用户名: 密码: 验证码:
影响奶牛初乳中低丰度乳蛋白表达的因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以分析奶牛初乳中乳蛋白表达模式及提高低丰度乳蛋白表达量为目的,通过三个试验系统研究了泌乳日龄、胎次及维生素三个因素对奶牛初乳中乳清蛋白及乳蛋白表达模式的影响,为揭示乳蛋白的分泌机理、婴儿奶粉的配方设计、初乳粉生产时原料乳的选取及犊牛初乳饲喂制度的制定提供理论依据。
     第一部分:利用蛋白质组学方法研究了泌乳日龄对奶牛初乳中乳清蛋白表达的影响。2-DE方法分离了产后第1天、第3天、第7天和第21天的乳清蛋白,利用ImageMaster软件找出不同采样时间点间差异表达的蛋白,然后用高效液相色谱串联质谱对差异表达蛋白进行鉴定。结果发现:与第1天的乳清蛋白表达模式相比,第3天与第1天的基本相同,只有免疫球蛋白G表达量下调;而到了第7天,有4个蛋白的表达下调;第21天的与第7天的没有差异。这些差异蛋白涉及具有免疫活性的免疫球蛋白G、M和乳铁蛋白以及具有运输功能的白蛋白。这些发现为揭示乳蛋白分泌机理及婴儿奶粉的配方设计、初乳粉生产原料乳的选取及犊牛初乳饲喂制度的制定提供理论依据。
     第二部分:利用二向电泳(2-DE)结合高效液相色谱串联质谱方法研究了胎次对奶牛初乳中乳蛋白表达的影响。分别在产后第1天和第21天,采集第一胎和第三胎两个胎次的乳样。然后用2-DE方法分离乳蛋白,用ImageMaster软件找出两胎次在同一采样时间点的差异表达蛋白,再用高效液相色谱串联质谱对差异表达蛋白进行鉴定。结果发现:与初产奶牛的第1天乳蛋白表达谱相比,第三胎奶牛第1天所分泌的乳中有4个蛋白表达量上调;而第21天时两个胎次乳蛋白的表达无差异。这些差异蛋白包括免疫球蛋白G、M、乳铁蛋白以及白蛋白。这些发现为揭示胎次和泌乳日龄对乳蛋白分泌的影响机制提供理论基础。
     第三部分:利用蛋白质组学方法研究了产前给奶牛补充维生素AD3E (V-AD3E)对奶牛初乳中乳蛋白表达的影响。在预产期前15天,给奶牛注射V-AD3E,分别在产后第1天和第21天,采集注射组和对照组的乳样。然后用2-DE方法分离乳蛋白,用ImageMaster软件找出两组在同一采样时间点的差异表达蛋白,再用高效液相色谱串联质谱对差异表达蛋白进行鉴定。结果发现:与对照组的第1天乳蛋白表达谱相比,注射组的第1天乳蛋白表达谱上有2个蛋白表达量上调;而第21天时两组乳蛋白的表达无差异。这两个差异蛋白包括具有运输功能的白蛋白以及具有免疫活性的免疫球蛋白G。这些发现为提高初乳中生理活性物质含量提供了有利参考。
The purpose of this study was to analyze low abundance milk proteins expression patterns and to increase the level of low abundance milk proteins of dairy cows’colostrum. Three experiments were systematically conducted to analyze the influences of lactation day, lactation number and vitamin on milk proteins expression patterns in order to provide valuable information for revealing milk secretion mechanism, designing baby formula powder, selecting raw milk for manufacturing colostral meal and for planning regimen of feeding colostrum to calves.
     Experiment 1: The influences of lactation day on bovine low level whey proteins expression patterns of dairy cows’colostrum was studed by using two dimension electrophoresis (2-DE) combination high-performance liquid chromatography tandem mass spectrometry (LC/MS/MS). Whey proteins in 1 day, 3 day, 7 day and 21 day postpartum were separated by 2-DE and differentially expressed proteins among different sampling time were detected using ImageMaster software. Then the differentially expressed low level whey proteins were identified using LC/MS/MS. The study results showed that whey proteins expression patterns at 1 day and 3 day were found to be similar except for immunoglobulin G down-regulated. Four proteins were found to be down-regulated at 7 day after calving in comparision with that at 1 day after calving, mainly including immunoglobulin G, immunoglobulin M, lactoferrin and albumin, which are involved in immunity and molecule transport. These findings help reveal the mechanism of milk secretion and the influences of lactation day on bovine low abundance proteins of dairy cows during the early stages of lactation.
