用户名: 密码: 验证码:
盐碱胁迫下星星草(Puccinellia tenuiflora)根部转录应答的初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星星草是一种具有较强耐盐碱能力的盐生植物。为了了解星星草的耐盐碱分子机制,分离重要的耐盐碱基因,本研究测定了星星草在盐碱胁迫条件下的生理指标,分别构建了盐碱地胁迫条件下和300 mM NaCl胁迫条件下的星星草根部的抑制性消减杂交文库,挑取插入片段大于500 bp的克隆进行了序列测定,对文库中的表达序列标签进行了序列对比、功能注释和功能分类等生物信息学分析,主要研究结果如下:
     1.本研究对星星草在盐碱胁迫条件下的根长、株高、含水量、游离脯氨酸含量和花青素含量等生理指标进行了测定,发现在300 mM NaCl和150 mM Na_2CO_3短时间胁迫下星星草的生长受到轻微抑制,但仍呈现出积极的应答反应。
     2.对盐碱地胁迫条件下星星草根部抑制性消减杂交文库测序311条,获得289个高质量的ESTs,用phrap软件对ESTs序列进行组装。得到共199条有意义的Unigene序列。用Blastn和Blastx进行分析,有141条序列(70.85%)与已知基因有较高相似性(Blastn E-valuee~(-10), Blastx E-value>e~(-5)),可视为新基因。
     3.盐碱地胁迫条件下星星草根部抑制性消减杂交文库中的ESTs序列经GO功能分类将序列分为生物学途径、分子功能和细胞组件三个层次。经COG功能分类分为九大类:翻译、核糖体结构和生物发生;氨基酸转运和代谢;碳水化合物转运和代谢;能量产生和转化;细胞壁/膜/被膜发生;功能未知;翻译后修饰、蛋白质周转和分子伴侣;转录和信号传导机制。
     4.在盐碱地胁迫条件下的星星草根部消减文库中筛选到一些与植物耐盐碱性相关的序列,包括WD-40重复蛋白、锌指蛋白、半胱氨酸蛋白酶、半胱氨酸蛋白酶抑制剂、蔗糖合成酶、液泡H+-ATP酶、甘油醛- 3-磷酸-脱氢酶和普遍应激蛋白等基因的片段。这些ESTs的获得为进一步克隆全长基因的cDNA以及探索星星草耐盐碱机制奠定了重要基础。
     5.对NaCl胁迫条件下星星草根部的抑制性消减杂交文库测序68条,对68个序列与数据库中的序列比对,有40条序列相似性较高(Blastx E-valuee~(-5)),可视为新基因。
     6.在NaCl胁迫条件下星星草根部抑制性消减杂交文库中筛选到有丝分裂原活化蛋白激酶、翻译延伸因子1A和半胱氨酸蛋白酶抑制剂等与植物耐盐性相关的基因的片段。这些ESTs的获得为进一步克隆全长基因的cDNA以及探索星星草耐盐机制奠定了重要基础。
Puccinellia tenuiflora is one of the halophytes with high capacity of saline and alkaline resistance. In order to understand saline-alkali resistance mechanism of Puccinellia tenuiflora and isolate important genes associated with saline-alkali resistance of Puccinellia tenuiflora, in this study, physiological index of Puccinellia tenuiflora under saline-alkali stressed conditions had been determined, and suppressed subtractive hybridization libraries of Puccinellia tenuiflora roots under saline-alkali soil and 300 mM NaCl stressed conditions had been constructed respectively. Recombinant clones with the insert fragment larger than 500 bp were selected randomly and sequenced, bioinformatic analysis including sequence alignment, functional annotation and functional classification of expressed sequence tags in libraries was performed. The main results are as follows:
     1. Physiological index including root length, stem length, water content, proline content and anthocyanin content of Puccinellia tenuiflora was determined under 300 mM NaCl and 150 mM Na_2CO_3 stressed conditions during short time courses respectively. The results indicated that the growth of Puccinellia tenuiflora seedlings was slightly suppressed under the above stressed conditons, but seedlings still actively responded to stress.
