用户名: 密码: 验证码:
神木矿区土壤理化性质与植被状况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭资源开发在促进区域经济发展的同时,与生态环境的矛盾也日益突出。采矿造成的地表裂缝、塌陷、废水、废渣、粉煤灰等都对周边环境带来了巨大影响,是区域可持续发展和生态环境安全的重大隐患。目前,国内外对矿区生态恢复研究主要集中在塌陷、复垦、煤矸石的环境效应等方面,对未扰动区环境潜在变化研究尚欠缺。本文选择陕北神木矿区凉水井煤矿和四道沟煤矿为代表,同时设置一个对照区,调查分析了矿区周围土壤理化性质、重金属含量、植物群落等环境特征现状,分析了煤炭开采对周边生态环境的影响,主要得出了以下结论:
     (1)对矿区土壤基本理化性质研究表明,土壤表层(0~10cm)含水量在7.20%~17.50%之间,平均值为14.44%,四道沟煤矿>对照区>凉水井煤矿,植被群落类型对土壤含水量有较大影响,柠条+沙蒿群落含水量最低,白草群落最高。土壤容重在1.38~1.54 g·cm-3之间,平均值为1.45 g·cm-3,大于自然垒结状态下土壤容重,说明煤矿开采已导致表层土壤压实。矿区土壤养分含量整体处于低级或很低水平,仅个别样点0~10cm层有机质、全磷、速效钾等处于中等水平。土壤pH>9.0,凉水井煤矿pH均为最高,且随深度的加深而增大,说明矿区地下水位下降,土壤有碱化趋势。
     (2)利用MS2000激光粒度分析仪测定了神木矿区凉水井煤矿、四道沟煤矿和对照区3个样区60个土样的粒径分布状况,运用土壤体积分形模型计算出土壤颗粒体积分形维数(D),并分析了土壤理化性质与D值之间的关系。结果表明,样区内D值在1.95~2.68之间,平均D值为2.42。3个样区平均D值大小关系为,四道沟煤矿(2.47)>对照区(2.43)>凉水井煤矿(2.33)。D值与粘粒和粉粒含量呈正相关关系,与沙粒含量呈负相关关系,相关性均达到极显著水平(P<0.01)。D值与土壤pH值、全磷含量呈极显著正相关,而与有机质、全氮、速效钾含量相关性均未达到显著水平。此外,地面主要植被类型对D值的影响表现为,长芒草地>柠条地>沙打旺地>茵陈蒿地>乔木林地。
     (3)通过对矿区土壤水分、养分及颗粒体积分形特征等分析表明,土壤总体质量状况处于该区土壤原始地球化学特征范围内,但某些指标已经发生明显变化,如土壤pH、颗粒组成状况等。地面植被类型对保护和改善土壤环境很大作用,比如草本植物对土壤D值的增加有一定促进作用,在矿区土壤质地改良过程中,应充分利用草本植物的作用。
     (4)利用单因子指数法和内梅罗综合指数法对煤矿周边土壤重金属污染评价,结果显示,两个煤矿绝大多数样点综合污染指数已达轻度污染程度,单项因子污染指数由大到小顺序为,Cd>Zn>Cu>Pb>Cr,其中Cd污染已达中度程度,Zn已达警戒水平,Cu接近警戒水平,而Pb和Cr为清洁水平。
     (5)以陕北土壤背景值作为标准对矿区土壤潜在生态风险(RI)进行评价,结果表明,重金属潜在风险指数在104.83~144.75之间,平均值为124.52,处于低风险水平,但最大值已经接近中等风险程度。凉水井煤矿生态风险程度小于四道沟煤矿,RI值分别为115.51和133.53,单项元素的生态风险影响程度由大到小顺序为,Cd>Cu>Pb>Zn>Cr,Cd对RI值的贡献最大。四道沟煤矿的重金属污染程度和潜在生态风险程度较凉水井煤矿严重,说明小型煤矿的不合理开采对土壤的污染更明显,即使经过5年时间恢复,重金属含量依然较高。Cd是造成重金属污染和生态风险的主要因子,在矿区土壤环境保护过程中应特别注意。
     (6)通过对凉水井煤矿、四道沟煤矿和对照区植被群落分析,141个样方中共出现79种植物,分属于32科65属,其中菊科、豆科、禾本科是样区主要物种。3个样区物种总数情况为凉水井煤矿>对照区>四道沟煤矿,植被群落以草本为主,野生灌木呈零星状分布,天然乔木已基本消失,人工种植的侧柏、小叶杨等树种长势较差,对矿区生态环境保护作用有限。白草、硬质早熟禾、阿尔泰狗娃花等草本植物重要值较大,是矿区植被群落中的优势物种。
     (7)植物群落α多样性研究表明,植物生长后期,多样性指数大于前期,且凉水井煤矿和四道沟煤矿的Shannon-Winner指数和Simpson指数差异性显著,说明矿区植被前期生长比较对照区缓慢,后期生长速度较快。β多样性指数结果显示,对照区和凉水井煤矿植被群落相似度更高,说明四道沟煤矿植被恢复还没有达到较好水平。植被群落稳定性研究表明,3个样区植被群落都不稳定,稳定系数大小关系为对照区>凉水井煤矿>四道沟煤矿,物种总关系为数对照区<凉水井煤矿<四道沟煤矿,说明群落稳定性与物种数量不是简单的线性相关。对矿区植被群落特征研究应结合物种特性、多样性、群落结构和干扰因子来研究群落稳定性。
Coal resources development could promote regional economy, and they also damage the local ecological environment. Surface cracks, subsidence, waste water, waste residue, and fly ash caused by mining greatly damaged the surrounding environment. They could bring a significant security risk for regional sustainable development and ecological environment. At home and abroad, ecological restorations of mine area mainly focused on the environmental effects of the collapse, reclamation, and coal gangue. However, there was little research on aspects of environmental potential changes in undisturbed areas. In this study, we selected Si daogou coal mine, Liangshuijing coal mine and a control area to investigate the characteristics of soil physical-chemical properties, heavy metals, and plant community in Shenmu, Northern Shaanxi. In addition, the effect of coal mining on the surrounding ecological environment was also analyzed in the study area. The main conclusions of the study were as follows:
     (1) Research for mining area soil basic physical and chemical properties shows that surface soil(0~10cm) moisture content was between 7.20% and 17.50%, with an average of 14.44%, Sidaogou coal mine>control area>Liangshuijing coal mine, Vegetation community types have great influence on soil water content, The highest water content was Caragana korshinskii + Artemisia desterorum community and the lowest was Pennisetum centrasiaticum community. The soil bulk density was between 1.38-1.54 g·cm-3, mean value was 1.45 g·cm-3. More than the state of the natural soil bulk density, indicate that mining cause of surface soil compaction. Mine soil nutrient content in low or extremely low, only a few point surface organic matter, total phosphorus and available potassium in the medium level. Soil pH>9.0, and the pH increased with deepens, Mining ground water levels falling lead to the trend of soil salinization.
     (2) In the research Laser particle size analyzer was used to measure the particle size distribution of 60 soil samples from coal mining of Liang shuijing and Sidaogou, and control area. Soil particle volume fractal dimension (D) was obtained with Volume fractal dimension model. In the meantime the relationships between D value and soil physicochemical properties were analyzed. The results showed that D value changed from 1.95 to 2.68 with the average of 2.42. The D average values of the three areas in the sequence of descending was Sidaogou(2.47), control area (2.43)and Liangshuijing(2.33). D value has a significant positive correlation with clay and silt content(P<0.01), but has a significant negative correlation with sand content(P<0.01). There were a significant positive correlation between D value, pH value and total phosphorus content, but organic matter, total nitrogen and available potassium content did not have significant correlation with D value. Moreover, the order of D value under different land use types from big to small was Setaria viridis, Setaria viridis, Astragulus adsurgens, Artemisia Capillarys and arbor.
     (3) By analyzing the soil moisture, nutrients and particle volume fractal characteristics of the mine area, it showed that the overall quality of the soil was still in range of the soil original geochemical characteristics of this area, however, some indicators have changed significantly such as soil pH, particle composition status and so on. Ground vegetation type played a significant role on protection and improvement of the soil environment, such as the herbaceous plants has some role in promoting the increase of soil D value, so in the process of improving soil texture in the mine area should take full advantage of the herbs.
     (4) We uesd Single factor index method and Nemerow Comprehensive Index to assess soil heavy metals contamination in the two mining areas, the result showed that in both mining areas, the majority comprehensive pollution index of samples can reach mild concentration, and the single factor pollution indexes in ascending order were: Cd>Zn>Cu>Pb>Cr, the study further indicated that Cd index already reached Medium-polluted degree, Zn index measured up to de-alerting degree, Cu index closed de-alerting degree, Pb and Cr index was at clean level.
