection experiment (MODEX) capabilities for maritime surveillance[C].IRS,Hamburg,Germany, Sep.2009:83-87.
    [27] Gabban A, Greidanus H, Smith A, et al.. Ship surveillance with TerraSAR-XScanSAR[C].3rd TerraSAR-X Sci. Team Meeting, Germany, Nov.2008.
    [28] Cerutti-Maori D, Sikaneta I, and Gierull C H. Ship detection with spacebornemulti-channel SAR/GMTI radars[C]. EUSAR, Nürnberg, Germany, Apr.2012.
    [29] Meyer F, Hinz S, Muller R, et al.. Towards traffic monitoring with TerraSAR-X[J].Can. J. Remote Sensing,2007,33(1):39-51.
    [30] Meyer F, Hinz S, Laika A, et al.. Performance analysis of the TerraSAR-X trafficmonitoring concept[J]. ISPRS Journal of Photogrammetry&Remote Sensing,2004,61(3-4):225-242.
    [31] Breit H, Eineder M. Traffic monitoring using SRTM along-track interometry[C].IGARSS2003, France:1187-1189.
    [32] Suchandt S, Eineder M, Meyer F. Development of a GMTI processing system Foretraction of traffic information from Terrasar-X data[C]. EUSAR2006, Germany:457-462.
    [33] Suchandt S, Runge H, Breit H,, et al.. Automatic extraction of traffic flows usingTerraSAR-X along-track interferometry[J]. IEEE Transactions on Geoscience andRemote Sensing,2010,48(2):807-819.
    [34] Chiu S and Gierull C H. Multi-channel receiver concepts for RADARSAT-2ground moving target indication[C]. EUSAR, Dresden, Germany, May2006.
    [35] Ender J H G, Gierull C H, and Cerutti-Maori D. Improved space-based movingtarget indication via alternate transmission and receiver switching[J]. IEEETransactions on Geoscience and Remote Sensing,2008,46(12):3960-3974.
    [36] Goodman N A, Lin S C, Rajakrishna D, et al.. Processing of multiple-receiverspaceborne arrays for wide-area SAR[J]. IEEE Transactions on Geoscience andRemote Sensing,2002,40(4):841-847.
    [37] David F, Newman, et al.. Design and implementation of satellite formations andconstellations[J]. Advance in the Astronautical Sciences,1998,100(1):57-70. Vol.100, No.1,1998:57-70
    [38] Gierull C H, Cerutti-Maori D, and Ender J H G. Ground moving target indicationwith tandem satellite constellations[J]. IEEE Geoscience and Remote SensingLetters,2008,5(4):710-714.
    [39] Gabele M and Krieger G. Moving target signals in high resolution wide swathSAR[C]. Proc. EUSAR, Friedrichshafen, Germany,2008:1-4.
    [40] Gabele M and Krieger G. GMTI performance of a high resolution wide swathSAR operation mode[C]. IGARSS, Boston, MA,2008: III-282-III-285.
    [41] Tobin M, Greenspan M. Adaptation of AN/APG-76multimode radar to thesmuggling interdiction mission[C]. Radar Conference1996:13-18.
    [42] Brien J, Holt H, et al.. Interferometric imaging uing the AN/APG-76radar[J].SPIE1995:37-47.
    [43] Thoma J, Dick S. Gray wolf S-3B demonstration of podded Norden AN/APG-76radar system[C]. IEEE Digital Avionics Systems Conference, Phoenix, AZ, USA,1994:328-333.
    [44] Shnitkin H. Joint STARS phased array radar antenna[C]. Aerospace andElectronics Conference,1994:142-150.
    [45] Hepburn J S A, Doyle C P. Motion compensation for ASTOR long range SAR[C].IEEE Position Location and Navigation Symposium, Las Vegas, NV, USA,1990:205-211.
    [46] Klemm R. Effect of ambiguities on GMTI radar[C]. IEEE Radar Conference,Edinburgh, Scotland,2002:148-152.
    [47] Kirscht M, Boukamp J, Hoffmann K, et al.. SOSTAR-X system integration andflight trials[C].38th European Microwave Conference, Amsterdam, Netherlands,2008:1663-1666.