     2. From the suppressed subtractive hybridization libray of Puccinellia tenuiflora roots under saline-alkali soil stressed conditon, 311 ESTs were sequenced, 289 of them were high-quality ESTs, sequences were assembled using phrap software to get a total of 199 meaningful unigene sequences. Blastn and Blastx analysis respectively showed that 141 (70.85%) unigene fragments were homologous (Blastn E-valuee~(-10), Blastx E-value>e~(-5)) with the sequences in database, which could be regarded as new genes.
     3. In the suppressed subtractive hybridization library of Puccinellia tenuiflora roots under saline-alkali soil stressed condition, ESTs were divided into three aspects including Biological Process, Molecular function and Cell component based on GO analysis. In COG functional classification, ESTs can be divided in to 9 categories: Translation, ribosomal structure and biogenesis; Amino acid transport and metabolism; Carbohydrate transport and metabolism; Energy production and conversion; cell wall/membrane/envelope biogenesis; Function unknown; Posttranslational modification, protein turnover, chaperones; Transcription; Signal transduction mechanisms.
     4. In the suppressed subtractive hybridization library of Puccinellia tenuiflora roots under saline-alkali soil conditions, several ESTs associated with saline-alkali resistance of plants were screened, such as WD-40 repeat protein, Zn~+ finger protein, cysteine proteinase, cysteine proteinase inhibitor, sucrose synthase, vacuolar ATPase, glyceraldehyde-3-phosphate dehydrogenase and universe stress protein genes. The gain of the ESTs will lay an important foundation for cloning the full-length cDNA genes and exploring the mechanism of Puccinellia tenuiflora under saline and alkaline stress.
     5. In the suppressed subtractive hybridization libray of Puccinellia tenuiflora roots under NaCl stressed conditions, 68 ESTs were sequenced randomly, Blastx analysis showed that 40 ESTs were homologous (Blastx E-value     6. In the suppressed subtractive hybridization libray of Puccinellia tenuiflora roots under NaCl stressed conditions, several ESTs associated with salt resistance of plants were screened, such as MAPK, EF1A and CPI. The gain of the ESTs will lay an important foundation for cloning the full-length cDNA genes and exploring the mechanism of Puccinellia tenuiflora under salt stress.
引文
1 E. P. Glenn, J. J. Brown, E. Blumwald. Salt Tolerance and Crop Potential of Halophytes. CritRev Plantsci. 1999, 18(2): 227~255
    2 X. Niu, R. A. Bressan , P. M. Hasegawa, et al. Ion Homeostasis in NaCl Stress Environments. Plant Physiol. 1995, 109(3): 735~742
    3 W. Wang, B. Vinocur, A. Altman. Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance. Planta. 2003, 218(1): 1~14
    4 G. S. Aharon, M. P. Apse, S. Duan, et al. Characterization of a Family of Vacuolar Na+/H+ Antiporters in Arabidopsis thaliana. Plant Soil. 2003, 253: 245~256
    5周和平,张立新,禹锋等.我国盐碱地改良技术综述及展望.现代农业科技. 2007, (11): 159~164
    6 E. Blumwald, G. S. Aharon, M. P. Apse. Sodium transport in plant cells. Biochim. Biophys. Acta. (BBA). 2000, 1465(1-2): 140~151
    7 R. G. W. Jones, C. J. Brady, J. Spears. Ionic and Osmotic Relations in Plant Cells.Academic Press. 1979: 63~103
    8 M. K. Ashley, M. Grant, A. Grabov. Plant Responses to Potassium Deficiencies:A Role for Potassium Transport Proteins. J. Exper. Bot. 2006, 57(2): 425~436
    9 G. Blaha, U. Stelzl, C. M. Spahn, et al. Preparation of Functional Ribosomal Complexes and Effect of Buffer Condition on tRNA Positions Observed by Cryoelectronmicroscopy. Methods in Enzymology. 2000, 317: 292~309
    10 V. B. Frank, F. D. James. Reactive Oxygen Species in Plant Cell Death. Plant Physiol. 2006, 141(2): 384~390
    11 X. Gao, Z. Ren, Y. Zhao, et al. Overexpression of SOD2 Increases Salt Toleranceof Arabidopsis. Plant Physiol. 2003, 133: 1873~1881
    12 J. K. Zhu. Plant salt tolerance. Trends Plant Sci. 2001, 6(2): 66~71
    13 H. Shi, B. H. Lee, S. J. Wu, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech. 2002, 21: 81~85
    14 E. Epstein. How calcium enhances plant salt tolerance. Sci. 1998, 280(5371):1906~1997
    15 J. K. Zhu. Regulation of ion homeostasis under salt stress. Curr opin Plant Biol. 2003, 6(5): 441~445
    16 Q. S. Qiu, Y. Guo, M. A. Dietrich, et al. Regulation of SOS 1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. National Acad Sci. 2002, 99(12): 8436~8441
    17 R. A. Gaxiola, G. R. Fink, K. D. Hirschi. Genetic Manipulation of Vacuolar Proton Pumps and Transporters. Plant Physiol. 2002, 129(3): 967~973
    18 M. P. Apse, G. S. Aharon, W. A. Snedded, et al. Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiporter in Arabidopsis. Sci. 1999, 285(5431): 1256~1258
    19 H. X. Zhang, E. Blumwald, et al. Transgenic Salt-Tolerant Tomato Plants Accumulate Salt in Foliage but not in Fruit, Nature Biotechnology, 19: 765~768.
