用户名: 密码: 验证码:
潜艇应急上浮操纵运动分析与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜艇是现代海军最重要的威慑力量之一,各国海军争相发展。近年来,世界潜艇频繁出事,其安全问题日益突出,研究潜艇应急情况下的操纵运动规律及控制方法是解决潜艇安全问题的基础性研究工作之一,本文率先对这一课题进行了理论研究与探索。
     首先,对潜艇压载水舱高压气吹除系统物理模型进行了合理简化,通过分析高压气吹除主压载水舱的动态过程,根据流体力学、空气动力学和热力学等的基本定理定律,首次建立了潜艇主压载水舱高压气吹除系统供气吹除、停止供气和解除气压(或部分气压)操作过程的完整数学模型;另外,利用动力系统建模与仿真软件MSC.EASY5建立了压载水舱高压气吹除过程模型。两者的仿真结果与实艇操纵情况基本吻合。建立了潜艇舱室破损进水时的附加力计算数学模型,与潜艇大攻角运动时的六自由度运动模型、主压载水舱高压气吹除系统模型一起构成了潜艇应急上浮时的完整数学模型,为研究潜艇应急吹除时的运动规律和操纵控制方法提供了条件。
     本文首次将非线性系统运动稳定性与分叉理论及其数值分析方法用于潜艇应急上浮运动的稳态响应及稳定性分析,并通过潜艇大攻角六自由度运动方程数值积分的动态仿真对分析结果进行了验证,两者是一致的。通过深入研究航速、升降舵、方向舵和剩余浮力及其作用位置对潜艇应急上浮运动稳定性的影响,表明潜艇应急上浮运动即使在左右舷对称的情况下,并不总是限于垂直面内,可能出现横滚运动,在某种临界条件下,运动可能失稳,出现分叉现象,对这种现象的机理用奇异性与分叉理论进行了分析,为潜艇应急上浮的操纵与控制方法提供了理论依据。
     在潜艇六自由度非线性运动基本方程的基础上,结合舱室破损进水模型和主压载水舱高压气吹除系统模型,对潜艇舱室破损进水时应急上浮的影响因素和操纵与控制方法进行了大量深入的仿真研究,获得了控制潜艇安全应急上浮的操纵方法,对实际操艇有一定的指导意义,为潜艇应急上浮自动控制系统的设计提供了依据。
     本文设计了一种新型的滑模模糊控制器,首次成功应用于潜艇应急上浮的自动控制。为了克服舵、主压载水舱的注排水装置及高压气吹除系统等执行机构响应滞后的影响,开发了潜艇应急上浮的灰色预测控制系统。仿真结果表明系统鲁棒性强,控制效果良好。
The submarine is a kind of the most important military forces. Every country's navy makes an effort to develop the submarine. In the recent years, the submarine accidents happened frequently in the world. The safety of a submarine is a more interesting problem. The study on motion laws and control methods of a submarine under casualty condition is a fundamental work to solve the safety problem of a submarine. The purpose of this dissertation is to make the theoretical research and investigation on the safety of a submarine under casualty condition.
     At first, the physical model of the pneumatic blowing system of the submarine's ballast tanks is simplified with reason, and then through analyzing the dynamic process of the pneumatic blowing system of the ballast tanks, the mathematical models for flooding of damaged compartments and corresponding emergency blowing of the submarine are derived by means of aerodynamics, hydrodynamics and thermodynamics laws. The software MSC. EASY5 is used to simulate this system comparing with the former mathematical model simulation. The both simulation results are in agreement with practice in the submarine. The full mathematical model was developed for the submarine's emergency ascent. It provided a foundation to investigate on motion laws and control methods of a submarine blowing water ballast.
     In this dissertation the motion stability and bifurcation theory and its numerical methods of a nonlinear system were applied to stable state response and motion stability analysis of a submarine during emergency ascent. The stability analysis results were verified by simulations using direct numerical integrations of the fully nonlinear, coupled six degrees-of-freedom equations of motion for the submarine. The control surface deflections, excess buoyancy and speed effects on the stability of the submarine during emergency ascent show that emergency rising motion is not always restricted in the vertical plane even under port/starboard symmetric conditions. Complicated out-of-plane motions may be generated, and the submarine may lose the stability under some critical conditions. The singularity and bifurcation theory was used to explain the mechanism for these phenomena. These laws provide a theoretical basis for maneuvering and controlling submarine during emergency ascent.