    [48] Ender J H G and Brenner A. PAMIR: a wideband phased array SAR/MTIsystem[J]. IEE Proc Radar Sonar Navig,2003,150(3):165-172.
    [49] Brenner A and Ender J H G. Demonstration of advanced reconnaissancetechniques with the airborne SAR/GMTI sensor PAMIR[J]. IEE Proc Radar SonarNavig,2006,153(2):152-162.
    [50] Cerutti-Maori D, Klare J, Brenner A R, et al.. Wide-area traffc monitoring withthe SAR/GMTI system PAMIR[J]. IEEE Transactions on Geoscience and RemoteSensing,2008,46(10):3019-3030.
    [51] Freeman A. Simple MTI using Synthetic Aperture Radar[C]. IGARSS1984.
    [52] Freeman A. A digital Prefilter for MTI with SAR[C]. Intemational Conference onDigital Signal processing1984.
    [53] Freeman A, Currie A. Synthetic aperture radar images of moving targets[J]. GECJournal of Research,1987,5(2):106-115.
    [54] Chen H, McGillem C D. Target motion compensation by spectrum shifting insynthetic aperture radar[J]. IEEE Transactions on Aerospace and ElectronicSystems,1992,28(3):895-901.
    [55] Moreira J R, Keydel W. A new MTI-SAR approach using the reflectivitydisplacement method[J]. IEEE Trans on Geoscience and Remote Sensing,1995,33(5):1238-1244.
    [56] Fienup J R. Detecting moving targets in SAR imagery by focusing[J]. IEEETransactions on Aerospace and Electronic Systems,2001,37(3):794-809.
    [57] Barbarossa S. Detection and imaging of moving objects with synthetic apertureradar, Part1[J]. IEE Proceedings-Radar Signal Processing,1992,139(1):79-88.
    [58] Barbarossa S, Farina A. Detection and imaging of moving objects with syntheticaperture radar Part2[J]. IEE Proceedings-Radar Signal Processing,1992,139(1):89-97.
    [59] Barbarossa S. Analysis of multicomponent LFM signals by a combinedWigner-Hough transform[J]. IEEE Transactions on Signal Processing,1995,43(6):151l-1515.
    [60]李刚,朱敏慧.基于扩展小波变换的机载SAR运动目标参数估计[J].电子与信息学报,2001,23(11):1154-1161.
    [61]毛引芳,陈国安.基于WVD-HT的SAR/ISAR多运动目标检测[J].电子科学学刊,1997,19(4):464-470.
    [62]孙泓波,顾红,苏卫民等.基于互Wigner-Ville分布的SAR运动目标检测[J].电子学报,2002,30(3):347-350.
    [63] Sun H, Liu G, Gu H, et al.. Application of the fractional Fourier transform tomoving target detection in airbome SAR[J]. IEEE Transactions on Aerospace andElectronic Systems,2002,38(4):1416-1424.
    [64] Chiu S. Two-channel SAR-GMTI via fractional Fourier transform[R]. Ottawa,Canada: Defense R&D Canada,2004.
    [65] Chiu S. Application of fractional Fourier transform to moving target indication viaalong-track interferometry[J]. EURASIP Journal on Applied Signal Processing,2005,20:3293-3303.
    [66]陈广东,朱兆达,朱岱寅.分数阶傅里叶变换用于抑制SAR杂波背景检测慢速运动目标[J].航空学报,2005,26(6):748-753.
    [67]周峰,李亚超,邢孟道,保铮.一种单通道地面运动目标成像和运动参数估计方法[J].电子学报,2007,35(3):62-67.
    [68] Perry R P, Dipietro R C, et al.. SAR imaging of Moving Targets[J]. IEEETransactions on Aerospace and Electronic Systems,1999,35(1):188-200.
    [69] Zhou F, Wu R, Xing M and Bao Z. Approach for single channel SAR groundmoving target imaging and motion parameter estimate[J]. IET Radar Sonar Navig,2007,1(1):59-66.
    [70] Yang J, Huang X, Thompson J, et al.. Low-frequency ultra-wideband syntheticaperture radar ground moving target imaging[J]. IET Radar Sonar Navig,2011,5(9), pp.994-1001.
    [71] Yang J, Huang X, Jin T, et al.. New approach for SAR imaging of ground movingtargets based on a keystone transform[J]. IEEE Geoscience and Remote SensingLetters,2011,8(4):829-833.