     Experiment 2: Two dimension electrophoresis(2-DE)combination high-performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was used to study the influences of lactation number on bovine low abundance milk proteins expression patterns of dairy cows’colostrum. Milk proteins in 1 day and 21 day postpartum from dairy cows of first calving and third calving were isolated using 2-DE. Differentially expressed proteins of the same sampling times from different lactation number were detected using ImageMaster software. Then the differentially expressed low abundance milk proteins were identified using LC/MS/MS. The study results showed that milk protein expression patterns at 21 day of the two lactation number were the same. But when compared with milk protein expression patterns from the third calving at 1 day postpartum, there were four proteins found to be down-regulated at 1 day of the first calving, mainly including immunoglobulin G, immunoglobulin M, lactotransferrin and albumin, which are involved in immunity and molecule transport. These findings help reveal the effects of lactation number on bovine low abundance proteins of dairy cows during the early stages of lactation.
     Experiment 3: The effects of vitamin on bovine low abundance milk proteins expression patterns of dairy cows’colostrum was studed by using two dimension electrophoresis (2-DE) combination high -performance liquid chromatography tandem mass spectrometry (LC/MS/MS). Twenty four dairy cows were randomly assigned to two groups (One as treatment, another as control). Treatment group was injected vitamin AD3E at 15 day before the expected date of delivery and the control one was injecteded with the same volume of normal saline. Milk proteins in 1 day and 21 day postpartum from the two groups were isolated using 2-DE. Differentially expressed proteins from the same sampling time of different group were detected using ImageMaster software. Then the differentially expressed low abundance milk proteins were identified using LC/MS/MS. The study results showed that milk protein expression patterns at 21 day from two groups after calving were the same. But when compared with milk protein expression patterns of the cows from the control group at 1 day postpartum, there were two proteins found to be up-regulated at 1 day from the treatment group, consisting of immunoglobulin G and albumin. These findings can provide value information for increasing bioactive matter in bovine colostrum.
引文
1.曹晶,谢锦云. 2-DE技术中疏水性和碱性蛋白质的研究进展.生命科学研究, 2004, 8(3): 207 -214.
    2.曹荣,王加启,卜登攀,等.日粮添加维生素D3对围产奶牛外周血免疫球蛋白及T细胞亚群的影响.动物营养学报, 2007, 19 (6): 748-752.
    3.程金波.牛奶中乳铁蛋白含量变化及其影响因素的研究[程金波硕士论文].北京:中国农业科学院,2008.
    4.范保星,陈良安,刘又宁.蛋白质芯片-飞行质谱技术.生物技术通讯, 2003, 14 (2):159-161.
    5.郭本恒.功能性乳制品.北京:中国轻工业出版社. 2001, 1: 388-415.
    6.何文娟,孟庆翔,边四辈,等.围产期饲喂β-胡萝卜素对奶牛生产性能的影响.动物营养学报, 2007,19 (2):157-162.
    7.黄凌云,赵和平,丁勤学.生物质谱在蛋白质组学研究中的应用.现代仪器, 2004, (1): 7-12.
    8.李德发,刘焕龙,席鹏彬,陈勇和李宇红.维生素D,对断奶仔猪生长性能和免疫机能的影响.中国农业大学学报.2001, 6(5): 87- 94.
    9.李蓉,梁恒.生物质谱---蛋白质组研究的关键技术.化学通报, 2002, (11): 748-757.
    10.刘光磊.奶牛乳中IgG变化规律及其转运影响因素研究. [刘光磊博士论文].北京:中国农业科学院畜牧兽医研究所, 2008.
    11.钱小红,贺福初.蛋白质组学理论与方法.北京:科学出版社. 2003. 24-28.
    12.王加启. 21世纪国际奶业发展新动向.中国畜牧兽医, 2007, 4: 5-6.
    13.应万涛,焦丽燕,钱小红.生物质谱与蛋白质组学.生物技术通讯. 2004, 3(15): 259-262.