     The motion state after taking the emergency measures of the damaged submarine is simulated. The significant results were obtained. These results will be of great help to practical maneuver and control of the submarine under flooding emergency condition and design of the automatic control system.
     Finally, a sliding mode fuzzy controller was developed for the submarine during emergency ascent. A new sliding mode fuzzy grey predictive controller was also proposed in order to compensate the delay of the actuators such as rudder, drainage and the pneumatic blowing system, etc. The simulation results show that the control approach not only remains robustness of sliding mode control, but also avoids the effects of chattering phenomenon, and possess better performance of the system.
引文
[1] 严乃长.大攻角运动方程和动力抗沉研究[A].国内外潜艇操纵性研究评述,1992:40-67.
    [2] 陈厚泰.潜艇操纵性[M].北京:国防工业出版社,1981.
    [3] 施生达.潜艇操纵性[M].北京:国防工业出版社,1995.
    [4] 孙元泉,马运义等.潜艇和深潜器的现代操纵理论与应用[M].国防工业出版社,2001.
    [5] Gertler M., Hagen R. Standard equations of motion for submarine simulation[R]. SNAME, 1967, AD-653861.
    [6] 中国人民解放军总装备部.潜艇操纵性预报指南[S].国军标GJB/Z 110-98.
    [7] J. Feldman. DTNSRDC Revised Standard Submarine Equation Of Motion[R]. DTNSRDC Report SPD—0393—09, 1979.
    [8] 付廷辉,万廷镫.潜艇空间运动研究进展[A].国内外潜艇操纵性研究评述,1992:13-31.
    [9] Barr RA. A review and comparison of ship maneuvering methods[J]. SNAME Transaction, 1993.
    [10] H. J. Bohlmann, Ingennieurkontor Lubech. An Analytical Method for the Prediction of Submarine Maneuverability[A]. Warship'91 International Symposium on Naval Submarines. 1991.
    [11] Lloyd, A. Progress towards a Rational Method of Predicting Submarine Maneuvers[A]. The Proceedings of the RINA International Symposium, 1983.
    [12] 吴秀恒,刘祖源,施生达,等.船舶操纵性[M].北京:国防工业出版社,2005.
    [13] 邓志纯,陈材侃.潜艇应急上浮稳性研究[J].中国造船,2004,45(1):20-24.
    [14] 潘子英,吴宝山,沈泓萃.CFD在潜艇操纵性水动力工程预报中的应用研究[J].船舶力学,2004,8(5):42-51.
    [15] 徐世昌,齐力杰,王光辉.潜艇大攻角非稳定运动时的水动力计算方法[J].青岛大学学报,2003,17(1):44-47.
    [16] 冯学知,蒋强强,缪泉明,等.潜体波浪中近水面不同潜深和航向时运动和波浪力计算[J].船舶力学,2002,6(2):1-14.
    [17] 丁勇.潜艇近波面非线性波浪力研究[D].[博士论文],哈尔滨:哈尔滨工程大学,1998.
    [18] Michael J. Griffin. Numerical prediction of the maneuvering characteristics of submarines operating near the free surface[D]. Ph. D. thesis, MIT, 2002.
    [19] R. Pankajakshan, M. G Remotigue, et al. Validation of control-surface induced submarine maneuvering simulation using UNCLE[A]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, July 2002: 624-639.
    [20] Wilmott P. On the Motion of a Slender Body Submerged Beneath Surface Waves[J]. Journal of Ship Research, 1988, 32(3): 208-219.
    [21] Wu Baoshan. Endplates of Stern Planes in Submarine Maneuverability Design[J]. Journal of Ship Mechanics, 1999, 3(6): 12-17.
    [22] Lee C M, Newman J N. First and Second Order Wave Effects on a Submerged Spheroid[J]. Journal of Ship Research, 1991, 35(3): 183-190.
    [23] Musker A J. Prediction of Wave Forces and Moments on a Near Surface Submarine[J]. ISP, 1984, 31: 2-12.
    [24] S. Y. Ni, L. Zhang and Y. S. Dai. Hydrodynamic Forces on a moving Submerged Body in Waves[J]. ISP, 1994, 41(426): 95-111.
    [25] 贾欣乐,杨盐生.船舶运动数学模型[M].大连:大连海事大学出版社,1999.