     (5) The potential ecological risk and pollution degree of the heavy metals in mine soil were evaluated using Hakanson ecological risk index. The results were summarized as follows: The potential ecological risk index was between 104.83 and 144.75, with an average of 124.52, which was at low level, but some of point approach medium level , Individual elements of potential ecological risk descending order is Cd>Cu>Pb>Zn>Cr, Heavy metal pollution and potential ecological risk in Sidaogou mine serious than LiangShuijing mine. The irrational exploitation of small mines pollution of the environment is more serious, even after 5 years time to recoverr, heavy metal content is still higher. Cd was the worst of the potential ecological risk genes and should pay particular attention process to soil environmental protection in the mining area.
     (6) By survey of vegetation communities for Liangshuijing coal mines, Sidaogou coal mines and control area, There were 79 species found in the 141 sample square, belonging to 32 families, 65genera, which Compositae, Leguminosae, and Gramineae is the kind of main species. The total number of species order is Liangshuijing coal mine>control area> Sidaogou coal mine. Vegetation communities dominated by herbs, wild shrubs were scattered distribution, natural arbor were disappeared. The artificial planting tree species such as Platycladus orientalis and Populus simonii growth poor, It was no favor for mining ecological environment protection, Herb important value bigger such as Pennisetum centrasiaticum, Heteropappus altaicus and Poa sphondylodes is the advantage of vegetation communities mining species.
     (7) Theαdiversity of plant communities show that the main diversity index of late period bigger than forepart, Shannon-Winner index and Simpson index were Significantly different in Lianghuijing mine and Sidaogou mine, It indicate that early growth of plant is relatively slow, and growth faster late,βdiversity index shows that control area and Liangshuijing mine vegetation communities that similar degree higher, The Sidaogou mine reclaimed vegetation restoration were not achieved the high level. Studying shows that vegetation communities stability of the three sample areas were unstable, and the stability index was control area>Liangshuijing coal mine>Sidaogou coal mine, however, the relationship of total number species was control areacoal minecoal mine, plant community stability and species that is not a simple linear correlation. So we study the plant community characteristics of the mining area should be combined with vegetation species characteristics, diversity, community structure and other confounding factors.
引文
白文娟,焦菊英,马祥华,温仲明,焦峰.2005.黄土丘陵沟壑区退耕地自然恢复植物群落的分类与排序.西北植物学报,25(7):1317-1322
    包维楷,陈庆恒.1999.生态系统退化的过程及其特点.生态学杂志,18(2):36-42
    包维楷,刘照光.1999.岷江上游大沟流域驱动植被退化的人为干扰体研究.应用与环境生物学报, 5(3):233-239
