用户名: 密码: 验证码:
高速半导体电吸收光调制器与MSM光探测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于信息时代对信息的需求呈爆炸式增长,特别是因特网对全社会信息需求的推动作用,信息网内信息传送量的增长速度远远超过了“摩尔定律”。在市场需求的推动下,光通信因为带宽大、可靠性高、成本低、抗干扰能力强等特点,向高速、大容量方向取得了飞速的发展。目前基于电的时分复用光传输商用系统已从45Mb/s增加到40Gb/s,并正在向超高速系统(>40Gb/s)发展。在时分复用光通信技术中,核心的研究内容是实现高速电信号对光载波调制的高速光调制器的研制以及系统接收机中高速光探测器的研究。作为当前国际上主流的研究对象,半导体电吸收光调制器具有体积小,功耗低,可与半导体激光器集成等优点,因此,为适合下一代数字光通信系统的需要,当数据传输速率高达40Gb/s以上时,多选用激光—电吸收调制器集成器件作为光发射机的核心。在另一方面,MSM光探测器因其制作容易、低暗电流、大带宽灵敏度积,以及易于与电路芯片集成等特点,已成为高速光通信接收器中的重要元件。
     本文主要在理论上研究、优化设计并测试了高速半导体电吸收光调制器。光调制器的-3dB带宽达到100GHz;调制器的微波反射参数S_(11)在0~60GHz频率范围内始终低于-12dB;当信号传输速度为50Gb/s、驱动电压的峰峰值V_(p-p)为3V时,电吸收光调制器的动态消光比达到了10.7dB。调制器优异的性能基于以下设计:针对调制器的高消光比和低驱动电压要求,优化设计了对1550nm波长光波段具有高电吸收系数的InGaAsP/InGaAsP多量子阱材料;针对调制器的高消光比和低插入损耗要求,优化设计了调制器光波导结构,实现了调制器光限制因子的提高以及器件与单模光纤之间光耦合效率的改善;提出并优化设计了光调制器分段式行波电极结构,同时实现了器件工作带宽的提高和器件与微波信号源阻抗匹配性能的改善。
     基于高速半导体电吸收光调制器,我们首次提出并完成了传输速度为80Gb/s的电时分复用光发射机的研究和实验;通过对理论和实验结果的分析,我们研究了温度对高速电吸收光调制器工作状态的影响,提出并实验验证了可通过优化驱动电压的方法来实现非冷却下高速光调制器在大温度范围内的正常工作。
     利用高速半导体电吸收调制器可以同时实现光电-电光转换的优点,我们将非对称法布里—珀罗型电吸收光调制器模块作为光收发器应用在全双工光纤无线系统中,提出并实验验证了上下行链路共用一个波长光载波的系统方案;通过对系统传递函数的非线性分析,模拟了系统的动态范围特性,并结合模拟结果在实验中通过优化运行参数对系统内副载波信号的互调失真进行了抑制。
     此外,本文也对Si基MSM光探测器的模拟设计方法进行了研究。基于半导体物理的基本微分方程,采用有限差分方法对Si基MSM光探测器进行了二维分析,模拟了器件中载流子的二维分布以及探测器的光电直流特性和瞬态响应特性;以对探测器瞬态响应分析得到的结论为基础,开展了针对探测器响应时间与响应率的二维结构分析,得到了优化的Si基MSM光探测器结构。
Since the introduction of the Internet, the average growth of data traffic has doubled every year over the past 30 years, and is expected to continue to do so also for the next decade. Due to its advantage of high bandwidth, reliability, low cost and little interference, optical fiber communication system constitute the backbone of the Internet and have experienced a tremendous growth in transmission capacity. In commercial optical fiber transmission system, the electronic time-division multiplexing (ETDM) channel data rates of 40Gb/s has been achieved and the next generation transmission system operating beyond 40Gb/s will be deployed soon.
    The high speed ETDM transmission system is based on data modulation using external optical modulators in transmitters and the deployment of high speed photodetectors in receivers. Electroabsorption modulators (EAM) based on quantum-confined Stark effect in multiple-quantum wells have advantages for high-speed, low drive voltage, and high extinction ratio applications. They are compact in size and can be monolithically integrated with source lasers. Thus, for ETDM systems with data rates beyond 40Gb/s, the high speed EAM integrated with a laser could be a promising candidate. On the other hand, MSM photodetectors have the advantage of low capacitance, high bandwidth, low dark current, and in ease of fabrication. The planar structure of MSM photodetector is also suitable for monolithic integration and could be the key components in optical receivers.
    This thesis presents the theoretical study, design optimization and characterization
    of high speed electroabsorption modulator. An electroabsorption modulator with a bandwidth of 100GHz, the return loss less than -12dB up to 60GHz and an dynamic extinction ratio of 10.7dB at 50Gb/s with a drive voltage of 3V_(p-p) has been demonstrated. The good performance of the device is due to the optimized design of InGaAsP/InGaAsP multiple-quantum-wells, optical waveguide and the deployment of segmented traveling-wave electrodes.
    An ETDM fiber optical transmitter with Non-Return-to-Zero(NRZ) optical output signal was assembled with a high speed electroabsorption modulator and a 80Gb/s multiplexer. Clear eye openings have been demonstrated at 80Gb/s for ETDM. This is also the first ETDM transmitter with NRZ optical output signal ever been demonstrated to operate over 80Gb/s. The temperature-dependent effects in a high speed electroabsorption modulator were analyzed. Operating uncooled between 10-50 ℃ for the high speed electroabsorption modulator was achieved by choosing optimum operation voltages with the highest modulation efficiency at different temperatures as the applied DC voltages. At 50Gb/s, the dynamic extinction ratio is >8.4dB with 3V_(p-p) drive voltage over the entire temperature range.
    An Asymmetric Fabry-Perot modulator/detector (AFPMD) was employed in a full-duplex radio-over-fibre system, in which the AFPMD works both as a modulator and simultaneously as a photodetector so as to achieve low cost electrical-optical conversion. For the first time, the property of intermodulation distortion in a full-duplex radio-over-fibre system using AFPMD has been investigated. The employment of balanced RF input powers over modulators provides the feasibility to suppress the intermodulation distortion and enhance the spurious free dynamic range (SFDR) in a full-duplex radio-over-fibre system.
    A 2D finite-difference method is developed to study the MSM photodetector. The time-domain numerical simulation is based on the Poisson equation and continuity equations for electrons and holes. The distributions of the electrical field, the carriers and the current density in the MSM photodetector were calculated, and the DC characteristics and transient response of the photodetector have been analyzed. An optimized design of Si based MSM photodetector was given to achieve a fast
    response while keeping a satisfactory responsivity.