    [26] Ahmad S M, Sutton R. Linear, Nonlinear Modeling and AUV retrieval[R]. Plymouth: The University of Plymouth, 2000.
    [27] David A. Smallwood, Louis L. Whitcomb. Adaptive Identification of Dynamically Positioned Underwater Robotic Vehicles[J]. IEEE transactions on control systems technology, 2003, 11(4): 505-515.
    [28] George D. Watt. Estimating the Hydrodynamic Characteristics of the Dorado Remote Minehunting Vehicle[R]. Defence Research and Development Canada, DRDC Atlantic TM 2002-177, October 2002.
    [29] Peter J. Coxon. System identification of submarine hydrodynamic coefficients from simple full scale trials[D]. Master thesis, MIT, 1989.
    [30] Joonyoung Kim, Kihun Kim, et al. Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers[J]. IEEE Journal of Oceanic Engineering, 2002, 27(4): 830-840.
    [31] S. Negahadpour, X. Xu and L. Jin. Direct Estimation of Motion from Sea Floor Images for Automatic Station-Keeping of Submersible Platforms[J]. IEEE Journal of Oceanic Engineering, 1999, 24(3): 370-382.
    [32] M. M. A. Pourzanjani, H. K. Zienkiewicz and J. O. Flower. A Hybrid of Estimating Hydrodynamically-Generated Forces for Use in Ship-Maneuvering Simulation[J]. ISP, 1987, 34: 207-216.
    [33] Giovanni Indiveri. Modeling and Identification of Under water Robotic Systems[D]. Ph. D. Thesis, University of Genova, Genova, Italy, December 1998.
    [34] X. Xu, H. Vanderveldt, V. Whited. ANS based submarine simulation[R], 1994, AD-A286544.
    [35] D. E. Leader. Kalman Filter Estimation of Underwater Vehicle Position and Attitude Using a Doppler Velocity Aided Inertial Motion Unit[D]. MIT, 1994.
    [36] Terence Betlehem. Autonomous Submersible Robot: State Estimation System[D]. Master's thesis, Australian National University, Nov. 1999.
    [37] W. failer, D. Hess, et al. Applications of recursive neural network technologies to hydrodynamics[A]. 22th Symposium on Naval Hydrodynamics, 2000: 708-723.
    [38] D. Hess, W. failer. Using recursive neural network for blind prediction of submarine maneuvers[A]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, July 2002.
    [39] K. P. Watson, J. S. Webster, et al. Prediction of submersible maneuvering performance at high incidence angles[A]. Ocean'93, 1993: Ⅱ289-Ⅱ294.
    [40] 邢继峰,林俊兴,戴余良.潜艇操纵[M].武汉:海军工程大学,2003.
    [41] 王鹚,王文武,孙枫,王国夫.潜艇应急操纵的建模与仿真[J].计算机仿真,2003,20 (6):1-3.
    [42] 袁赣南,赵琳,刘鹰.潜艇损管应急操纵的运动仿真[J].船舶工程,1998 (4):22-24.
    [43] 王晓东,等.潜艇潜浮系统仿真研究初探[J].舰船科学技术,2004,26 (1):14-19.
    [44] 陶醉,张纬康.船舶骑浪运动的分叉研究[J].船舶力学,2004,8 (2):29-33.
    [45] 袁远,余音,金咸定.船舶在随机横浪中的奇异倾覆机理[J].船舶力学,2004,8(1):44-50.
    [46] J. L. Crepel. The Safety of Submarines Related to Hydroplane Jams and Floodings and the Philosophy of Operating Envelopes[A]. Warship'93 International Symposium on Naval Submarines. 1993: 1-16.
    [47] X. Itard; Resist-sinking methods for the damaged submarine[A]. International Symposium on Naval Submarines 6, 1999: 322-335.
    [48] Fotis A. Papoulias, Jeffery S. Riedel. Solution Branching and Dive Plane Reversal of Submarines at Low Speeds[J]. Journal of Ship Research, 1994, 38(3): 203-212.
    [49] Fotis A. Papoulias, Characterization of steady state solutions of submarines under casualty conditions[A]. The 1993 ASME winter annual meeting, Nonlinear dynamics of marine vehicles, 1993: 1-20.