    曹慧,杨浩,孙波,赵其国.2002.太湖流域丘陵地区土壤养分的空间变异.土壤,(4):201-205
    陈秉聪,佟金.1999.土壤分形与土壤粘附.世界科技研究与发展,院士论坛(2):34-36
    陈波,包志毅.2003.国外采石场的生态和景观恢复.水土保持学报,17(5):71-73
    陈芳清,张丽萍,谢宗强.2004.三峡地区废弃地植被生态恢复与重建的生态学研究.长江流域资源与境, 13(3):286-29
    陈峰,胡振琪,柏玉,纪晶晶.2006.矸石山周围土壤重金属污染的生态风险评价.农业环境科学学报,25(增刊):575-578
    陈灵芝,陈伟烈,韩兴国.1995中国退化生态系统研究.北京:中国科学技术出版社, 1-246
    党亚爱,李世清,王国栋,赵坤.2009黄土高原典型土壤剖面土壤颗粒组成分形特征.农业工程学报,25(9):74-78
    董霁红,卞正富,王贺封.2007.矿山充填复垦场重金属含量对比研究.中国矿业大学学报,36(4):531-536
    董莉丽,郑粉莉.2009陕北黄土丘陵沟壑区土壤粒径分形特征.中国水土保持科学,7(2):35-41
    杜峰,山仑,梁宗锁.2005.陕北黄土丘陵区撂荒演替研究-群落组成与结构分析.草地学报,13(2):140-143,158
    范英宏,陆兆华,程建龙,周忠轩,吴钢.2003.中国煤矿区主要生态环境问题及生态重建技术.生态学报,10(10):2145-2146
    傅伯杰,陈利顶,马克明.1999.黄土丘陵区小流域土地利用变化对生态环境的影响.地理学报,54(3):24-246
    傅伯杰,郭旭东,陈利顶.2001.土地利用变化与土壤养养分的变化.生态学报,21(6):927-931
    高富,沙丽清,许建初.2000.西庄河流域土地利用方式对土壤肥力影响的研究.土壤与环境,9(3):223-226
    龚子同,张甘霖.2003.人为土壤形成过程及其在现代土壤学上的意义.生态环境,12(2):184-191
    郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例.地理学报,2001,(4):447-455
    国家环境保护总局.1995.土壤环境质量标准(GB15618-1995).北京:中国环境科学出版社
    郝蓉,陕永杰,白中科.2001.露天煤矿复垦土地的植物群落多样性与稳定性.煤矿环境保护,15(6):14-16
    郝文芳,梁宗锁,陈存根,龙唐.2005.黄土丘陵区弃耕地群落演替过程中的物种多样性研究.草业科学,22(9):1-8
    郝文芳,梁宗锁,陈存根,唐龙.2005.黄土丘陵沟壑区弃耕地群落演替与土壤性质演变研究.中国农学通报,21(8):226-231
    郝占庆,郭水良,叶吉.2003.长白山北坡木本植物分布与环境关系的典范对应分析.植物生态学报,27(6):733-741
    侯庆春.1993.神木试区自然条件及环境治理综合分析.中国科学院水利部西北水土保持研究所集刊,(18):136-137
    黄建辉.1992.植物群落调查方法概要.生物学通报,(5):45-46.
    黄雅琴,孙静萍,刘孝.1996.准格尔黑岱沟露天煤矿区域生态环境演变趋势初探.内蒙古环境保护,8(4): 23-25
    黄懿梅,安韶山,曲东,赵伟峰.2007.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变.水土保持学报,21(1):152-155
    贾晓红,李新荣,李元寿.2007.干旱沙区植被恢复过程中土壤颗粒分形特征.地理研究,26(3):518-525
    贾振邦,梁涛,林健枝,吕凤伟.1997.香港河流重金属污染及潜在生态危害研究.北京大学学报(自然科学版),33(4):485-492
    角媛梅,肖笃宁,郭明.2003.景观学与景观生态的综合研究.地理与地理信息科学,19(1):91-95
    景福军,张德罡,尚占环,曾昭霞,刘孝利.2005.黄土高原弃耕地不同地形下植物群落演替初期的群落结构及多样性研究.甘肃农业大学学报,40:(2)233-238
    孔祥斌,张凤荣,齐伟.2003.集约化农区土地利用变化对土壤养分的影响─以河北省曲周县为例.地理学报,58(3):333-342
    李博.2004.生态学.北京:高等教育出版社: 122
    李海霞,胡振琪,李宁,樊春燕,梁爽.2008.淮南某废弃地矿区污染场的土壤重金属污染风险评价.煤炭学报,33(4):423-426
    李建军,冯慕华,喻龙.2001.辽东浅水区水环境质量现状评价.海洋环境科学,20(3):42-45
    李青丰,曹江营,张树礼,薛玲,李利平,秦梅枝.1996.黑岱沟露天煤矿排土场植被人工恢复的研究,中国草地,1996,(1):60-63
    李青丰,曹江营,张树礼,薛玲,李利平,秦梅枝.1997.准格尔煤田露天矿植被恢复的研究—排土场植被自然恢复的观察研究,中国草地,(2):23-25,
    李裕元,邵明安.2009.陈洪松等水蚀风蚀交错带植被恢复对土壤有机质和氮素的影响,水土保持研究, 10(5):10-15
    刘国华,舒洪岚,张金池,张秀春.2005.南京幕府山矿区废弃地植被恢复模式研究.水土保持研究, 12(1):141-144
    刘洪丽,吴军年,徐兴东.2008.基于集对分析的矿区生态承载力定量评价.干旱区研究, 25(4):568-573
    刘景玲,高玉葆,何兴东,王金龙,赵念席.2006.内蒙古中东部草原植物群落物种多样性和稳定性分析(简报).草地学报.14(4):390-392
    马克平,刘玉明.1994.生物群落多样性的测度方法(I):α多样性的测度方法(下).生物多样性,2(3):231-239
    缪驰远,汪亚峰,魏欣,等.2007.黑土表层土壤颗粒的分形特征.应用生态学报,18(9):1987-1993
    潘爱芳,赫英,马润勇.2004.陕西省区域环境地球化学分区.地球科学进展,19(增刊)439-443
    彭琳,余存祖,王继增.1995.黄土高原旱作土壤养分含量与供给.西北大学学报(自然科学版),25(2):117-122
    彭少麟.1998.热带亚热带退化生态系统的恢复与复合农林业.应用生态学报,9(6):587-591
    朴世龙,方精云,贺金生,肖玉.2004.中国草地植被生物量及其空间分布格局.植物生态学报, 28(4): 491-498.