    14.应万涛,钱小红.生物质谱技术应用及进展.军事医学科学院院刊. 2000, 2(24): 146-150.
    15.张和平,孙天竹,郭军,等.免疫初乳中乳抗体对大肠杆菌和沙门氏菌所致小鼠腹泻的被动免疫保护.中国乳品工业, 2004a, 32(6): 1-4.
    16.张鹏飞.基于生物质谱的定量蛋白质组学分析.策略国外医学·生理、病理科学与临床分册, 2004, 4(24): 389-392.
    17. Abdelhameed A M, Ahmed W M, Ekhnawy K IE, et al. Strategy trials for prevention of retained fetal membranes in a Friesian herd in Egypt.Global Veterinaria, 2009, 3 (1): 63-68.
    18. Auldist, M. J. and I. B. Hubble. Effects of mastitis on raw milk and dairy products. Aust. J. Dairy Technol. 1998, 53: 28-36.
    19. Baeker, R., Haebel, S., Schlatterer, K., & Schlatterer, B. Lipocalin-type prostaglandin D synthase in milk: A new biomarker for bovine mastitis. Prostaglandins & Other Lipid Mediators, 2002, 67(1), 75–88.
    20. Banks K L., Host defence in the newborn animal. Journal of the American Veterinary Medical Association, 1982, 181:1053-1056.
    21. Baglioni, T., and Fioretti. C. Immunoelectrophoretic study of immune globulins of bovine colostrum and milk. Arch. Vet. Ital., 1967, 18(6): 419-425.
    22. Beavis, R. C., & Fenyo, D. Database searching with massspectrometric information. In W. P.Blackstock, & M. Mann (Eds.), Proteomics: A trends guide 2000, (pp. 22–27). Amsterdam: Elsevier.
    23. Beutler, E., T. Gelbart, P. Lee, R. Trevino, M. A. Fernandez and V. F. Fairbanks, Molecular characterization of a case of atransferrinemia. Blood. 2000, 96(13): 4071-4074.
    24. Blecha F, Bull R C, Olson D P, et al., Effects of prepartum protein restriction in the beef cow on immunoglobin content in blood and colostral whey and subsequent immunoglobin absorption by the neonatal calf. J Anim Sci, 1981, 53(5): 1174-1180.
    25. Bond R, Kim J Y, Lloyd D H. Bovine and canine transferrin inhibit the growth of Malassezia pachydermatis in vitro. Med Mycol, 2005, 43(5): 447-451.
    26. Brandon M R, Watson D L, Lascelles A K. The mechanism of transfer of immunoglobulin into mammary secretion of cows. Australian Journal of Experimental Biology Medicine Science, 1971, 49:613-623.
    27. Cai T Q, Weston P G, Lund L A, et al. Association between neutrophil functions and periparturient disorders in cows. Am J Vet Res, 1994, 55(7):934-943.
    28. Candiano G,Bruschi M,Musante L,et al. Blue silver: A very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25:1327-1333.Cavaletto, M., Giuffrida, M. G., Fortunato, D., Gardano, L., Dellavalle, G., Napolitano, L., Giunta, C., Bertino, E., Fabris, C., & Conti, A. A proteomic approach to evaluate the butyrophilin gene family expression in human milk fat globule membrane. Proteomics. 2002, 2(7), 850–856.
    29. Candiano, G., M. Bruschi, L. Musante, L. Santucci, G. M. Ghiggeri, B. Carnemolla, P. Orecchia, L. Zardi and P. G. Righetti. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004, 25(9):1327-1333.
    30. Charlwood, J., Hanrahan, S., Tyldesley, R., Langridge, J., Dwek, M., & Camilleri, P. Use of proteomic methodology for the characterization of human milk fat globular membrane proteins. Analytical Biochemistry. 2002, 301(2), 314–324.
    31. Chevallet M. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis, 1998, 19: 1901-1909.
    32. Corbett R B. 1991. Nutrition of the dairy calf part 1: colostrum. Dairy World, 4-7.
    33. Cronshaw J M, Krutchinsky A N,Zhang W, et a1., Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol, 2002, 158(5): 915-927.