引文
[1] K. G. Coffman and A. M. Odlyzko, "Internet growth: Is there a "Moore's Law" for data traffic" , AT&T Labs-Research, 2001.
    [2] G. P. Agrawal, "Fiber-optic communication systems" , Wiley, New York, 2002.
    [3] D. G. Cunningham, "10Gb/s Ethernet: from standard to application", Proc. ECOC 2002, Vol. 1, Tutorial 1-1, 2002.
    [4] X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth", IEEE J. Sel. Top. Quantum Electron. , Vol. 3, pp. 309-314, 1997.
    [5] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser" , IEEE Photonics Technol. Lett. , Vol. 9, pp. 25-27, 1997.
    [6] C. H. Henry, "Theory of linewidth of semiconductor lasers" , IEEE J. Quantum Electron. , Vol. QE-18, pp. 259-264, 1982.
    [7] T. L. Koch and J. E. Bowers, "Nature of wavelength chirping in directly modulated semiconductor lasers" , Electron. Lett. , Vol. 20, pp. 1038-1040, 1984.
    [8] T. L. Koch and R. A. Linke, "Effect of nonlinear gain reduction on semiconductor laser wavelength chirping" , Appl. Phys. Lett. , Vol. 48, pp. 613-615, 1986.
    [9] M. Osinski and J. Buus, "Linewidth broadening factor in semiconductor lasers-an overview" , IEEE J. Quantum Electron. , Vol. QE-23, pp. 9-29, 1987.
    [10] F. Koyama and K. Iga, "Frequency chirping in external modulators" , J. Lightwave Technol. , Vol. 6, pp. 87-93, 1988.
    [11] F. Dorgeuille and F. Devaux, "On the transmission performances and the chirp parameter of a multiple-quantum-well electroabsorption modulator" , IEEE J. Quantum Electron. , Vol. 30, pp. 2565-2572, 1994.
    [12] K. Wakita, K. Yoshino, I. Kotaka, S. Kondo, and Y. Noguchi, "High speed, high efficiency modulator module with polarization insensitivity and very low chirp" , Electron. Lett. , Vol. 31, pp. 2041-2042, 1995.
    [13]K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, "Negative-chirp electroabsorption modulator using low-wavelength detuning", IEEE Photonics Technol. Lett., Vol. 7, pp. 1157-1158, 1995.
    [14]K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti:LiNbO_3 optical modulators", IEEE J. Lightwave Technol., Vol. 16, No. 4,1998.
    [15] K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, "New traveling-wave electrode Mach-Zehnder optical modulator with 20GHzbandwidth and 4.7V driving voltage at 1.52μm wavelength", Electron. Lett., Vol. 25, pp. 1382-1383,1989.
    [16]G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, "40 GHz, low half-wave voltage Ti:LiNbO_3 intensity modulator", Electron. Lett., Vol. 28, pp. 826-827,1992.
    [17]D. W. Dolfi and T. R. Ranganath, "50 GHz velocity-matched broad wavelength LiNbO_3 modualtor with multimode active section", Electron. Lett., Vol. 28, pp. 1197-1198, 1992.
    [18]M. Rangaraj, T. Hosoi, and M. Kondo, "A wide-band Ti:LiNbO_3 optical modulator with a conventional coplanar waveguide type electrode", IEEE Photonics Technol. Lett., Vol. 4, pp. 1020-1022, 1992.
    [19]K. Noguchi, H. Miyazawa, and O. Mitomi, "75GHz broadband Ti:LiNbO_3 opticalmodulator with ridge structure", Electron. Lett., Vol. 30, pp. 949-951,1994.
    [20]K. Noguchi, H. Miyazawa, and O. Mitomi, "40-Gbit/s Ti:LiNbO_3 optical modulator with a two-stage electrode", IEICE Trans. Electron., Vol. E81-C, pp. 1316-1320, 1998.
    [21]O. Mitomi, K. Noguchi, and H. Miyazawa, "Broadband and low driving-voltage LiNbO_3 optical modulators", IEE Proc. Optoelectron., Vol. 145, pp. 360-364, 1998.
    [22]F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. C. Harmand, "Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAlAs and InGaAsP/InGaAsP MQW",Semicond. Sci. Technol., vol. 10, no. 7, pp 887-910, July 1995.
    [23] T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, and H. Inoue, "Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides" , J. Lightwave Technol. , vol. 14, no. 9, pp 2026-2043, Sep. 1996.
    [24] D. G. Moodie, A. D. Ellis, P. J. Cannard, C. W. Ford, A. H. Barrell, R. T. Moore, S. D. Perrin, R. I. McLaughin, and F. Garcia, "40Gbit/s modulator with low drive voltage and high optical output power" , Proc. European Conference on Optical Communication (ECOC 2001), pp 332-333, 2001.
    [25] M. Tamura, T. Yamanaka, H. Fukano, Y. Akage, Y. Kondo, and T. Saitoh, "High speed electroabsorption modulators using Ruthenium-doped SI-InP: impact of interdiffusion-free burying technology on E/O modulation characteristics", Proc. Indium Phosphide and Related Materials (IPRM 2003), Santa-Barbara, California, pp 491-493, May 2003.
    [26] H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s", J. Lightwave Technol. , vol. 24, no. 5, pp 2219-2224, May 2006.
    [27] K. Takagi, Y. Miyazaki, H. Tada, E. Ishimura, T. Aoyagi, T. Nishimura, T. Hatta, and E. Omura, "Highly reliable 40Gb/s electroabsorption modulator grown on InP: Fe substrate" , Proc. Indium Phosphide and Related Materials (IPRM2001), pp 432-435, 2001.
    [28] N. Mineo, K. Nagai, and T. Ushikubo, "Ultra wide-band electroabsorption modulator modules for DC to millimeter-wave band" , Proc. Microwave Photonics 2001 (MWP 2001), pp 9-12, 2002.
    [29] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi, "Wide bandwidth of over 50GHz traveling wave electrode electroabsorption modulator integrated DFB lasers" , Electron. Lett. , vol. 37, no. 5, pp 299-300, 2001.
    [30] X. Fu, T. Liu, J. Li, and G. Zhang, "Investigation of electroabsorption modulator for 40Gb/s transmitter application" , Proc. Optical Fiber Communication (OFC 2002), pp 718-719, 2002.