    陕永杰,张美萍,白中科,张爱国.2005.平朔安太堡大型露天矿区土壤质量演变过程分析.干旱区研究,22(4):565-568
    束文圣,张志权,蓝崇任.2000.中国矿业废弃地的复垦对策研究(I).生态科学,19(2):24-29.
    宋书巧,周永章.2001.矿业废弃地及其生态恢复与重建.矿产保护与利用,(5):43-49
    唐克丽.1993.水蚀风蚀交错带和神木试区环境背景及整治方向.中科院水土保持研究所集刊,(18):2-8
    田贺.2002.谈矿区景观生态规划.煤炭与环境,(5):69-70
    万存绪,张效勇.1992.模糊数学在土壤质量评价中的应用.应用科学学报,9(1):359-365
    王国梁,刘国彬,刘芳,侯喜禄,周生路.2003.黄土沟壑区植被恢复过程中植物群落组成及结构变化.生态学报,23(12):2550-2557
    王国梁,刘国彬,许明祥.2002.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应.水土保持通报, 22(1): 1-5
    王国梁,周生路,赵其国.2005.土壤颗粒的体积分形维数及其在土地利用中的应用.土壤学报,42(4):545-550
    王力,张青峰,卫三平,王全九.2009.黄土高原水蚀风蚀交错带煤田开发区小流域植被恢复模式—以六道沟小流域为例.北京林业大学学报,31(2):36-43
    王莹,董霁红.2009.徐州矿区充填复垦地重金属污染的潜在生态风险评价.煤炭学报,34(5):650-655
    魏忠义,王秋兵.2009.大型煤矸石山植被重建的土壤限制性因子分析,水土保持研究,2(1):179-182
    吴承祯,洪伟.1999.不同经营模式土壤团粒结构的分形特征研究.土壤学报,36(2):162-166
    夏汉平,蔡锡安.2002.采矿地的生态恢复技术.应用生态学报,13(11):1471-1477
    肖笃宁,李秀珍.1997.当代景观生态学的进展和展望.地理科学,17(4):356-364
    肖笃宁.1997.生态空间理论与景观异质性.生态学报,17(5):453-461
    熊运兴,许平贵,邹智华.1995.紫色丘岗区水土流失严重地区植被恢复技术研究.中南林学院学报,15(2):184-189
    许慧,王家骥.1993.景观生态学的理论与应用.北京:中国环境科学出版社:148
    薛澄泽,肖玲,吴乾丰,栗德永,王开曦,李鸿恩,王锐.1986.陕西省主要农业土壤中十种元素背景值研究.西北农业大学学报,14(3):30-53
    杨培岭,罗远培,石元春.1993.用粒径的重量分布表征的土壤分形特征.科学通报,38(20):1896-1899
    杨勤科,郑粉莉,张竹梅.1993.神木试区土地资源与利用.中国科学院水利部西北水土保持研究所集刊,(18):47-56
    杨武德,王兆骞,眭国平,陈宝林.1999.土壤侵蚀对土壤肥力及土地生物生产力的影响.应用生态学报,10(2):175-178
    杨秀红,胡振琪,张学礼.2006.粉煤灰充填复垦土地风险评价及稳定化修复技术.科技导报,24(3):33-35
    耀军,温仲明,焦峰,焦菊英.2005.黄土丘陵区人工与自然植物群落物种多样性研究—以安塞县为例.水土保持研究,12(1):4-6
    余作岳,彭少麟.1996.热带亚热带退化生态系统植被恢复生态学研究.广州:广东科学技术出版社,1-35
    袁兴中,叶林奇.2001.生态系统健康评价的群落学指标.环境导报,(1):45-47
    张树礼,曹江营,连恺.2000.黑岱沟露天煤矿排土场果园景观生态建设研究.内蒙古环境保护, 11(2):26-29
    张振国,黄建成,焦菊英,白文娟.2007.黄土丘陵沟壑区退耕地植物群落土壤抗蚀性能研究.水土保持研究,14(4):75-79
    张志权,束文圣,廖文波.2002.豆科植物与矿业废弃地植被恢复.生态学杂志,21(2):47-52
    赵晓英.1996.西北地区生物资源开发利用现状及有关问题研究.地球科学展,(增刊2):69-77
    郑粉莉.1996.子午岭林区植被破坏与恢复对土壤演变的影响.水保持通报,16(5):41-44
    周厚诚,任海,向言词.2001.南澳岛植被恢复过程中不同阶段土壤的变化.热带地理,21(2):104-112
    朱志诚.1993陕北黄土高原森林区植被恢复演替.西北林学院学报,8(1):87-94
    邹厚远,刘国彬.2002.子午岭林区北部近50年植被的变化发展.西北植物学报,22(1):1-8.