    34. De Groot, N., P. Van Kuik-Romeijn, H. S. Lee, et al., 2000. Increased immunoglobulin A levels in milk by over-expressing the murine polymeric immunoglobulin receptor gene in the mammary gland epithelial cells of transgenic mice. Immunology. 101:218-224.
    35. Deborah, P. Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteom. Clin. Appl. 2009, 3(2): 155-172.
    36. Doweiko, J. P. and D. J. Nompleggi Reviews: role of albumin in human physiology and pathophysiology. J Parenter Enteral Nutr, 1991, 15(2), 207-211.
    37. Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell Jr., H. M., Harwalkar, V. R., Jenness, R., &Whitney, R. M. Nomenclature of proteins of cow’s milk: Fifth revision. Journal of Dairy Science, 1984, 67(8), 599–631.
    38. Ellis, E F. and Smith, R T. The role of the spleen in immunity. Pediatrics, 1966, 37, 111-119.
    39. Eng.An approach to correlate tandem mass spectral data of peptides'withamino acid sequences in a protein database. Am. Mass Spectrom, 1994, (5): 976-989.
    40. Evans, T.W. Review article: albumin as a drug-biological effects of albumin unrelated to oncotic pressure. Aliment. Pharmacol. Ther. 2002, 16(Suppl 5): 6-11.
    41. Farr V C, Prosser C G., Clark D A. et al. Lactoferrin concentration is increased in milk from cows milked once daily. Proc. NZ Soc. Anim, Prod, 2002, 62: 225-226.
    42. Fenn, J B., Mann, M., Meng, C K., Wong, S F., & Whitehouse, C M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989, 246(4926): 64-71.
    43. Fortunato, D., Giuffrida, M G., Cavaletto, M., Garoffo, L P., Dellavalle, G., Napolitano, L., Giunta, C., Fabris, C., Bertino, E., Coscia, A., & Conti, A. Structural proteome of human colostral fat globule membrane proteins. Proteomics. 2003, 3(6): 897-905.
    44. Fox, P. F., McSweeney, P. L. H. Dairy chemistry and biochemistry. London: Blackie Academic and Professional Publishers. 1998.
    45. Galvani, M., Hamdan, M., & Righetti, P. G. Two-dimensional gel electrophoresis/ matrix-assisted laser desorption/ionization mass spectrometry of a milk powder. Rapid Communications in Mass Spectrometry. 2000, 14(20): 1889-1897.
    46. Galvani, M., Hamdan, M., & Righetti, P. G. Two-dimensional gel electrophoresis/ matrix-assisted laser desorption/ionization mass spectrometry of commercial bovine milk. Rapid Communications in Mass Spectrometry. 2001, 15(4): 258–264.
    47. Godden, S. Colostrum management for dairy calves. Vet. Clin. North Am. Food Anim. Pract. 2008, 24(1): 19-39.
    48. Gopal, P. K., and H. S. Gill. Oligosacchrides and glycoconjugates in bovine milk and colostrum. Br. J. Nutr. 2000, 84 (Suppl 1): 69-74.
    49. G?rg A, Obermaier C, Boguth G et a1., Very alkaline immobilized pH gradients for two -dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis, 1997, 18: 328-337.
    50. G?rg A,Obermaier C,Boguth G,et a1., The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21: 1037-1053.
    51. G?rg A, Postel W, Günther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1988, 9(9): 531-546.
    52. Goldfarb, M. Two-dimensional electrophoresis and computer imaging. Quantitation of human milk casein. Electrophoresis. 1999, 20(4–5): 870-874.
    53. Goshe M B, Veenstra T D, Panisko E A, et al., Phosphoprotein Isotopecoded affinity tags: application to the enrichment and identification of low abundance phosphoproteins. Anal Chem, 2002, 74 (3): 607-616.
    54. Guidry A J, Miller R H. Immunoglobulin isotype concentrations in milk as affected by stage of lactation and parity. J Dairy Sci, 1986, 69(7): 1799-1805.
    55. Gulliksen S M, Lie K I, S?lver?d L, et al. Risk Factors Associated with Colostrum Quality in Norwegian Dairy Cows. J Dairy Sci, 2008, 91(2): 704-712.
    56. Gygi S P, Rist B, Gerber S A et al., Quantitative analysis of complex protein mixtures using isotope2coded affinity tags . Nat Biotechnol. 1999, 17 (10): 994-999.