    [50] Fotis A. Papoulias, Ibrahim Aydin. Out of plane solutions and bifurcations of submersibles in free positive buoyant ascent[J]. Journal of ship research, 1994, 38(4): 259-271.
    [51] Ibrahim Aydin. Out of plane solutions of submarines in free positive buoyant ascent[R]. 1993, AD-A271544.
    [52] Fotis A. Papoulias, et al. Nonlinear studies of dynamic stability of submarines in the dive plane[J]. Journal of Ship Research, 1995, 39(4): 347-356.
    [53] Fotis A. Papoulias, Brian D. Mckinley. Inverted Pendulum Stabilization of Submarines in Free Positive Buoyancy Ascent[J]. Journal of ship research, 1994, 38(1): 71-82.
    [54] J. S. Riedel. Pitchfork bifurcations and dive plane reversal of submarines at low speeds[R]. US: Naval Postgraduate School, 1993, AD-A272668.
    [55] Stanley Cunningham. Parametric studies of the dynamic stability of submersibles[R]. 1994, AD-A281845.
    [56] Craig A. Bateman. Hopf bifurcation analysis for depth control of submersible vehicles[R]. 1993, AD-A276213.
    [57] D. Farcy; Maneuvering Characteristics of Submarines[A]. International Symposium on Naval Submarines 6, 1999.
    [58] Selcuk Ornek. Trim effects on motion stability submersible vehicles[R]. 1994, AD-A283606.
    [59] Fotis A. Papoulias. On the nonlinear dynamics of pursuit guidance for marine vehicles[J]. Journal of ship research, 1993, 37(4): 342-353.
    [60] Fotis A. Papoulias. Dynamics and bifurcations of pursuit guidance for vehicle path keeping in the dive plane[J]. Journal of ship research, 1993, 37(2): 148-165.
    [61] Fotis A. Papoulias. Stability and bifurcations of towed underwater vehicles in the dive plane[J]. Journal of ship research, 1992, 36(3): 255-267.
    [62] 汤丽平.突变控制机制及其应用研究[D].[博士论文],哈尔滨:哈尔滨工程大学,2003.
    [63] 陈训铨.潜艇空间机动与操纵自动化[A].国内外潜艇操纵性研究评述,1992:68~77.
    [64] Richard A. Abate et al. Optimum Submarine Depth Control Systems[R]. AD-357454.
    [65] Logan George Milliken. Multivariable Control of an Underwater Vehicle[R]. 1984, AD-A144774.
    [66] Kurt James Harris. Automatic Control of a Submarine[R]. 1984, AD-A144790.
    [67] James Allen Mette Jr. Muitivariable Control of a Submarine Using the LQG/LTR Method[R]. Purdue University, 1985, AD-A159020.
    [68] Richard James Martin. Multivariable control system design for a submarine using active roll control[R]. 1985, AD-A159040.
    [69] Richard J. Martine, Lena Valavani, Michael Athans. Multivariable Control of a Submersible Using the LQG/LTR Design Methodology[A]. Proceedings American Control Conference. Seattle, WA, June 1986.
    [70] Michael S. Triantafyllou, Franz S. Hover. Maneuvering and Control of Marine Vehicles[M]. MIT, 2002.
    [71] 赵国良,季鲁慧,丛望.潜艇空间运动的滑动控制[J].控制理论与应用,1994,11 (3):305-355.
    [72] 牟军.变结构控制下的潜艇操纵运动研究[D].[博士论文],武汉:华中理工大学,1997.
    [73] 罗凯,李俊,许汉珍.潜艇运动的非线性滑动控制[J].船舶工程,1999 (3):12-14.
    [74] John V. Tolliver. Studies on Submarine Control for Periscope Depth Operations[D]. Master thesis, NPS, 1996, AD-A318492.
    [75] Feijun SONG, Edgar AN, Samuel M. SMITH. Design Robust Nonlinear Controllers for Autonomous Underwater Vehicle with comparison simulated and at-sea test data[J]. Journal of vibration and control, 2002, 8: 189-217.
    [76] F. A. Paoulias and S. R. Chism. Path Keeping of Autonomous Underwater Vehicles Using Sliding Mode Control[J]. Int. Shipbuild. Progr., 1992, 39(419): 215-246.
    [77] Roberto Cristi, Fotis A. Papoulias and Anthony J. Healey. Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane[J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 152-160.