    20 H. X. Zhang, J. N. Hodson, J. P. Williams, et al. Engineering Salt-Tolerant Brassica Plants: Characterization of Yield and Seed Oil Quality in Transgenic Plants with Increased Vacuolar Sodium Accumulation, National Acad Sciences, 98(22): 12832~12836
    21 C. H. He, A. B. Waxman, C. G. Lee, et a1. Bcl-2–Related Protein A1 is an Endogenous and Cytokine-Stimulated Mediator of Cytoprotection in Hyperoxic. Acute Lung Injury, 2005, 115(4): 1039~1048
    22杨红花,冯宝春,陈学森.核果类果树DNA分子标记研究进展.生物技术通报, 2002, 5: 17~20
    23 A. L. Delauney, D. P. Vema, P. B. Kishor. Cloning of Omithine Delta-Amitransferas cDNA from Vigana Conitifo Liabytrans Complementation Escherichiacoliafld Reglllation of Pmline Biosynthesis. J. BioChem, 1993, 268(25): 18673~18678
    24 P. B. K. Kishor, Z. Hong, G. Mian. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Praline Production and Confers Osmotolerance in Trangeicplants. Plant Physiol, 1995, 108(4): 1387~1394
    25 S. D. McNeil, M. L. Nuccion, A. D. Hanson. Betaines and Related Osmoprotectants, Target for Metabolic Engineering of Stress Resistance. Plant Physiol, 1999, 120: 945~949
    26 R. Story, R. G. WynJones. Quaternary Ammonium Compounds in Plants in Relation to Salt Resistance. Phyto chemistry, 1977, 16(4): 447~453
    27侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制.植物生理学通讯, 1999, 35(1): 1~7
    28 M. Ishitani, T. Nakamura, S. Y. Han, et a1. Expression of the Betaine Aldehyde Dehydrogenase Gene in Barely in Response to Osmotic Stress and Abscisic Acid. Plant Mol Biol, 1995, 27(2): 307~315
    29张士诚,高吉寅.外源甜菜碱对盐胁迫下小麦幼苗体内几种与抗逆能力有关物质含量及钾钠吸收和运输的影响.植物生理学通讯, 2000, 36(1): 23~27
    30钟国辉,王建林.外源甜菜碱对NaCl胁迫下白菜叶片的保护效应.植物生理学通讯, 1997, 33: 333~335
    31 R. Grumet, A. D. Hanson. Genetic Evidence for an Osmoregulatory Function of Glycinebetaine Accumulation in Barley. Australian Journal of Plant Physiol. 1986, 13(3): 353~364
    32 S. Kumar, A. Dhingra, H. Daniell. Plastid-Expressed Betaine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells, Roots, and Leaves Confers Enhanced Salt Tolerance. Plant Physiol, 2004, 136(1): 2843~2854.