    57. Haddad G and Belosevic M. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages. Mol Immunol, 2009, 46(4): 576-586.
    58. Hammon D S, Evjen I M, Dhiman T R, et al. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet Immunol Immunopathol, 2006, 113 (1/2):21-29.
    59. Hagiwara S, Kawai K, Anri A, and Nagahata H. Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet. Med. Sci. 2003, 65 (3): 319-323.
    60. Hill, W C. and Robbins, J B. Horse antipneumococcal immunoglobulins. II. Specific mouse protective activity. Proc. Soc. exp. Biol. (N.r.), 1966, 123: 105-108.
    61. Hogarth, C. J., J. L. Fitzpatrick, A. M. Nolan, F. J. Young, A. Pitt, and P. D Eckersall. Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics. 2004, 4(7): 2094-2100.
    62. Holland, J. W., Deeth, H. C., & Alewood, P. F. Proteomic analysis of k-casein micro-heterogeneity. Proteomics. 2004, 4: 743-752.
    63. Holt, C., & Sawyer, L. Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Engineering. 1988, 2(4): 251-259.
    64. Hunt, E. Critical colostrum [J].Dairy Herd Workshop, 1990, 1(1): 16-20.
    65. Issaq, H. J. The role of separation science in proteomics research. Electrophoresis. 2001, 22(17): 3629-3638.
    66. Issaq, H. J., Conrads, T. P., Janini, G. M., & Veenstra, T. D. Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis. 2002, 23(17): 3048-3061.
    67. Iwaki H, Kageyama S, Isono T, Wakabayashi Y, Okada Y, Yoshimura K, Terai A, Arai Y, Iwamura H, Kawakita M, Yoshiki T. Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma -synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci. 2004, 95(12): 955-961.
    68. Jones, C. M., R. E. James, J. D. Quigley, 3rd and M. L. McGilliard. Influence of Pooled Colostrum or Colostrum Replacement on IgG and Evaluation of Animal Plasma in Milk Replacer. J. Dairy Sci. 2004, 87(6): 1806-1814.
    69. Kaji H, Saito H, Yamauchi Y et al., Lectin affinity capture, isotope2coded tagging and mass spectrometry to identify N2linked glycoproteins. Nat Biotechnol, 2003, 21 (6): 667-672.
    70. Karas, M., & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry. 1988, 60(20): 2299–2301.
    71. Kelly G S. Bovine colostrums: a review of clinical uses. Altern Med Rev, 2003, 8(4): 378-394.
    72. Kimura K, Goff J P, Kehrli M E, et al. Decreased neutrophil function as a cause of retained placenta in dairy cattle. Journal of Dairy Sci., 2002, 85(3):544-550.
    73. Kimura K, Reinhardt T A, Goff J P. Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle. Journal of Dairy Sci., 2006, 89:2588-2595.
    74. Klaus, G G B., Bennett, A. and Jones, E W. A quantitative study of the transfer of colostral immunoglobulins to the newborn calf. Immunology, 1969, 16: 293-.301.
    75. Klose, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangentetik. 1975, 26(3): 231–243.
    76. Klose J, Klbalz U. Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome. Electrophoresis, 1995, 16(6): 1034-1059.
    77. Korhonen, H., Marnila, P. and Gill, H. S. Milk immunoglobulins and complement factors. British Journal of Nutrition. 2000a, 84 (Suppl.1): S75-S80.
    78. Korhonen, H., Marnila, P., Gill, H.S. Bovine milk antibodies for health. British Journal of Nutrition. 2000b, S135-S146.
    79. Kelly, G. S. Bovine colostrums: a review of clinical uses. Altern. Med. Rev. 2003, 8(4): 378-394.
    80. Koc M., S. Taysi, O. Sezen and N. Bakan. Levels of some acute-phase proteins in the serum of patients with cancer during radiotherapy. Biol. Pharm. Bull. 2003, 26(10): 1494-1497.
    81. Korhonen, H., P. Marnila and H. S Gill. Milk immunoglobulins and complement factors. Br. J. Nutr. 2000, 84(Suppl 1): 75-80.