    [78] Cedric L. Logan. Robust Controller Design and Evaluation for a Small Underwater Vehicle[D]. Master thesis, MIT, 1993.
    [79] Pan-Mook Lee, Seok-Won Hong, Yong-Kon Lim, and Chong-Moo Lee, et al. Discrete-time Quasi-Sliding Mode Control of an Autonomous Underwater Vehicle[J]. IEEE Journal of Oceanic Engineering, 1999, 24(3): 388-395.
    [80] Gianluca Antonelli, Stefano Chiaverini, Nilanjan Sarkar, and Michael West. Adaptive Control of an Autonomous Underwater Vehicle: Experimental Results[J]. IEEE Transactions on Control Systems Technology, September 2001, 9(5).
    [81] 高俊吉,黄昆仑,朱军.潜艇定深运动的自适应模糊控制研究[J].海军工程大学学报,2004,16 (2):83-88.
    [82] 王毓顺.潜艇近水面空间运动联合控制系统研究[D].[博士论文],哈尔滨:哈尔滨工程大学,2001.
    [83] Paul A. DeBitetto. Fuzzy Logic for Depth Control of Unmanned Undersea Vehicles[J]. IEEE Journal of Oceanic Engineering, 1995, 20(3): 242-248.
    [84] Junku Yuh. A Neural Net Controller for Underwater Robotic Vehicles[J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 161-166.
    [85] Chujen Lin, Roger XU, Chiman Kwan, et al. Submarine pitch and depth control using FCMAC neural networks[A]. Proceedings of the American control conference, Philadelphia, Pennsylvania, June 1998: 379-383.
    [86] MYUNG-HYUN KIM, DANIEL J. INMAN. Direct Adaptive Control of Underwater Vehicles using Neural Networks[J]. Journal of vibration and control, 2003, 9: 605-619.
    [87] P. J. Craven, R. Sutton, Y-M Dai. A Neurofuzzy Technique Applied to UUV Autopilot Design[A]. IFAC Maneuvering and Control of Marine Craft, Brijuni, Croatia, 1997.
    [88] D. Mills and C. J. Harris. Neurofuzzy modelling and control of a six degree of freedom AUV[J]. Research Journal Image, Speech and Intelligent Systems, 1995, 6.
    [89] Kazuo Ishii, Teruo Fujii and Tamaki Ura. An On-line Adaptation Method in a Neural Network Based Control System for AUVs[J]. IEEE Journal of Oceanic Engineering, 1995, 20(3): 221-228.
    [90] T. R. Catt, D. A. Cowling, W. B. Marshifield. Automatic Trim and Compensation Estimation Systems for Submarines[A]. Warship'93 International Symposium on Naval Submarines. 1993.
    [91] Patrick William Nee. A design of an automatic buoyancy compensator for a human powered submarine[D]. MIT, 1989.
    [92] 毛斌宏.潜艇空间运动模型及均衡控制技术的研究[D].[硕士论文],哈尔滨:哈尔滨工程大学,2001.
    [93] 王淑英.潜艇操纵控制系统自动化发展研究[M].海军装备和舰船新技术进展研究(上集),1999:307-312.