    [31] H. Feng, T. Makino, S. Ogita, H. Maruyama, and M. Kondo, "40Gb/s electro-absorption modulator integrated DFB laser with optimized design", Proc. Optical Fiber Communication (OFC 2002), pp 340-341, 2002.
    [32] H. Tada, Y. Miyazaki, K. Takagi, T. Aoyagi, T. Nishimura, and E. Omura, "40 GHz modulation bandwidth of electroabsorption modulator with narrow-mesa ridge waveguide" , Proc. Optical Fiber Communication (OFC 2002), pp. 722-723, 2002.
    [33] Y. Miyazaki, H. Tada, S. Tokizaki, et. al. , "Small chirp 40Gbps EA modulator with novel tensile-strained asymmetric quantum well absorption layer" , Proc. European Conference on Optical Communication (ECOC 2002), paper 10.5.6, 2002.
    [34] B. Mason, A. Ougazzaden, C. Lentz, K. Glogovsky, el. al. , "40-Gb/s tandem electroabsorption modulators" , IEEE Photon. Technol. Lett. , vol. 14, no. 1, pp 27-29, Jan. 2002.
    [35] M. Shirai, H. Arimoto, K. Watanbe, et. al. , "Impedance-controlled-electrode (ICE) semiconductor modulators for 1.3-μm 40Gbit/s transceivers", Proc. European Conference on Optical Communication (ECOC 2002), paper 9.5.4, 2002.
    [36] Y. J. Chiu, H. F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, "High extinction ratio and saturation power traveling-wave electroabsorption modulator" , IEEE Photon. Technol. Lett. , vol. 14, no. 6, pp 792-794, Jun. 2002.
    [37] 罗毅,李同宁,“2.5Gb/s 1.55μm InGaAsP/InP分布反馈激光器/电吸收调制器单片集成”,半导体学报,Vol.20,No.5,pp.416-420,1999。
    [38] 李同宁,金锦炎,罗毅,文国鹏等,“2.5Gbit/s用DFB-LD/EA单片集成器件”,光通信研究,No.3,pp.42-46,1999。
    [39] 王健华,金峰,俞谦,李德杰,蔡丽红等,“InGaAs/InAlAs多量子阱电吸收光调制器”,半导体学报,Vol.19,No.1,pp.43-48,1998。
    [40] 陈弘达,陈志标,杜云等,“多量子阱光开关器件的激子吸收及光调制特性”,光电子激光,Vol.11,No.2,pp.143-146,2000。
    [41] L. Hou, H. Zhu, Q. Kan, Y. Ding, B. Wang, F. Zhou, and W. Wang, "1.55-μm ridge DFB laser and electroabsorption modulator integrated with buried-ridge-stripe dual-waveguide spot-size converter output", IEEE Photon. Technol. Lett. , Vol. 18, No. 1, pp. 235-237, 2006.
    [42] Bing Xiong, Jian Wang, Lijiang Zhang, Jianbai Tian, Changzheng Sun and Yi Luo, "High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach", IEEE Photon. Technol. Lett. , Vol. 17, No. 2, pp. 327-329, 2005.
    [43] Jian Jun, He, "Proposal for Q-modulated Semiconductor Laser" , IEEE Photonics Technol. Lett. , Vol 19, No. 5, pp. 285-287, 2007.
    [44] Yi Luo, Guo-Peng Wen, Chang-Zheng Sun, Tong-Ning Li, Xin-Min Yang, You-Sheng Wu, Ren-Fan Wang, Cai-Ling Wang, Tao Huang and Jin-Yan Jin, "2.5 Gb/s Electroabsorption Modulator Integrated with Partially Gain-Coupled Distributed Feedback Laser Fabricated Using a Very Simple Device Structure," Jpn. J. Appl. Phys. , Vol. 38, No. 5A, pp. L524-526, 1999.
    [45] A. Beling, H. -G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, "Miniaturized waveguide-integrated p-i-n photodetector with 120-GHz bandwidth and high responsivity" , IEEE Photonics Technol. Lett. , Vol. 17, No. 10, pp. 2152-2154, 2005.
    [46] G. E. Stillman and C. M. Wolfe, "Semiconductors and semimetals", Vol. 12, R. K. Willardson and A. C. Beer, Eds. , Academic Press, San Diego, pp. 291-393, 1977.
    [47] I. Watanabe, M. Tsuji, K. Makita, and K. Taguchi, "Gain-bandwidth product analysis of InAlGaAs-inAlAs superlattice avalanche photodiodes", IEEE Photonics Technol. Lett. , Vol. 8, No. 2, pp. 269-271, 1996.
    [48] A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, "High gain-bandwidth-product silicon heterointerface photodetector", Appl. Phys. Lett. , Vol. 70, No. 3, pp. 303-305, 1997.
    [49] C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, "Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz", IEEE Photonics Technol. Lett. , Vol. 11, No. 9, pp. 1162-1164, 1999.
    [50] E. Droge, E. H. Bottcher, St. Kollakowski, "78GHz distributed InGaAs MSM photodetector", Electronics Letters, Vol. 34, No. 23, pp. 2241-2243, 1998.
    [51] R. -H. Yuang, Y. -J. Chien, J. -L. Shieh, and J. -I. Chyi, "High-speed GaAs metal-semiconductor-metal photodetectors with recessed metal electrodes", Appl. Phys. Lett. , Vol. 69, No. 2, pp. 245-247, 1996.
    [52] R. -H. Yuang, Y. -J. Chien, J. -I. Chyi, and J. -S. Chen, "Overall performance improvement in GaAs MSM photodetectors by using recessed-cathode structure", IEEE Photonics Technol. Lett. , Vol. 9, No. 2, pp. 226-228, 1997.
    [53] M. Mikulics, S. Wu, M. Marso, R. Adam, A. Forster, A. van der Hart, P. Kordos, H. Luth, and Roman Sobolewski, "Ultrafast and highly sensitive photodetectors with recessed electrodes fabricated on low-temperature-grown GaAs" , IEEE Photonics Technology Letters, Vol. 18, No. 7, pp. 820-822, 2006.
    [54] Min Yang, Kern Rim, Dennis L. Rogers, et al. , "A high-speed, high-sensitivity silicon lateral trench photodetector" , IEEE Electron Device Letters, Vol. 23, No. 7, pp. 395-397, 2002.