    [72] Kirkland D. Imaging moving targets using the second-order keystone transform[J].IET Radar Sonar Navig,2011,5(8):902-910.
    [73]周峰,李真芳,保铮.基于两视处理的单通道SAR地面运动目标检测和定位方法[J].西安电子科技大学学报,2006,33(5):673-677.
    [74] Ouchi K. On the Multilook images of moving targets by synthetic apertureradar[J]. IEEE Transactions on Antennas and Propagation,1985,33(8):823-827.
    [75] Dias J M B and Marques P A C. Multiple moving target detection and trajectoryestimation using a single SAR sensor[J]. IEEE Transactions on Aerospace andElectronic Systems,2003,39(2):604-624.
    [76] Marques P A C and Dias J M B. Velocity estimation of fast moving targets using asingle SAR sensor[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):75-89.
    [77] Li G, Xia X G, Xu J, et al.. A velocity estimation algorithm of moving targetsusing single antenna SAR[J]. IEEE Transactions on Aerospace and ElectronicSystems,2009,45(3):1052-1062.
    [78] Marques P A C and Dias J M B, M J. Moving targets processing in SAR spatialdomain[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):864-874.
    [79] Liu Baochang, Wang Tong, Bao Zheng. Slant-range velocity estimation based onsmall-FM-rate chirp[J]. Signal Processing,2008,88(10):2472-2482.
    [80] Zhu S, Liao G, Liu H, et al.. New Approach for SAR Doppler ambiguityresolution in compressed range time and scaled azimuth time domain[J]. IEEETransactions on Aerospace and Electronic Systems,2011,47(4):3026-3039.
    [81] Wong F., Cumming I G. A combined SAR Doppler centroid estimation schemebased upon signal phase[J]. IEEE Transactions on Geoscience and RemoteSensing,1996,34(4):696-707.
    [82] Zhu S, Liao G, Qu Y, et al.. A new slant-range velocity ambiguity resolvingapproach of fast moving targets for SAR system[J]. IEEE Transactions onGeoscience and Remote Sensing,2010,48(1):432-451.
    [83] Wang G, Xia X, Chen V C. Dual-speed SAR imaging of moving targets[J]. IEEETransactions on Aerospace and Electronic Systems,2006,42(1):368-379.
    [84] Lightstone L, Faubert D, Rempel G. Multiple phase centre DPCA for airborneradar[C]. IEEE Radar Conference,1991:36-40.
    [85] Nohara T J. Comparison of DPCA and STAP for space-based radar[C]. RadarConference,1995:113-119.
    [86] Richardson P G. Relationships between DPCA and adaptive space-time processingtechniques for clutter suppression[C]. IEEE International Radar Conference, Paris1994:295-300.
    [87] Chen J, WangY, Huang F, et al.. Research on multiple phase center multiple delaytaps DPCA for airborne radar[C]. International Conference on ComputationalElectromagnetics and Its Applications, Beijing, China,1999: l-4.
    [88]龚耀寰.机载雷达相位中心偏移天线系统的性能[J].电子学报,1995,23(9):24-27.
    [89]郑明洁.合成孔径雷达动目标检测和成像研究[D].中国科学院,2003.
    [90]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432.
    [91] Gierull C H and Sikaneta I C. Raw data based two-aperture SAR ground movingtarget indication[C]. Proceedings of IGARSS, Toulouse, France,2003.
    [92]张绪锦,张长耀,朱兆达,邓海涛.基于CSI处理的三通道机载SAR地面动目标检测[J].电子学报.2008,36(4):769-773.
    [93] Shen Chiu. Application of fractional Fourier transform to moving target indicationvia along-track interferometry[J]. EURASIP Journal on Applied Signal Processing,2005(20):3293-3303.
    [94] Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surfacecurrents[J]. Nature,1987,328:707-709.
    [95] Chapin E, and Chen C W. Airborne along-track interferometry for GMTI[J]. IEEETransactions on Aerospace and Electronic Systems,2009,24(5):13-18.
    [96] Stephen J, Frasier. Dual-beam interferometry for ocean surface current vectormapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):401-414.