    [94] A. J. Healey and D. Lienard. Multivariable Sliding Mode Control For Autonomous Diving and Steering of Unmanned Underwater Vehicles[J]. IEEE Journal of Ocean Engineering, 1993, vol. 18, No. 3: 327-339
    [95] 李国兴,等.水下垂直发射导弹潜艇瞬时平衡定量吹除控制方法.舰船科学技术,1997(6):1-4
    [96] R K MEHRA, W C KESSEL AND J V CARROLL. Global stability and control analysis of aircraft at high angles of attack. Scientific system Inc. Cambridge, Massachusetts, ONR CR 215-248-1, 1977
    [97] H C Lee and E H Abed. Washout filters in the bifurcation control of high alpha flight dynamics[C], in Proceedings of the American Control Conference, Boston, MA, 1991: 206-211
    [98] 胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.6
    [99] 阮炯,顾凡及,蔡志杰.神经动力学模型方法和应用[M].北京:科学出版社,2002.4
    [100] 陆启韶.常微分方程的定性方法和分叉[M].北京:北京航空航天大学出版社,1989.9
    [101] 王则柯,高堂安.同伦方法引论[M].重庆:重庆出版社,1990
    [102] Jaewook Lee, Hsiao-Dong Chiang. A Singular Fixed-Point Homotopy Method to Locate the Closest Unstable Equilibrium Point for Transient Stability Region Estimate[J]. IEEE Transactions Circuits and Systems-Ⅱ: Express Briefs, 2004, Vol. 51, No. 4: 185-189
    [103] Richard L. Burden and J. Douglas Faires. Numerical Analysis (Seventh Edition)[M]. Thomson Learning, 2000
    [104] 陈永,李立,张剑,严静.一种基于同伦函数的迭代法—同伦迭代法[J].数值计算与计算机应用,2001,(2):149-155
    [105] 周洲,祝小平,张肇炽等.一种新的同伦解曲线跟踪算法[J].西北工业大学学报,1998,16(2):246-250
    [106] 黄象鼎,曾钟钢,马亚南.非线性数值分析[M].武汉:武汉大学出版社,2000.12
    [107] Feijun Song, Smith, S. M. A comparison of sliding mode fuzzy controller and fuzzy sliding mode controller[A]. Fuzzy Information Processing Society, 2000. NAFIPS. 19th International Conference of the North American, 13-15 July 2000: 480-484
    [108] H. X. Li, H. B. Garland, and A. W. Green. Fuzzy Variable Structure Control[J]. IEEE Transactions on Systems, Man, And Cybernetics—PART B: CYBERNETICS, 1997, 27(2): 306-312
    [109] J. S. Glower and J. Munighan. Designing Fuzzy Controllers from a Variable Structures Standpoint[J]. IEEE Transactions on Fuzzy Systems, 1997, 5(1): 138-144
    [110] Yean-Ren Hwang and M. Tomizuka. Fuzzy Smoothing Algorithm for Variable Structure Systems[J]. IEEE Transactions on Fuzzy Systems, 1994, 2(4): 277-284
    [111] H. Lee, H. Son, E. Kim and M. Park. Variable Structure Control of Nonlinear System Using Fuzzy Variable Boundary Layer[A]. IEEE International Conference on Fuzzy Systems, 1998: 348-353
    [112] K. C. Ng, Y. Li, D. J. Murray-Smith and K. C. Sharrnan. Genetic Algorithms Applied to Fuzzy Sliding Mode Controller Design[A]. 1~(th) International Conference on Genetic Algorithms in Engineering System: Innovations and Application, Sheffield, UK, 1995: 220-225
    [113] Feijun Song, Smith, S. M. Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model[A]. OCEANS 2000 MTS/IEEE Conference and Exhibition. 2000, 2: 835-840
    [114] Spyros G. Tzafestasy, Gerasimos G. Rigatos. Design and Stability Analysis of a New Sliding-Mode Fuzzy Logic Controller of Reduced Complexity[J]. Machine Intelligence & Robotic Control, 1999, 1(1): 27-41
    [115] 窦振中.模糊逻辑控制技术及其应用[M].北京:航空航天大学出版社,1995
    [116] 丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001
    [117] 李少远,王景成.智能控制[M].北京:机械工业出版社,2005
    [118] 高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990
    [119] 姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997
    [120] 刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005
    [121] Deng Julong. Control Problems of Grey Systems[J]. System & Control Letters, 1982, 1(5): 288-294
    [122] 邓聚龙.灰色控制系统(第二版)[M].武汉:华中理工大学出版社,1993
    [123] 肖新平等.灰色系统分析理论及其应用[M].大连:大连海事大学出版社,1997
    [124] Y. P. Huang, C. H. Huang. Real-valued Genetic Algorihms for Fuzzy Grey Prediction System[J]. Fuzzy Sets and Systems, 1997, 87: 265-276
    [125] Chingchang Wong, Chiachong Chen. Gain Scheduling of Grey Prediction Fuzzy Control Systems[J]. International Journal of Fuzzy Systems, 2000, 2(3): 198-204
    [126] 张曙红,陈绵云,宋业新.一种实用的灰色变结构速度控制器设计[J].华中科技大学学报,2001,29(9):28-30
    [127] 邹健,杨莹春,诸静.基于灰色模型的预测模糊控制策略及其应用研究[J].中国电机工程学报,2002,22(9):12-14
    [128] 李江,孙海顺,程时杰,张有兵.基于灰色系统理论的有源滤波器的预测控制[J].中国电机工程学报,2002,22(2):6-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700