    Bradshaw A.D.1976.Pollution and Evolution.In:Mansfield T A.ed. Effects of Air Pollutants on Pl-ants. Cambridge: Cambridge Univ.Press,135-139
    Bruke C.1995.Soil organic matter recovery in semiarid grasslands: Implications for the conservation reserve program. Ecological Application,5(3):793-801
    Cairns J,Balancing J.1999.Ecological destruction and restoration: the only hope for sustainable use of the planet. Elsevier Science,77-83
    Carla Burton.M, Philip BurtonJ, Riehard Hebda.J.2006.Nancy Turner,Determining the Optimal Sowing Den-sity foe a Mixture of Native Plants Used to Revegetate Degraded Ecosystems,Restoration Ecology, 14(3):379-390
    Darina H,Karel P.2003.Spoil Heaps form Brown Coal Mining:Technical Reclamation Versus Spontane-ous Revegetation.Restoration Ecology,11(3):385-391
    Dutta R.K, Agrawal M.2001. Impact of plantation of exotic species on heavy metal concentra tion of mine spoils. Indian Journal of Forestry,24(3)292-296
    Elmarsdottir A,Aradottir A.L,Trliea, Microsite A.M.J.2003.Availability and establishment of native speci-es on degraded sites . Journal of Applied Ecology ,40(5):815-823
    Garcia C, et al.1998. Revegetation in semiarid zones: Influence of terracing and organic refuse on microbial activity. Soil Science Society of America Journal, 62(3):670-676
    Godron.M.1972.Some aspects of heterogeneity in grasslands of Cantal. Statistical Ecology,3:397-415
    Hakanson.L.1980. An ecological risk index for aquatic pollution contro1. A sedimentological appro-ach. WaterResearch, 14(8):975-1001
    Humphrey M, Bradshaw A.D.1976.Heavy metal toxicities.In:Wright M J.ed. Plant Adaptation to Mine-ral Stress in Problem Soils.New York:Cornell Univ.Press,95-106
    Lubke R.A,Avis A.M.A.1999.Review of the Concepts and Application of Rehabilitation Following Heavy Mineral Dune Mining. Marine Pollution Bulletin,37(8):546-557
    Martinez-Ruiz C, Fernandez B. Santors.2005.Natural revegetation on topsoil miningspoil according to the exposure.Acta Oecologica,(28):231-238
    Martinez-Ruiz C, Fernandez B.Santors.2001.Effect of substrate coarseness and exposure on Plant suc-cession in uranium-mining wastes.plant Ecology,155(1):79-89
    Petersen S.L, Roundy B.A, Bryant R.M.2004.Methods for High-Elevation Roadsides at Bryce Canyon National Park,Utah.Restoration Ecology,12(2):248-257
    Smith R.A.H, Bradshaw A.D.1972. Stabilization of toxic mine wastes by the use of tolerantpopulatio-ns.Trans.Inst. Min. Metal .Sect.A: Min. Industry, (81):70-80
    Tan Z.X, Lalp R, Smeck N.E, F.G.Calhoun.2003. Identifying Associations Among Soil And SiteVariables Using Canonical Correlation Analysis.Soil Science, 1685(5):376-382
    Tyler S.W, Wheat-craft S.W.1992. Fractal scaling of soil particle size distribution: Analysis and limi-tations. Soil Science Society of America Journal, 56(2):362-369

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700