    [55] Li-Hong Laih, Tien-Chang Chang, Yen-Ann Chen, Wen-Chin Tsay, and Jyh-Wong Hong, "A U-grooved metal-semiconductor-metal photodetector (UMSM-PD) with an i-a-Si: H overlayer on a [100] P-type Si wafer", IEEE Photonics Technol. Lett. , Vol. 10, No. 4, pp. 579-581, 1998.
    [56] Jacob Y. L. Ho and K. S. Wong, "Bandwidth enhancement in silicon metal-semiconductor-metal photodetector by trench formation" , IEEE Photonics Technol. Lett. , Vol. 8, No. 8, pp. 1064-1066, 1996.
    [57] Li-Hong Laih, Tien-Chang Chang, Yen-Ann Chen, Wen-Chin Tsay, and Jyh-Wong Hong, "Characteristics of MSM photodetectors with trench electrodes on P-type Si Wafer" , IEEE Transactions on Electron Devices, Vol. 45, No. 9, pp. 2018-2023, 1998.
    [58] Rong-Heng Yuang and Jen-Inn Chyi, "GaAs MSM photodetectors with recessed anode and/or cathode", IEEE Journal of Quantum Electronics, Vol. 34, No. 5, pp. 811-816, 1998.
    [59] 武术,林世鸣,刘文楷,“MSM光探测器的直流特性”,半导体学报,Vol.22, No. 11, pp. 1462-1467, 2001。
    [60] Hu Yanlong, Liang Huilai, Li Yihuan, Zhang Shilin, Mao Luhong and Guo Weilian, "Monolithically fabricated OEICs using RTD and MSM", Chinese Journal of Semiconductors, Vol. 27, No. 4, pp. 641-645, 2006.
    [61] 焦世龙,陈堂胜等,“5Gb/s GaAs MSM/PHEMT单片集成光接收机前端”,固体电子学研究与进展,Vol.26,No.8,pp.426-426,2006.
    [62] 武术,林世鸣,刘文楷,“MSM光探测器的等效电路模型”,光电子激光,Vol.12,No.6,pp.552-555,2001。
    [63] 孙亚春,王庆康,“金属-半导体-金属光电探测器的瞬态特性分析”,光电子技术,Vol.23,No.2,pp.121-125,2003。
    [64] 石世长,王庆康,“MSM光电探测器电磁场特性的TLM方法模拟",固体电子学研究与进展,Wol.21,No.1,pp.43-49,2001。
    [65] Liann-Chern Liou and Bahram Nabet, "Simple analytical model of bias dependence of the photocurrent of metal-semiconductor-metal photodetectors", Applied Optics, Vol. 35, No. 1, pp. 15-23, 1996.
    [66] Anthony W. Sarto and Bart J. Van Zeghbroeck, "Photocurrents in a Metal-Semiconductor-Metal photodetector", IEEE Journal of Quantum Electronics, Vol. 33, No. 12, pp. 2188-2194, 1997.
    [67] Andrew Xiang, Walter Wohlmuth, Patrick Fay, Sung-Mo Kang, and Tesanmi Adesida, "Modeling of InGaAs MSM photodetector for circuit-level simulation", IEEE Journal of Lightwave Technology, Vol. 14, No. 5, pp. 716-722, 1996.
    [68] 王庆康,史常忻,Wolfram Bettermarm,“MSM光电探测器特性二维数值模拟”,固体电子学研究与进展,Vol.12,No.4,p.321,1992。
    [1] W. Franz, "Einflub eines elektrischen Feldes auf eine Absorptionskante", Z. Naturforschg. , Vol. 13a, pp. 484-489, 1958.
    [2] V. Keldysh, "The effect of a strong electric field on the optical properties of insulating crystals", J. Exptl. Theoret. Phys. (U. S. S. R.), Vol. 34, pp. 788-790, 1958.
    [3] T. E. Van Eck, L. M. Walpita, W. S. C. Chang, and H. H. Wieder, "Franz-Keldysh electrorefraction and electroabsorption in bulk InP and GaAs", Applied Physics Letters, Vol. 48, pp. 451-453, 1986.
    [4] I. A. Merkulov and V. I. Perel, "Effects of electron-hole interaction on electroabsorption in semiconductors" , Phys. Lett. A, Vol. 45A, pp. 83-84, 1973.
    [5] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegrnann, T. H. Wood, and C. A. Burrus, "Electric field dependence of optical absorption near the band gap of quantum-well structures", Phys. Rev. B, Condens. Matter, Vol. 32, pp. 1043-1060, 1985.
    [6] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-edge electroabsorption in quantum well structures: The Quantum-Confined Stark Effect" , Physical Review Letters, Vol. 53, No. 22, pp. 2173-2176, 1984.
    [7] D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, "Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz-Keldysh effect" , Phys. Rev. B, Condens. Matter, Vol. 33, pp. 6976-6982, 1986.
    [8] Shun Lien Chuang, "Physics of optoelectronic devices", John Wiley & Sons, Inc. New York, Chapter 13, 1995.
    [9] Jasprit Singh, "Physics of semiconductors and their heterostructures", McGraw-Hill, Inc. , New York, Chapter 16, 1993.
    [10] I. Kotaka, K. Sato, K. Wakita, M. Yamamoto, and T. Kataoka, "High-speed (20Gb/s), low-drive voltage (2Vp-p) strained InGaAsP MQW modulator/DFB laser light source", Electron. Commun. Jpn. 2, Electron., Vol. 78, pp. 1-9, 1995.
    [11] F. Devaux, E. Bigan, A. Ougazzaden, F. Huet, M. Carre, and A. Carenco, "High-speed InGaAsP/InGaAsP MQW electroabsorption modulator with high optical power handling capacity", Electronics Letters, Vol. 28, pp. 2157-2159,1992.
    [12]K. Wakita, "Semiconductor optical modulators", Kluwer Academic Pulishers, 1998.
    [13]W. T. Masselink, P. J. Pearah, J. Klem, C. K. Peng, H. Morkoc, G D. Sanders, and Yia-Chung Chang, "Absorption coefficients and exciton oscillator strengths in AlGaAs-GaAs superlattices", Physical Review B, Vol. 32, No. 12, pp. 8027-8034,1985.
    [14] T. Tutken, G Frankowsky, A. Hangleiter, V. Harle, K. Streubel, and F. Scholz, "Quantum confined stark effect in InGaAs/InP and InGaAs/InGaAsP multi-quantum-well structures", Superlattices and Microstructures, Vol. 7, No. 4, pp. 309-313,1990.