    82. Lee C N and Watson M. Environmental effects of immunoglobulins (IgG, IgM) in dairy cattle and subsequent calf development in the sub-tropics. J Dairy Sci, 2005, 88(Suppl. 1): 302.
    83. LeBlanc S J, Herdt T H, Seymour W M, et al. Peripartum serum vitamin E, retinol, and beta-carotene in dairy cattle and their associations with disease. Journal of Dairy Sci., 2004, 87:609 -619.
    84. Lesnikov, V. A., M. P. Lesnikova, H. M. Shulman, H. M. Wilson, D. M Hockenbery, M, Kocher, W. Pierpaoli and H. J. Deeg. Prevention of Fas-mediated hepatic failure by transferring. Lab. Invest. 2004, 84(3): 342-352.
    85. Lesnikov, V., M. Lesnikova and H. J. Deeg. Pro-apoptotic and anti-apoptotic effects of transferrin and transferrin-derived glycans on hematopoietic cells and lymphocytes. Exp. Hematol. 2001, 29 (4):477-489.
    86. Levieux, D., A. Ollier. Bovine immunoglobulin G,β-lactoglobulin, a-lactalbumin and serum albumin in colostrum and milk during the early post partum period. J. Dairy Res. 1999, 66(3): 421-430.
    87. Lilius, E. M., Marnila, P. The role of colostral antibodies in prevention of microbial infections. Current Opinion in Infectious Diseases. 2001, 14, 295-300.
    88. Link A J , Eng J, Schieltz D M et al., Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999, 17 (7): 676-682.
    89. Lospalluto, J., Miller, W., JR, Dorward, B. and Fink, C W. The formation of macroglobulin antibodies. J. clin. Invest. 1962, 41: 1415-1421.
    90. Macedo, M. F and M. de Sousa. Transferrin and the transferring receptor: of magic bullets and other concerns. Inflamm. Allergy Drug Targets. 2008, 7 (1): 41-52.
    91. Marvin, L. F., Parisod, V., Fay, L. B., & Guy, P. A. Characterization of lactosylated proteins of infant formula powders using two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry. Electrophoresis. 2002, 23(15): 2505–2512.
    92. Mehra, R., P. Marnila and H. Korhonen. Milk immunoglobulins for health promotion, Int. Dairy J. 2006, 16(11): 1262-1271.
    93. Mercier, J. C., Grosclaude, F., Ribadeau-Dumas, B. Primary structure of bovine caseins. Review. Milchwissenschaft. 1972, 27(7): 402–408.
    94. Mercier, J. C., Vilotte, J. L. Structure and function of milk protein genes. Journal of Dairy Science, 1993, 76(10): 3079–3098.
    95. Miera, M. P., R. Iba?eza and I. Ortiz. Influence of process variables on the production of bovine milk casein by electrodialysis with bipolar membranes. Biochem. Eng. J. 2008, 40(2): 304-311.
    96. Molloy, M. P., Herbert, B. R., Yan, J. X., Williams, K. L., Gooley, A. A. Identification of wallaby milk whey proteins separated by two-dimensional electrophoresis, using amino acid analysis and sequence tagging. Electrophoresis. 1997, 18(7): 1073–1078.
    97. Moore M, Tyler J W, Chigerwe M, et al. Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. J Am Vet Med Assoc, 2005, 226(8): 1375-1377.
    98. Murakami, K., Lagarde, M., & Yuki, Y. Identification of minor proteins of human colostrum and mature milk by two dimensional electrophoresis. Electrophoresis. 1998, 19(14): 2521–2527.
    99. Neubauer, G., Mann, M. Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: Potentials and limitations. Analytical Chemistry. 1999, 71(1): 235–242.
    100. O’Donnell, R., J. W. Holland, H. C. Deeth and P. Alewood. Milk proteomics. Int. Dairy J. 2004, 14(12): 1013-1023.
    101. Oguri T, Takahata I, Katsuta K et a1., Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis. Proteomics, 2002, 2(6): 66-72.
    102. O’Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 1975, 250(10): 4007–4021.
    103. Oyeniyi O O, Hunter A G. Colostral constituents including immunoglobulins in the first three milkings postpartum. J Dairy Sci. 1978, 61(1):44-48.
    104. Perkins D N,Pappin D J,Creasy D M,et a1. Probability—based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis.1999, (20): 3551 -3567.