    [97] Toporkov J V, Perkovic D, Farquharson G, et al.. Sea surface velocity vectorretrieval using dual-beam interferometry: first demonstration[J]. IEEETransactions on Geoscience and Remote Sensing,2005,43(11):2494-2502.
    [98] Gierull C H. Statistical analysis of multilook SAR interferograms for CFARdetection of ground moving targets[J]. IEEE Transactions on Geoscience andRemote Sensing,2004,42(4):691-701.
    [99] Gierull C H. Estimating the effective number of looks in interferometric SARdata[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1733-1742.
    [100] Gierull C H, Sikaneta I, and Cerutti-Maori D. Two-step detector forRADARSAT-2’s experiment GMTI mode[J]. IEEE Transactions on Geoscienceand Remote Sensing,2013,51(1):436-454.
    [101]郑明洁,杨汝良.基于DPCA和干涉技术的SAR动目标检测[J].电子与信息学报,2003,25(11):1525-1530.
    [102] Klemm R. Principles of Space-Time Adaptive Processing[M]. IEE, London, UK,2002.
    [103] Guerci J R. Space-Time Adaptive Processing for Radar[M]. Boston, London:Artech House,2003.
    [104]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版杜,2000.
    [105] Ward J. Space-time adaptive processing for airborne radar systems[R]. LincolnLab, Mass, Inst Technol, Lexington, MA,1994.
    [106] Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic SystemsMagazine,2004,19(1):19-35.
    [107] Berin M O, Haimovich A M. Signal cancellation effects in adaptive radarMountaintop data-set[C]. ICASSP,1996:2614-2617.
    [108] Bertacca M. Long memory models for the analysis and simulation ofmulti-channelairbome radar measurement (MCARM) data[C]. Radar Conference,2008:1-6.
    [109] Ender J H G. The airborne experimental multi-channel SAR system AER-II[C].Proceedings of EUSAR Conference, K nigswinter, Germany,1996,49-52.
    [110] Ender J H G. Space-Time processing for multichannel synthetic aperture radar[J].Electronics&Communication Engineering Journal,1999,11(1):29-38.
    [111] Cerutti-Maori D and Sikaneta I. Optimum GMTI processing for space-basedSAR/GMTI systems-Theoretical derivation[C]. EUSAR2010, Aachen,2010.
    [112] Cerutti-Maori D and Sikaneta I. Optimum GMTI processing for space-basedSAR/GMTI systems-Simulation results[C]. EUSAR2010, Aachen,2010.
    [113] Cerutti-Maori D, Gierull C H, and Ender J H G. Optimum SAR/GMTI processingand its application to the radar satellite RADARSAT-2for traffic monitoring[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3868-3881.
    [114] Li J and Stoica P. Robust Adaptive Beamforming[M]. Wiley, New York,2005.
    [115] Yang Z, Liao G, and Zeng C. Reduced-dimensional processing for ground movingtarget detection in distributed space-based radar[J]. IEEE Geoscience and RemoteSensing Letters,2007,4(2):256-259.
    [116] Suo Z, Li Z and Bao Z. Multi-channel SAR-GMTI method robust tocoregistration error of SAR images[J]. IEEE Transactions on Aerospace andElectronic Systems,2010,46(4):2035-2043.
    [117] Drago evi M V. GLRT for two moving target models in multi-aperture SARimagery[C].2012IET Radar Conference, Glasgow, UK,2012:1-4.
    [118]刘颖,廖桂生,周争光.对图像配准误差稳健的分布式星载SAR地面运动目标检测及高精度的测速定位方法[J].电子学报,2007,35(6):1009-1014.
    [119]杨志伟,廖桂生,曾操.基于联合特征空间投影的SAR图像域杂波抑制[J].电子学报,2007,35(12):2298-2031.
    [120]曾操.多通道地面动目标检测雷达稳健阵列处理方法研究[D].西安电子科技大学,2008.
    [121]朱圣棋.高速运动平台雷达GMTI关键技术研究[D].西安电子科技大学,2010.
    [122] Drago evi M V and Chiu S. Space-based motion estimators—Evaluation withthe first RADARSAT-2MODEX data[J]. IEEE Geoscience and Remote SensingLetters,2009,6(3):438-442.