    [15]Ajoy K. Ghatak, K. Thyagarajan, and M. R. Shenoy, "A novel numericaltechnique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures", IEEE Journal of Quantum Electronics, Vol. 24, No. 8, pp. 1524-1531,1988.
    [16]G. Bastard, "Superlattice band structure in the envelope-function approximation," Phys. Rev. B, Vol. 24, No. 10, pp. 5693-5697, 1981.
    [17] S. R. Forrest, P. H. Schmidt, R. B. Wilson, and M. L. Kaplan, "Relationship between the conduction-band discontinuities and band-gap differences of InGaAsP/InP heterojunctions", Appl. Phys. Lett., Vol. 45, No. 11, pp. 1199-1201, 1984.
    [18]B. Soucail, P. Voisin, M. Voos, D. Rondl, J. Nagle, and B. De. Cremoux, "Optical investigations of the band offsets in an InGaAs-InGaAsP-InP double-step heterostructure", Semicond. Sci. Technol., Vol. 5, No. 8, pp. 918-920,1990.
    [19]E. Kuphal, "Phase diagrams of InGaAsP, InGaAs and InP lattice matched to(100)InP", Journal of Crystal Growth, Vol. 67, pp. 441-457, 1984.
    [20] S. Adachi, "Material parameters in In_xGa_(1-x)As_yP_(1-y) and related binaries," J. Appl. Phys., Vol. 53, pp. 8775-8792,1982.
    [21] P. Bhattacharya, "Properties of Lattice-Matched and Strained Indium Gallium Arsenide", INSPEC, Institute of Electrical Engineering, London, U.K., 1993.
    [22] S. Adachi, "Physical Properties of III-V Semiconductor Compounds", Wiley, New York, 1992.
    [23] K. H. Hellwege, "Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology", New Series, Group III, 17a, Springer, Berlin, 1982; Group III-V 22a, Springer, Berlin, 1986.
    [24] T. P. Pearsall, "Properties, processing and application of Indium Phosphide ", INSPEC, Institute of Electrical Engineering, London, U.K., Chapter 5, 2000.
    [1] K. Wakita, "Semiconductor optical modulators", Kluwer Academic Pulishers, 1998.
    [2] Boumedienne Mersali, Abderrahim Ramdane, and Alain Carenco, "Optical-mode transformer: a III-V circuit integration enabler", IEEE Journal of Selected Topicsin Quantum Electronics, Vol. 3, No. 6, pp. 1321-1331,1997.
     [3] Ingrid Moerman, Peter P. Van Daele, and Piet M. Demeester, "A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, No. 6, pp. 1308-1320, 1997.
    [4] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, No. 1, pp. 150-162,2000.
    [5] Kenji Kawano and Tsutomu Kitoh, "Introduction to optical waveguide analysis: solving Maxwell's equations and the Schrodinger equation", John Wiley & Sons, Inc. New York, Chapter 5, 2001.
    [6] G. R. Hadley, "Wide-angle beam propagation using Pade approximant operators",Optics Letters, Vol. 17,p. 1426, 1992.
    [7] P. Kaczmarski and P. E. Lagasse, "Bidirectional beam propagation method", Electronics Letters, Vol. 24, pp. 675-676, 1988.
    
    [8] Y. Chung and N. Dagli, "Modeling of guided-wave optical components with efficient finite-difference beam propagation methods", in Tech. Dig. IEEE AP-s Int. Symp., Vol. 1, pp. 248-251, 1992.
    [9] Y. Chiou and H. Chang, "Analysis of optical waveguide discontinuities using Pade approximants", IEEE Photonics Technology Letters, Vol. 9, pp. 964-966, 1997.
    [10]H. Rao, R. Scarmozzino. and R. M. Osgood Jr., "A bi-directional beam propagation method for multiple dielectric interfaces", IEEE Photonics Technology Letters, Vol. 11, pp. 830-832,1999.
    [11]D. Yevick and B. Hermansson, "Efficient beam propagation techniques", IEEE Journal of Quantum Electronics, Vol. 26, p. 109,1990.
    
    [12]Y. Chung and N. Dagli, "An assessment of finite difference beam propagation method", Journal of Quantum Electronics, Vol. 26, p. 1335, 1990.
    [13]R. Scarmozzino and R.M. Osgood, Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications", J. Opt. Soc. Am. A, Vol. 8, pp. 724-731, 1991.
    [14]G. R. Hadley, "Transparent boundary condition for the beam propagation method", IEEE Journal of Quantum Electronics, Vol. 28, p. 363,1992.
    [15]G. R. Hadley, "Transparent boundary condition for the beam propagation method",Optics Letters, Vol. 16, p. 624, 1991.
    [16]C. Vassalo and F. Collino, "Highly efficient absorbing boundary condition for the beam propagation method", Journal of Lightwave Technology, Vo. 14, p. 1570, 1996.
    [17] W. P. Huang, C. L. Xu, W. Liu, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method", IEEE Photonics Technology Letters, Vol. 8, p. 649,1996.
    [18]Y. P. Chiou and H.C. Chang, "Complementary operators method as the absorbing boundary condition for the beam propagation method", IEEE Photonics Technology Letters, Vol. 8, p. 976,1998.
    [19]R. Clauberg and P. Von Allmen, "Vectorial beam propagation method for integrated optics", Electronics Letters, Vol. 27, p. 654,1991.
    
    [20] W. P. Huang and C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method", IEEE Journal of Quantum Electronics, Vol. 29, No. 10, pp. 2639-2649,1993.
    [21]J. Yamauchi, T. Ando, and H. Nakano, "Beam-propagation analysis of optical fibres by alternating direction implicit method", Electronics Letters, Vol. 27, pp. 1663-1665,1991.
    [22] P. L. Liu and B. J. Li, "Study of form birefringence in waveguide devices using the semivectorial beam propagation method", IEEE Photonics Technology Letters, Vol. 3, pp. 913-915, 1991.
    [23] Pallab Bhattacharya, "Semiconductor optoelectronic devices", Prentice Hall, Inc. , New Jersey, Second Edition, Chapter 4 and 7, 1997.
    [24] C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, "Determination of the refractive index of InGaAsP epitaxial layers by mode line luminescence spectroscopy" , IEEE Journal of Quantum Electronics, Vol. 21, pp. 1887-1892, 1985.
    [25] K. Kawano, K. Wakita, O. Mitomi, I. Kotaka, and M. Naganuma, "Design of InGaAs-InAlAs multiple-quantum-well (MQW) optical modulators", IEEE Journal of Quantum Electronics, Vol. 28, pp. 224-230, 1992.