    33王慧中,黄大年,鲁瑞芳等.转mtlD/gutD双价基因水稻的耐盐性.科学通报. 2000, 45(7): 724~729
    34 C. Bowler, L. Slooten, T. J. Larson, et a1. Manganese Superoxide Dismutase can Reduce Cellular Damage Mediated by Oxygen Radicals in Transgenic Plants. EMBO J, 1991, 10(7): 1723~1732
    35赵可夫,邹琦,李德全等.盐分和水分胁迫对盐生和非盐生植物膜脂过氧化作用的效应.植物学报, 1993, 35(7): 519~525.
    36 U. Takeshi, Y. Bakhtiyor, S. Rie. A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor. Plant Cell, 1999, 11: 1743~1754.
    37 J. K. Zhu. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis. Plant Physiol. 2000, 124: 941~948
    38 L. Jiping, J. K. Zhu. A Calcium Sensor Homolog Required for Plant Salt Tolerance. Sci. 1998, 280(5371): 1943~1945
    39 J. K. Zhu. Salt and Drought Stress Signal Ttransduction in Plants. Annual Review of Plant Biol. 2002, 53: 247~273
    40 U. Takeshi, K. Takeshi, M. Tsuyoshi, et a1. Two Genes that Encode Ca2+-Dependent Protein Kinases are Induced by Drought and High-salt Stresses in Arabidopsis thaliana. Mol Gen Genet MGG. 1994, 244(4): 331~340
    41 S. Jen. Ca2+-Dependent Protein Kinases and Stress Signal Transduction in Plants. Science, 1996, 274(5294): 1900~1902
    42 L. J. Ha, N. D. Asif, L. C. Leanne. Cloning and Expression of a Novel Member of the Low Voltage-Activated T-Type Calcium Channel Family. The Journal of Neurosci, 1999, 19(6): 1912~1921
    43 D. Kizis, V. Lumbreras, M. Pages. Role of AP2/EREBP Transcription Factors in Gene Regulation during Abiotic Stress. Febs Lett, 2001, 498(2): 187~189
    44 Y. Sakuma, Q. Liu, J. G. Dubouzet, et al. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. Biochem Bioph Res Co, 2002, 290(3): 998~1009
    45 Y. Q. Jiang, M. K. Deyholos. Comprehensive Transcriptional Profiling of NaCl-Stressed Arabidopsis Roots Reveals Novel Classes of Responsive Genes. BMC Plant Biol, 2006, 6(1): 25
    46 V. Gruber, S. Blanchet, A. Diet, et al. Identification of Transcription Factors involved in Root Apex Responses to Salt Stress in Medicago truncatula. Mol Genet and Genomics, 2009, 281(1): 55~66
    47 M. Seki, M. Narusaka, J. Ishida, et al. Monitoring the Expression Profiles of 7000 Arabidopsis Genes under Drought, Cold and High-Salinity Stresses using a Full-Length cDNA Microarray. The Plant Journal, 2002, 31(3): 279~292
    48 J. Dong, C. Chen, Z. Chen. Expression Profiles of the Arabidopsis WRKY Gene Superfamily During Plant Defense Response. Plant Mol Biol, 2003, 51(1):21~37
    49 K. K. Kawaura, K, Mochida, Y. Ogihara. Genome-wide analysis for identification of salt-responsive genes in common wheat. Functional & Integrative Genomics, 2008, 8(3): 277~286
    50 K. Nakashima, L. S. Tran, D. N. Van, et al. Functional Analysis of a NAC-Type Transcription Factor OsNAC6 Involved in Abiotic and Biotic Stress-Responsive Gene Expression in Rice. The Plant Journal, 2007, 51(4): 617~630
    51 E. P. Glenn, J. J. Brown, E. Blumwald. Salt tolerance and crop potential ofhalophytes. CritRev Plantsci, 1999, 18(2): 227~255
    52董发才,宋纯鹏.植物细胞中的泛素及其生理功能.植物生理学通讯. 1999, 35(1): 54~59