    [123] Drago evi M V, Burwash W and Chiu S. Detection and estimation withRADARSAT-2moving-object detection experiment modes[J]. IEEE Transactionson Geoscience and Remote Sensing,2012,50(9):3527-3543.
    [124] Cerutti-Maori D and Sikaneta I. A generalization of DPCA processing formultichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience andRemote Sensing,2013,51(1):560-572.
    [125] Friedlander B and Porat B. VSAR: A high resolution radar system for detection ofmoving targets[J]. IEE Proceedings-Radar, Sonar Navig.,1997,144(4):205-218.
    [126] Sikaneta I, Chouinard J. Eigendecomposition of the multi-channel covariancematrix with applications to SAR-GMTI[J]. Signal Processing,2004,84(9):1501-1535.
    [127]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安电子科技大学,2006.
    [128]刘颖.分布式SAR运动目标检测雷达阵列误差估计方法研究[D].西安电子科技大学,2007.
    [129]杨凤凤.星载雷达GMTI系统与信号处理研究[D].国防科学技术大学,2007.
    [130]索志勇.垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究[D].西安电子科技大学,2008.
    [131]蔚婧.合成孔径雷达地面运动目标检测若干关键技术研究[D].西安电子科技大学,2009.
    [132]蔡斌.分布式星载InSAR与SAR-GMTI信号处理研究[D].国防科学技术大学,2009.
    [133]文珺.混合基线构型阵列的地面运动目标检测与定位方法研究[D].西安电子科技大学,2011.
    [134] Gabele M, Brutigam B, Schulze D, et al.. Fore and aft channel reconstruction inthe TerraSAR-X dual receive antenna mode[J]. IEEE Transactions on Geoscienceand Remote Sensing,2010,48(2):795-806.
    [135] Cerutti-Maori D, Gierull C H, and Ender J H G. Experimental verification ofSAR-GMTI improvement through antenna switching[J]. IEEE Transactions onGeoscience and Remote Sensing,2010,48(4):2066-2075.
    [136] Hill G W. Researches in the lunar theory[J]. American Journal of Mathematics,1978,1(1):5-26.
    [137]林来兴.小卫星编队飞行及其轨道构成[J].中国空间科学技术,2001,2(1):23-28.
    [138]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.250-267.
    [139]郝继刚,张育林. SAR干涉测高分布式小卫星编队构形优化设计[J].宇航学报,2006,27(4):654-658.
    [140] Li Z, Bao Z, Wang H, et al.. Performance improvement for constellation SARusing signal processing techiques[J]. IEEE Transactions on Aerospace andElectronic Systems,2006,42(2):436-452.
    [141] Massonet D. Capabilities and limitations of the interferometric cartwheel[J]. IEEETransactions on Geoscience and Remote Sensing,2001,39(3):506-520.
    [142] Fiedler H, Krieger G, Jochim F, Kirschner M, Moreira A. Analysis of bistaticconfigurations for spaceborne SAR interferometry[C]. EUSAR, Cologne,Germany,2002:29-33.
    [143]孟祥东,王彤,保铮.干涉合成孔径雷达的垂直基线对图像相干性的影响[J].电子学报,2008,36(6):1222-1226.
    [144]蔚婧,廖桂生,杨志伟. InSAR构形下的分布式卫星GMTI性能分析[J].宇航学报,2009,30(5):2037-2042.
    [145]王彤,保铮,廖桂生.分布式小卫星干涉高程测量[J].系统工程与电子技术,2004,26(7):859-862.
    [146]束宇翔,廖桂生,杨志伟.分布式卫星SAR系统时变基线补偿方法[J].系统工程与电子技术,2011,33(9):1978-1982.
    [147] Romeiser R, Runge H, Suchandt S, Sprenger J, Weilbeer H, Sohrmann A, andStammer D. Current measurement in rivers by spaceborne along-track InSAR[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):4019-4031.
    [148] López-Dekker P, Prats P, Zan F De, et al.. TanDEM-X first DEM acquisition: acrossing orbit experiment[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(5):943-947.
    [149] Moreira A, Krieger G, Hajnsek I, et al.. TanDEM-X: a TerraSAR-X add-onsatellite for single-pass SAR interferometry[C]. IGARSS,2004:1000-1003.