    [26] F. Devaux, Y. Sorel, and J. F. Kerdiles, "Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter", Journal of Lightwave Technology, Vol. 11, No. 12, pp. 1937-1940, 1993.
    [27] Fumio Koyama, and Kenichi Iga, "Frequency chirping in extemal modualtors", Journal of Lightwave Technology, Vol. 6, No. 1, pp. 87-93, 1988.
    [28] M. Suzuki, H. Tanaka, and S. Akiba, "High-speed characteristics at high input optical power of GaInAsP electroabsorption modulators", Electronics Letters, Vol. 24, No. 20, pp. 1272-1273, 1988.
    [29] M. Suzuki, H. Tanaka, and S. Akiba, "Effect of hole pile-up at heterointerface on modulation voltage in GaInAsP electroabsorption modulators", Electronics Letters, Vol. 25, No. 2, pp. 88-89, 1989.
    [30] D. Meglio, P. Lugli, R. Sabella, and O. Sahlen, "Analysis and optimization of InGaAsP electro-absorption modulators", IEEE Journal of Quantum Electronics, Vol. 31, No. 2, pp. 261-268, 1995.
    [31] K. Brerman, and K. Hess, "Theory of high-field transport of holes in GaAs and InP", Phys. Rev. B, Condens. Matter, Vol. 29, No. 10, pp. 5581-5590, 1984.
    [32] F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. C. Harmand, "Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAlAs and InGaAsP/InGaAsP MQW", Semicond. Sci. Technol. , Vol. 10, No. 7, pp. 887-910, 1995.
    [1] F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. C. Harmand, "Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAlAs and InGaAsP/InGaAsP MQW", Semicond. Sci. Technol. , Vol. 10, pp. 887-901, 1995.
    [2] K. Wakita, I. Kotaka, K. Yoshino, S. Kondo, and Y. Noguchi, "Polarization-independent electroabsorption modulators using strain-compensated InGaAs-InAlAs MQW structures", IEEE Photonics Technology Letters, Vol. 7, pp. 1418-1420, 1995.
    [3] K. Yoshino, K. Wakita, I. Kotaka, S. Kondo, Y. Noguchi, S. Kuwano, N. Takachino, T. Otsuji, Y. Imai and T. Enoki, "40-Gbit/s operation of InGaAs/InAlAs MQW electroabsorption modulator module with very low driving-voltage", in Proc. European Conference on Optical Communication (ECOC 96), Vol. 3, pp. 203-206, 1996.
    [4] K. Satzke, D. Baums, U. Cebulla, H. Haisch, D. Kaiser, E. Lach, E. Kuhn, J. Weber, R. Weinmann, P. Wiedemann, and E. Zielinski, "Ultrahigh-bandwidth (42 GHz) polarization-independent ridge waveguide electroabsorption modulator based on tensile strained InGaAsP MQW", Electronics Letters, Vol. 31, pp. 2030-2032, 1995.
    [5] I. Kotaka, K. Wakita, O. Mitomi, H. Asai, and Y. Kawamura, "High-speed InGaAlAs/InAlAs multiple quantum well optical modulators with bandwidths in excess of 20GHz at 1.55μm", IEEE Photonics Technology Letters, Vol. 1, pp. 100-101, 1989.
    [6] K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura, and M. Naganuma, "High-speed InGaAlAs/InAlAs multiple quantum well optical modulators", Journal of Lightwave Technology, Vol. 8, pp. 1027-1032, 1990.
    [7] F. Devaux, Fo Dorgeuille, A. Ougazzaden, F. Huet, M. Carre, A. Carenco, M. Henry, Y. Sorel, J. F. Kerdiles, and E. Jeanney, "20 Gbit/s operation of a high-efficiency InGaAsP/InGaAsP MQW electroabsorption modulator with 1.2-V drive voltage", IEEE Photonics Technology Letters, Vol. 5, pp. 1288-1290, 1993.
    [8] Y-J Chiu, H-F Chou, V. Kaman, P. Abraham, and J. E. Bowers, "High extinction ratio and saturation power traveling-wave electroabsorption modulator" , IEEE Photonics Technology Letters, Vol. 14, No. 6, pp. 792-794, 2002.
    [9] M. Shirai, H. Arimoto, K. Watanabe, A. Taike, K. Shinoda, J. Shimizu, H. Sato, T. Ido, T. Tsuchiya, M. Aoki, S. Tsuji, N. Sasada, S. Tada, and M. Okayasu, "40Gbit/s electroabsorption modulators with impedence-controlled electrodes", Electronics Letters, Vol. 39, pp. 734-735, 2003.
    [10] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi, "Wide bandwidth of over 50 GHz traveling wave electrode electroabsorption modulator integrated DFB lasers", Electronics Letters, Vol. 37, No. 5, pp. 299-300, 2001.
    [11] S. Irmscher, R. Lewen, and U. Eriksson, "InP/InGaAsP high-speed traveling-wave electro-absorption modulators with integrated termination resistors" , IEEE Photonics Technology Letters, Vol. 14, pp. 923-925, 2002.
    [12] G. L. Li, S. A. Pappert, P. Mages, C. K. Sun, W. S. C. Chang and P. K. L. Yu, "High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator", IEEE Photonics Technology Letters, Vol. 13, No. 10, pp. 1076-1078, 2001.
    [13] G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, "Ultrahigh-speed traveling-wave electroabsorption modulators-Design and analysis" , IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 7, pp. 1177-1183, 1999.
    [14] R. Spickermann, S. R. Sakamoto, and N. Dagli, "GaAs-AlGaAs traveling wave electro-optic modulators" , in Proc. SPIE, Optoelectronic Integrated Circuits, Vol. 3006, pp. 272-279, 1997.
    [15] W. W. Rigrod and I. P. Kaminow, "Wide-band microwave light modulation", Proc. IEEE, Vol. 51, pp. 137-140, 1963.
    [16] R. E. Collin, "Foundations for microwave engineering", McGraw-Hill, Singapore, Second Edition, Chapter 8, 1992.
     [17] H. Hasegawa, M. Furukawa, and H. Yanai, "Properties of microstrip line onSi-SiO_2 system", IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 11, pp. 869-881,1971.
    [18] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetector theory", IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 8, pp. 1310-1319,1997.
    [19] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetector design and measurements", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 2, pp. 622-629, 1996.