    105. Pedrioli P G, Eng J K, Hubley R, et a1., A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol, 2004, 22: 1459-1466.
    106. Penque D. Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics, 2009, 3(2): 155-172.
    107. Pieper R., C. L. Gatlin, A. J. Makusky, P. S. Russo, C. R Schatz, S. S. Miller, Q. Su, A. M. McGrath, M. A. Estock, P. P. Parmar, M, Zhao, S. T. Huang, J. Zhou, F. Wang, R. Esquer-Blasco, N. L. Anderson, J. Taylor and S. Steiner. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics. 2003, 3(7): 1345-1364.
    108. Pike, R M. and Schulze, M L. Production of 7s and 19s antibodies to the somatic antigens of salmonella typhosa in rabbits. Proc. Soc. exp. Biol. (N.r.), 1964, 115, 829-833.
    109. Poutrel B., Caffin J P., Rainard P. Physiological and pathological factors influencing bovine serum albumin content of milk. J Dairy Sci, 1983, 66(3): 535-541.
    110. Quaranta, S., Giuffrida, M. G., Cavaletto, M., Giunta, C., Godovac- Zimmermann, J., Canas, B., Fabris, C., Bertino, E., Mombro, M., & Conti, A. Human proteome enhancement: High-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis, 2001, 22(9): 1810–1818.
    111. Quigley, J. D., III, and J. J. Drewry. Nutrient and immunity transfer from cow to calf pre- and postcalving. J. Dairy Sci. 1998, 81(10): 2779-2790.
    112. Rabilloud T, Adessi C, Giraudel A et a1., Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1997, 18: 307 -316.
    113. Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics, 2002, 2(1): 3–10.
    114. Rawal P., V. Gupta and B. R. Thapa. Role of colostrum in gastrointestinal infections. Indian. J. Pediatr. 2008, 75(9): 917-921.
    115. Reinhardt T. A and J. D. Lippolis. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J. Dairy Sci. 2008, 91(6): 2307-2318.
    116. Robert W, Alois H, Angelika G et a1., Towards higher resolution : Two-dimensional electrophoresis of Saccharomyces cerecisiae proteins using overlapping narrow imobilized pH gradients. Electrophoresis, 2000. 21: 2610-2616.
    117. Roos N, Mahe S, Benamouzig R, et al. 1995. 15-N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. Journal of Nutrition 125, 1238-1244.
    118. Robbins, J B., Kenny, M S. and Suter, E. The isolation and biological activities of rabbit yM and yG anti-S. typhimurium antibodies. J. exp. Med., 1965, 122, 385-402.
    119. Roepstorff, P., & Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomedical Mass Spectrometry, 1984, 11(11): 601.
    120. Roncada, P., Gaviraghi, A., Liberatori, S., Canas, B., Bini, L., & Greppi, G. F. Identification of caseins in goat milk. Proteomics, 2002, 2(6): 723–726.
    121. Seevaratnam R., B. P. Patel and M. J. Hamadeh. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays. J Biochem. 2009, 145(6):791-797.
    122. Semba R D. The role of vitamin A and related retinoids in immune function. Nutrition Reviews, 1998, 56(supp.1): 38-48.
    123. Semba R D. Vitamin A, immunity, and infection. Clinical Infectious Diseases, 1994, 19:489-499.
    124. Sheng-Hui Lee , Phei-Lang Chang , Shao-Ming Chen , Guang-Huan Sun, Chien-Lun Chen , Biing-Yir Shen , Ya-Shen Wu , Ke-Hung Tsui. Synchronous primary carcinomas of the bladder and prostate. Asian Journal of Andrology. 2006, 8(3): 357-359.
    125. Sivula N J, Ames T R, Marsh W E. Management practices and risk factors for morbidity and mortality in Minnesota dairy heifer calves. Preventive Veterinary Medicine, 1996, 27(3/4): 173 -182.Smolenski G., S. Haines, F. Y. Kwan, J. Bond, V. Farr, S. R. Davis, K. Stelwagen and T. T. Wheeler. Characterisation of host defence proteins in milk using a proteomic approach. J. Proteome Res. 2007, 6 (1):207-215.