    53刘甜甜,于影,赵鑫等.转LEA基因烟草的NaHCO_3抗性分析.分子植物育种, 2006, 4(2): 216~222
    54 J. H. Ko, S. H. Yang, K. H. Hart. Upregulation of an Arabidopsis RING-H2 Gene, XERICO, Confers Drought Tolerance through Increased Abscisic Acid Biosynthesis. The Plant Journal. 2006, 47(3): 343~355
    55 A. R. Khedr, M. A. Abbas, A. A. Wahid, et al. Proline Induces the Expression of Salt Stress Responsive Proteins and may Improve the Adaptation of Pancratinm maritimum L . to Salt Stress. J Exp Bot. 2003, 54(392): 2553~2562
    56 A. Rausell, R. Kanhonou, L. Yenush, el at. Translation Initiation Factor EIF1A Is Important Determinant in the Tolerance to NaCl Stress in Yeast and Plants. Plant J. 2003, 34(3): 257~267
    57李艳霞,姜静,于影等.转柽柳elF1A基因烟草耐盐性分析.生物技术通讯, 2006. 17(3): 328~331
    58 B. L. Lin, J. S. Wang, H. C. Liu, et al. Genomic Analysis of the Hsp70 Superfamily in Arabidopsis thaliana. Cell Stress & Chaperones. 2001, 6(3): 201~208
    59 J. Larkindale, M. Mishkind, E. Vierling. Plant Responses to High Temperature. In Plant Abiotic Stress. 2005, 100~144
    60 Z. Y. He, L. G. Li, S. Luan. Immunophilins and Parvulins. Superfamily of Peptidyl Prolyl Isomerases in Arabidopsis. Plant Physiol. 2004, 134(4): 1248~1267
    61龙强.龙眼成花逆转蛋白质组学的初步研究.福建农林大学硕士学位论文. 2006: 9~50
    62 I. M. Moller. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Plant Physiol and Plant Mol Biol. 2001, 52:561~591
    63印莉萍,孙彤,李伟等.缺铁诱导的水稻根转录本组和蛋白质组分析与膜泡运输.自然科学进展. 2004, 14 (5): 522~527.
    64 K. Vissenberg, M. Oyama, Y. Osato, et al. Differential Expression of AtXTH17, AtXTH18, AtXTH19 and AtXTH20 Genes in Arabidopsis Roots. Physiological Roles in Specification in Cell Wall Construction. Plant and Cell Physiol. 2005,46(1): 192~200
    65 Y. Lee, D. Choi, H. Kende. Expansins: Ever-Expanding Numbers and Functions. Current Opinion in Plant Biol, 2001, 4(6): 527~532
    66 S. L. Singla-Pareek, M. K. Reddy, S. K. Sopory. Genetic engineering of the glyoxalasepathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA. 2003, 100(25): 14672~14677
    67 S. L. Singla-Pareek, S. K. Yadav. A. Pareek, et al. Transgenic Tobacco Overexpressing Olyoxalase Pathway Enzymes Grow and Set Viable Seeds in Zinc-Spiked Soils. Plant Physiol. 2006, 140: 613~623
    68 P. Liang, A. Pardee. Distribution and Cloning of Eukaryotic mRNA by Means of Differential Display: Refinements and Optimization. Nucl Acids Res. 1993, 21(4): 3269~3275
    69 M. Hubank, D. G. Schat. Identifying Differences in mRNA Expression by Representational Difference Analysis of cDNA. Nucleic Acids Res. 1994, 22(25): 5640~5648
    70 V. E. Velculescu, L. Zhang, B. Vogelstein, et al. Serial Analysis of Gene Expression. Sci, 1995, 270(5235): 484~487
    71 N. B. Ivanova, A.V. Belyavsky. Identification of Differentially Expressed Genes by Restriction Endonucleasebased Gene Expression Fingerprinting. Nucl Acids Res. 1995, 23(15): 2954~2958
    72 Y. Prashar, S. M. Weissman. Analysis of Gene Expression by Display of 3'end Restriction Fragments of cDNA. Proc Natl Acad Sci USA. 1996, 93: 659