    [150] Krieger G, Moreira A, Fiedler H, et al.. TanDEM-X: a satellite formation forhigh-resolution SAR interferometry[J]. IEEE Transactions on Geoscience andRemote Sensing,2007,45(11):3317-3341.
    [151] Reigher A, Prats P, Mallorqui J J. Refined estimation of time-varying baselineerrors in airborne SAR interferometry[J]. IEEE Geoscience Remote SensingLetters,2006,3(1):145-149.
    [152] Gong M, Zhang C W, Zhang X L, et al.. Analysis of the virtual baseline of clusterSAR satellites[C]. Proceedings of the Intermtional Geoscience and RemoteSensing Symposium (IGARSS04), Anchorage, Alaska, USA: IEEE,2004:500-502.
    [153]余慧,闫鸿慧,王岩飞.分布式卫星ATI-SAR性能分析与基线估计[J].电子与信息学报,2009,31(6):1301-1304.
    [154]张贤达.矩阵分析与应用[M].清华:清华大学出版社,2004.
    [155]刘娣,薄煜明,邹卫军.基于时间序列的GPS误差建模及单点定位精度研究[J].兵工学报,2009,30(6):825-828.
    [156] Freeman A, Johnson W T K, Huneycutt B, et al.. The―myth‖of the minimumSAR antenna area constraint[J]. IEEE Transactions on Geoscience and RemoteSensing,2000,38(1):320-324.
    [157] Kreiger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstructionfrom nonuniform displaced phase center sampling[J]. IEEE Geoscience andRemote Sensing Letters,2004,1(4):260-264.
    [158] Gebert N and Krieger G. Azimuth phase center adaptation on transmit forhigh-resolution wide-swath SAR imaging[J]. IEEE Geoscience and RemoteSensing Letters,2009,6(4):782-786.
    [159] Gebert N, Kreiger G, and Moreira A. Digital beamforming on receive: Techniquesand optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEETransactions on Aerospace and Electronic Systems,2009,45(2):564-592.
    [160] Li Z, Wang H, Su T, et al.. Generation of wide-swath and high-resolution SARimages from multichannel small spaceborne SAR systems[J]. IEEE Geoscienceand Remote Sensing Letters,2005,2(1):82-86.
    [161] Gabele M and Younis M. Comparison of tchniques for fture saceborne GMTI[C].Proc. EUSAR, Aachen, Germany,2010:386-389.
    [162] Yuxiang Shu, Guisheng Liao, and Zhiwei Yang. Design considerations of PRF foroptimizing GMTI performance in azimuth multichannel SAR systems withHRWS imaging capability[J]. IEEE Transactions on Geoscience and RemoteSensing,2014,52(4):2048-2063.
    [163] Xu J, Zuo Y, Xia B, et al.. Ground moving target signal analysis in complex imagedomain for multichannel SAR[J]. IEEE Transactions on Geoscience and RemoteSensing,2012,50(2):538-552.
    [164] Wu J X, Wang T and Bao Z. Fast implementation of optimal target radial velocityestimation for multi-channel SAR-GMTI[J]. Electronics Letters,2009,45(19):1000-1002.
    [165] Guo B, Vu D, Xu L, et al.. Ground moving target indication via multichannelairborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3753-3764.
    [166] Gierull C H. Statistical analysis of the eigenvector projection method for adaptivespatial filtering of interference[J]. IEE Proceedings-Radar, Sonar, Navigation,1997,144(2):57-63.
    [167] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. IEEEProceedings,1969,57(8):1408-1418.
    [168] Ruegg M, Meier E, and Nuesch D. Capabilities of dual-frequency millimeterwave SAR with monopulse processing for ground moving target indication[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(3):539-553.
    [169] Kautz G. Phase-only shaped beam synthesis via technique of approximated beamaddition[J]. IEEE Transactions on Antennas Propagation,1999,47(5):887-894.
    [170] Khzmalyan A D and Kondratiev A S. The phase-only shaping and adaptive nullingof an amplitude pattern[J]. IEEE Transactions on Antennas Propagation,2003,51(2):264-272.
    [171] Melvin W L. Space-time adaptive radar performance in heterogeneous clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):621-633.
    [172] Richmond C D. Statistical performance analysis of the adaptive sidelobe blankerdetection algorithm[C]. Proc.31th Asilomar Conf. on Signals, System, Computer,Pacific Grove, CA,1997:872-876.