    126. Sloane A J, Varnum S M, Auberry K J et al., High-throughput peptide mass fingerprinting and protein microarray analysis using chemical printing strategies. Mol Cell Proteomics. 2002, 1(7): 490-499.
    127. Spengler S J. Bioinformatics in the Information Age. Science. 2000, 287(18): 1221-1223.
    128. Stormont C. The role of maternal effects in animal breeding. I. Passive immunity in newborn animals. Journal of Animal Science, 1972, 35:1275-1279.
    129. Thompson A, Schafer J, Kuhn K et al., Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003, 75 (8): 1895 -1904.
    130. Tyler J W, Steevens B J, Hostetler D E, et al., Colostral immunoglobulin concentrations in Holstein and Guernsey cows. Am J Vet Res, 1999, 60(9): 1136-1139.
    131. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., & Yohida, T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1988, 2(8): 151–153.
    132. Tsuii S, Hirata Y, Mukal F, Comparison of Different Cattle Lactoferrin Content in Colostrum between Breeds. J Dairy Sci. 1990, 73:125-128.
    133. Tyler J W, Steevens B J, Hostetler D E, et al. Colostral immunoglobulin concentrations in Holstein and Guernsey cows. Am J Vet Res, 1999, 60(9): 1136-1139.
    134. Wakabayashi H, Yamauchi K, Takase M. Lactoferrin research, technology and applications. Int Dairy J, 2006, 16(11): 1241-1251.
    135. Wang H , Hanash S. Multidimensional liquid phase based separations in proteomics J Chromatogr B Analyt Technol Biomed Life Sci, 2003, 787 (1): 11-18.
    136. Waller K P,Sandgren C H,Emanuelson U,et al. Supplementation of RRR-а-tocopheryl acetateto periparturient dairy cows in commercial herds with high mastitis incidence. Journal of Dairy Sci., 2007, 90:3640-3646.
    137. Washburn M P, Wolters D, Yates J R et al., Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechno, 2001, 19 (3): 242-247.
    138. Washburn, M. P., Wolters, D., & Yates III, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 2001, 19(3): 242–247.
    139. Weidanz, W P., Jackson, A L. and Landy, M. Some aspects of the antibody response of the rabbit to immunization with entero-bacterial somatic antigens. Proc. Soc. exp. Biol. (NJ.r.), 1964, 116: 832-837.
    140. West, D. W. Structure and function of the phosphorylated residues of casein. Journal of Dairy Research, 1986, 53(2): 333–352.
    141. Westbrook, J. A., Yan, J. X., Wait, R., Welson, S. Y., & Dunn, M. J. Zooming-in on the proteome: Very narrow-range immobilized pH gradients reveal more protein species and isoforms. Electrophoresis, 2001, 22(14): 2865–2871.
    142. Wilm, M., & Mann, M. Analytical properties of the nanoelectrospray ion source. Analytical Chemistry, 1996, 68(1): 1–8.
    143. Wolf G.Recent progress in vitanmin a research:nuclear retinoic acid receptors and their interactions with gene elements. J Nutr biochem, 1990, (1): 284-289.
    144. Wolters DA, Washburn MP, Yates JR 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001, 73(23): 5683-5690.
    145. Wu, C. C., Howell, K. E., Neville, M. C., Yates III, J. R., & McManaman, J. L. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis, 2000, 21(16): 3470–3482.
    146. Yamada, M., Murakami, K., Wallingford, J. C., & Yuki, Y. Identification of low-abundance proteins of bovine colostral and mature milk using two-dimensional electrophoresis followed by microsequencing and mass spectrometry. Electrophoresis, 2002, 23(7–8): 1153–1160.
    147. Yan W, Lee H, Yi EC, Reiss D, Shannon P, Kwieciszewski BK, Coito C, Li XJ, Keller A, Eng J, Galitski T, Goodlett DR, Aebersold R, Katze MG. System-based proteomic analysis of the interferon response in human liver cells. Genome Biol. 2004, 5(8):R54. http://genomebiology.com
    148. Zhou H, Ranish J A , Watts J D et al., Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol, 2002, 20(5): 512-515.
    149. Zhou G, Li H , DeCamp D et al., 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer specific protein markers. Mol Cell Proteomics, 2002, 1(2): 117-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700