    [20] N. A. F. Jager, and Z. K. F. Lee, "Slow-wave electrode for use in compound semiconductor electrooptic modulators", IEEE Journal of Quantum Electronics, Vol. 28, pp. 1778-1784,1992.
    [21] Y. -J. Chiu, V. Kaman, S. Z. Zhang, and J. E. Bowers, "Distributed effects modelfor cascaded traveling-wave electroabsorption modulator", IEEE Photonics Technology Letters, Vol. 13, No. 8, pp. 791-793, 2001.
    [22] H. H. Liao, X. B. Mei, K. K. Loi, C. W. Tu, P. M. Asbeck, and W. S. C. Chang, "Microwave structures for traveling-wave MQW electro-absorption modulators for wide band 1.3μm photonic links", in Proc. SPIE, Vol. 3006, pp. 291-300, 1997.
    [23] G. L. Li, D. S. Shin, W. S. C. Chang, P. M. Asbeck, and P. K. L. Yu, "Design and fabrication of traveling wave electroabsorption modulator", in Proc. SPIE, Optoelectronic Integrated Circuits IV, Vol. 3950, pp. 252-255,2000.
    [24] G. L. Li, T. G. B. Mason, and P. K. L. Yu, "Analysis of segmented traveling-wave optical modulators", Journal of Lightwave Technology, Vol. 22, No. 7, pp. 1789-1796,2004.
    [25] F. Cappelluti, and G. Ghione, "Self-consistent time-domain large-signal model of high-speed traveling-wave electroabsorption modulators", IEEE Transactions onMicrowave Theory and Techniques, Vol. 51, No. 4, pp. 1096-1104, 2003.
    [26] J. Lim, S. Jeon, J. Kim, and S. Hong, "A circuit model of traveling wave electroabsorption modulators", Microwave Symposium Digest, Vol. 3, pp. 1707-1710,2002.
    [27] P. A. Rizzi, "Microwave engineering passive circuits", Prentice-Hall, Inc., London, Appendix C and D, 1988.
    [28] D. M. Pozar, "Microwave engineering", John Wiley & Sons, Inc., New York, Second Edition, 1998.
    [1] Eugen Lach, and Karsten Schuh, "Recent advances in ultrahigh bit rate ETDM transmission systems", Journal of Lightwave Technology, Vol. 24, No. 12, pp. 4455-4467, 2006.
    [2] Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, and G. Hancsin, "Multi-channel high-performance tunable dispersion compensator for 40 Gb/s transmission systems", in Proc. OFC, Paper ThL4, pp. 517-519, 2003.
    [3] S. Bhandare, D. Sandel, A. Hidayat, A. F. Abas, H. Zhang, F. Wust, B. MIlivojevic, R. Noe, M. Guy, M. Lapointe, and Y. Painchaud, "1.6-Tb/s (40×40Gb/s) transmission over 44, ..., 94 km of SSMF with adaptive chromatic dispersion compensation", IEEE Photonics Technology Letters, Vol. 17, No. 12, pp. 2748-2750,2005.
    [4] J. A. J. Fells, P. J. Bennett, R. Feced, P. Ayliffe, J. Wakefield, H. F. M. Priddle, V. Baker, S. E. Kanellopoulos, C. Boylan, S. Sahil, W. S. Lee, S. J. Clements, and A. Hadjiffotiou, "Widely tunable twin fiber grating dispersion compensator for 80 Gb/s", in Proc. OFC, pp. PD11-1-PD11-3, 2001.
    [5] J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, "Electrical domain compensation of optical dispersion", in Proc. OFC, Paper OthJ3,2005.
    [6] Q. Yu, and A. Shanbhag, "Electronic data processing for error and dispersion compensation", Journal of Lightwave Technology, Vol. 24, No. 12, pp. 4514-4525,2006.
    [7] M. Meghelli, "A 108 Gbps multiplexer in 0.13um SiGe-bipolar Technology",ISSCC Digest, Paper 13.3,2004.
    [8] A. Joseph et al, "0.13 μm 210 GHz fT SiGe HBTs - expanding the horizons of SiGe BiCMOS", ISSCC Digest, pp. 180-181,2002.
    
    [9] Gabriela Livescu, David A. B. Miller, D. S. Chemla, M. Ramaswamy, T. Y. Chang, Nicholas Sauer, A. C. Gossard, and J. H. English, "Free carrier and many-body effects in absorption spectra of modulation-doped quantum wells", IEEE J. Quantum Electron. , Vol. 24, pp. 1677-1689, 1988.
    [10] Zhixi Bian, James Christofferson, and Ali Shakouri, "High power operation of electroabsorption modulators", in Proc. Conf. Dig. , CLEO/QELS, Paper CTuJ5, 2003.
    [11] Joachim Piprek, Yi-Jen Chiu, and John E. Bowers, "Analysis of multi-quantum well electroabsorption modulators", SPIE Proceedings, Physics and Simulation of Optoelectronic Devices X, Photonics West, pp. 4646-77, 2002.
    [12] D. Wake, D. Johansson and D. G. Moodie, "Passive Picocell: a new concept in wireless network infrastructure," Electronics Letters, Vol. 33, No. 5, pp. 404-406, 1997.
    [13] Toshiaki Kuri, Ken-ichi Kitayama, and Yoshiro Takahashi, "60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver" , IEEE Photonics Technology Letters, Vol. 12, No. 4, pp. 419-421, 2000.
    [14] L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, "Novel techniques for high-capacity 60-GHz fiber-radio transmission systems", IEEE Trans. Microwave Theory Tech. , Vol. 45, pp. 1416-1423, 1997.
    [15] C. P. Liu et al. , "High-speed 1.56μm asymmetric Fabry-Perot modulator/detector (AFPMD) for radio-over-fibre applications, " in Proc. ECOC, Vol. 3, Paper We4. P. 048, pp. 597-598, 2005.
    [16] C. P. Liu et al. , "Design, fabrication and characterisation of normal-incidence 1.56-μm multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells" , IEICE Transactions on Electronics, Vol. E86-C, No. 7, 2003.
    [17] J. J. Huang et al. , "1.55-μm asymmetric Fabry-Perot modulator (AFPM) for high-speed applications" , IEEE Photon. Technol. Lett. , Vol. 14, No. 12, pp. 1689-1691, 2002.
    [18] S. Hunziker and W. Baechtold, "Simple model for fundamental intermodulation analysis of RF amplifiers and links," Electron. Lett. , Vol. 32, No. 19, pp. 1826-1827, 1996.