    [173] Rabideau D J, Steinhardt A O. Improving the performance of adaptive arrays innon-stationary environments through data-adaptive training[C]. Proc.30thAsilomar Conf. on Signals, System, Computer, Pacific Grove, CA,1996:75-79.
    [174] Rabideau D J, Steinhardt A O. Improved adaptive clutter cancellation throughdata-adaptive training[J]. IEEE Transactions on Aerospace and ElectronicSystems,1999,35(3):879-891.
    [175] Stephen M Kogon. Adaptive weight training for post-Doppler STAP algorithms innon-homogeneous clutter[J]. IEE Proceedings-Radar, Sonar, Navigation andAvionics,1996,14(11):333-335.
    [176] Melvin W L, Wicks M C, Brown R D. Assessment of multichannel airbome radarmeasurements for analysis and design of space-time processing architectures andalgorithms[C]. IEEE International Radar Conference, Ano Arbor, Michigan, May1996:130-135.
    [177] Melvin W L, Wicks M C. Improving practical space-time adaptive radar[C]. IEEEInternational Radar Conference, Syracuse, New York,1997:48-53.
    [178]束宇翔,廖桂生,杨志伟.交替收发模式下SAR-GMTI沿航迹基线形式及其影响分析[J].电子与信息学报,2012,34(9):2135-2142.
    [179] Currie A and Brown M A. Wide-swath SAR [J]. IEE Proceedings-F,1992,139(2):122-135.
    [180] Goodman N, Rajakrishna D, and Stiles J. Wide swath, high resolution SAR usingmultiple receive aperture[C]. Proceedings of the IEEE International Geoscienceand Remote Sensing Symposium, Hamburg, Germany,1999:1767-1769.
    [181] Kim J, Younis M, Prats-Iraola P, et al.. Azimuth reconstruction demenstrationusing TerraSAR-X dual receive antenna mode[C]. Proc. IGARSS,2012,1537-1540.
    [182] Kim J, Younis M, Prats-Iraola P, et al.. First spaceborne demonstration of digitalbeamforming for azimuth ambiguity suppression [J]. IEEE Transactions onGeoscience and Remote Sensing,2013,51(1):579-590.
    [183] Budillon A, Evangelista A, and Schirinzi G. GLRT detection of moving targets viamultibaseline along-track interferometric SAR systems[J]. IEEE Geoscience andRemote Sensing Letters,2012,9(3):348-352.
    [184]李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术[J].中国科学(E辑),2005,35(6):597-609.
    [185] Robey F C, Fuhrmann D R, Kelly E J, et al.. A CFAR adaptive matched filterdetector[J]. IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):208-216.
    [186] Wax M and Ziskind I. Maximum likelihood localization of multiple sources byalternating projection[J]. IEEE Transactions on Acoustics and Speech and SignalProcessing,1988,36(10):1553-1560.
    [187] Zitova B and Flusser J. Image registration methods: A survey[J]. Image andVision Computing,2003,21(11):977-1000.
    [188] Bentoutou Y, Taleb N, Kpalma K, and Ronsin J. An automatic image registrationfor application in remote sensing[J]. IEEE Transactions on Geoscience andRemote Sensing,2005,43(9):2127-2137.
    [189] Gierull C H. Digital channel balancing of along-track interferometric SARdata[R]. DRDC, Ottawa, ON, Canada, TM2003-024, Mar.2003.
    [190] Soumekh M. Signal subspace fusing of uncalibrated sensors with application inSAR and diagnostic medicine[J]. IEEE Transactions on Image Processing,1999,8(1):127-137.
    [191] Mao Z and Liao G. Optimum data vector approach to multibaseline SARinterferometry phase unwrapping[J]. IEEE Geoscience and Remote SensingLetters,2009,6(1):42-46.
    [192] Liao G and Li H. Estimation method for InSAR interferometric phase based ongeneralized correlation steering vector IEEE Transactions on Aerospace andElectronic Systems[J].2010,46(3):1389-1403.
    [193] Li Z, Bao Z, Li H, et al.. Image auto-coregistration and InSAR interferogramestimation using joint subspace projection[J]. IEEE Transactions on Geoscienceand Remote Sensing,2006,44(2):288-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700