    [19] R. B. Welstand et al. , "Enhanced linear dynamic range property of Franz-Keldysh effect waveguide modulator, " IEEE Photon. Technol. Lett. , Vol. 7, No. 7, pp. 751-753, 1995.
    [1] S. H. Hsu, Y. K. Su, S. J. Chang, W. C. Chen, and H. L. Tsai, "InGaAsN Metal-Semiconductor-Metal photodetectors with modulation-doped heterostructures" , IEEE Photonics Technology Letters, Vol. 18, No. 3, pp. 547-549, 2006.
    [2] M. Mikulics, S. Wu, M. Marso, R. Adam, A. Forster, A. van der Hart, P. Kordos, H. Luth, and Roman Sobolewski, "Ultrafast and highly sensitive photodetectors with recessed electrodes fabricated on low-temperature-grown GaAs", IEEE Photonics Technology Letters, Vol. 18, No. 7, pp. 820-822, 2006.
    [3] Mukunda B. Das, "Optoelectronics detectors and receivers: speed and sensitivity limits", in Proc. Conference on Optoelectronic and Microelectronic Materials Devices, pp. 15-22, 1998.
    [4] Sang-Yeon Cho, Sang-Woo Seo, Martin A. Brooke and Nan M. Jokerst, "Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 2, No. 6, pp. 1427-1433, 2002.
    [5] E. Droge, E. H. Bottcher, St. Kollakowski, "78GHz distributed InGaAs MSM photodetector", Electronics Letters, Vol. 34, No. 23, pp. 2241-2243, 1998.
    [6] Julian B. D. Soole and H. Schumacher, "InGaAs Metal-semiconductor-Metal photodetectors for long wavelength optical communications", IEEE Journal of Quantum Electronics, Vol. 27, No. 3, pp. 737-752, 1991.
    [7] St. Kollakowski, E. H. Bottcher, Ch. Lemm, A. Strittmatter, D. Bimberg, and H. Krautle, "Waveguide-Integrated InP-InGaAs-InAIGaAs MSM photodetector with very-high vertical-coupling efficiency", IEEE Photonics Technology Letters, Vol. 9, No. 4, pp. 496-498, 1997.
    [8] K. Aliberti, H. Shen, M. Stead, W. Ruff and B. Stann, "Frequency-dependent rectification current in Metal-Semiconductor-Metal detectors", IEEE Photonics Technology Letters, Vol. 14, No. 3, pp. 381-383, 2002.
    [9] R. P. MacDonald, N. G. Tarr, B. A. Syrett et al. , "MSM photodetector fabricated on polycrystalline silicon", IEEE Photonics Technology Letters, Vol. 11, No. 1, pp. 108-110, 1999.
    [10] Min Yang, Kern Rim, Dennis L. Rogers et al. , "A high-speed, high-sensitivity silicon lateral trench photodetector", IEEE Electron Device Letters, Vol. 23, No. 7, pp. 395-397, 2002.
    [11] M. Kurata, "Numerical analysis for semiconductor devices", Lexington, MA: Heath, 1982.
    [12] S. Selberherr, "Analysis and simulation of semiconductor devices", Springger-Verlay, New York, 1984.
    [13] Akira Yoshii, Hitoshi Kitazawa, Masaaki Tomizawa, Shoji Horiguchi, and Tsuneta Sudo, "A three-dimensional analysis of semiconductor devices", IEEE Transactions on Electron Devices, Vol. ED-29, No. 2, pp. 184-189, 1982.
    [14] 倪光正,钱秀英等,“电磁场数值计算”,北京:高等教育出版社,pp.139-170,1996.
    [15] S. M. Sze, "Physics of semiconductor devices", Wiley, New York, Second Edition, 1981.
    [16] Hari Singh Nalwa, "Photodetectors and fiber optics", Academic Press, 2001.
    [17] Iman S. Achour, Hatem El Kadi, Khaled Sherif et al. , "Cutoff frequency and responsivity limitation of AlInAs/GaInAs MSM PD using a two dimensional bipolar physical model" , IEEE Transactions on Electron Devices, Vol. 42, No. 2, pp. 231-238, 1995.
    [18] J. B. D. Soole, H. Schumacher, H. P. LeBlanc, R. Bhat and M. A. Koza, "High performance In_(0.52)Al_(0.48)As/In_(0.53)Ga_(0.47)As metal-semiconductor-metal photodetectors" , International Electron Devices Meeting, Technical Digest. , pp. 30.1.1-30.1.4, 1989.
    [19] 武术,林世鸣,刘文楷,“MSM光探测器的直流特性”,半导体学报,22(11):1462,2001.
    [20] Jinwook Burm and Lester F. Eastman, "Low-frequency gain in MSM photodiodes due to charge accumulation and image force lowering", IEEE Photonics Technology Letters, Vol. 8, No. 1, pp. 113-115, 1996.
    [21] Hsin-Ying Lee and Ching-Ting Lee, "Effect of wide band gap enhancement-capping layer on MSM-PDs", CLEO/Pacific Rim 2003-The 5th Pacific Rim Conference on Lasers and Electro-Optics, Vol. 1, pp. 111-113, 2003.
    [22] 朱红卫,史常忻,陈益新等.“极低暗电流InGaAs MSM-PD的光电特性研究”,半导体学报,18(1):22,1997.
    [23] Julian B. D. Soole and Hermann Schmacher, "Transit-time limited frequency response of InGaAs MSM photodetectors", IEEE Transactions on Electron Devices, Vol. 37, No. 11, pp. 2285-2291, 1990.
    [1] Hideki Fukano, Takayuki Yamanaka, Munehisa Tamura, and Yasuhiro Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s", Journal of Lightwave Technology, Vol. 24, No. 5, pp. 2219-2224, 2006.
    [2] Y. Akage, H. Takeuchi, K. Tsuzuki, S. Kondo, Y. Noguchi, H. Okamoto, and T. Yamanaka, "Polarization-independent InGaAlAs/InAlAs electroabsorption modulators with an optimized strained-MQW", in Proc. CLEO Pacific Rim, pp. 191-192, 1999.
    [3] Boumedienne Mersali, Abderrahim Ramdane, and Alain Carenco, "Optical-mode transformer: a Ⅲ-Ⅴ circuit integration enabler", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, No. 6, pp. 1321-1331, 1997.
    [4] Ingrid Moerman, Peter P. Van Daele, and Piet M. Demeester, "A review on fabrication technologies for the monolithic integration of tapers with Ⅲ-Ⅴ semiconductor devices", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, No. 6, pp. 1308-1320, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700