    73 D. Luda, F. L. Yun, P. C. Aaron, et al. Suppression Subtractive Hybridization: A Method for Generating Differentially Regulated or Tissue-Specific cDNA Probes and Libraries. Biochem. 1996, 93(12): 6025~6030
    74 P. D. Siebert, A. Chenchik, D. E. Kellogg, et al. An Improve PCR Method for Walking in Uncloned Genomic DNA. Nucleic Acids Res, 1995, 23 (6):1087~1088
    75黄薇,方孝东,赵文等.分离差异表达基因的方法.生物工程学报. 2002, 18(4): 521~524
    76顾克余,翟虎渠.抑制性扣除杂交技术(SSH)及其在基因克隆上的研究进展.生物技术通报, 1999(2): 13~16
    77 A. Fukuda, A. Nakamur, A. Tagiri, et al. Function, Intracellular localization in SaltTolerance of a Vacuolar Na~+/H~ Antiporter from Rice.Plant Cell Physiol.2004,45(2):146~159
    78骆蒙,孔秀英,霍纳新.小麦抗白粉病侵染初期的表达序列标签分析.遗传学报. 2002, 29(6): 525~530
    79罗志勇,刘水平,陆秋恒等.人参植物与皂苷生物合成相关的差减cDNA文库构建及基因差异表达分析.生命科学研究. 2003, 7(4): 324~328
    80 H. Katrin, Z. Ulrike. Identification of a Transcription Factor Specifically Expressed at the Onset of Leaf Senescence. Planta. 2001, 213(3): 469~473
    81 Z. wang, Q. W. zang, Z. A. Guo, et al. A Preliminary Study on Gene Expression Profile Induced by Water Stress in Wheat(Triticum aestivum L.) Seedling. 2004, 31(8): 842~849
    82 S. C. Bahn, M. S. Bae, Y. B. Park, et al. Molecular Cloning and Characterization of a Novel Low Temperature-induced Gene, Blti2, from Barley (Hordeum vulgareL.). Biochin BiophysActa. 2001, 1522(2): 134~137
    83 L. P. MI, C. Wei, J. S. Huang, et al. The Cloning and Expression of a Novel rPDCD5 Gene From Rice . YiChuan. 2004, 26(6): 893~897
    84王玉成,杨传平,刘桂丰等.差异显示技术研究NaCO_3胁迫下星星草基因的表达.植物学通报. 2005, 22(3): 307~312
    85褚延广.星星草耐盐分子机理研究及相关基因的克隆.东北林业大学硕士论文. 2005: 36~37
    86 M. D. Adanls, JM Kelley, J. D. Gocayne, et al. Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project. Sci. 1991, 252(5013): 1651~1656
    87 J.A. White, J . Todd, T .Newman, et al. A New set of Arabidopsis Expressed Tags from Developing Seeds. The Metabolic Pathway from Carbohydrates to Seed Oil. Plant Physiol. 2000, 124: 1582~1594
    88 D. Bouchez, H. Hofte. Functional genomics in plants. Plant Physiol. 1998, 118: 725~732
    89中国科学院中国植物志编辑委员会.中国植物志. 2005, 9(2): 242
    90孙国荣,阎秀峰.星星草耐盐碱生理机制的初步研究.武汉植物学研究. 1997, 15(2): 162~166
    91高红明,王建波,孙国荣.星星草耐盐碱生理机制再探讨.西北植物学报.2005, 25 (8): 1589~1594
    92王萍,殷立娟,李建东等.松嫩江平原盐碱化草地羊草的生长适应性及耐盐性生理特性的研究.生态学报. 1994, 14(3): 306~311
    93 R. K. Atkin, G. E. Barton, D. K. Robinson. Effect of Root-Growing Temperature on Growth-Substances in Xylem Exudate of Zea-Mays. Journal of Exper Bot. 1973, 24(79): 475~487
    94 H. Steppuhn, J. P. Raney. Emergence, height, and yield of canola and barley grown in saline root zones. Canadian Journal of Plant Sci. 2005, 85(4): 815~827
    95 K. Birnbaum, P. N. Benfey. Network building: transcriptional circuits in the root. Cur Opin in Plant Biol. 2004, 7(5): 82~588
    96高俊风.植物生理学实验技术.世界图书出版社, 2000: 101~102
    97邹琦.植物生理学实验指导.中国农业出版社. 2000: 166~169
    98 T. Fuleki , F. J. Francis. Quantitative Methods for Anthocyanins. Journal of Food Sci. 2006, 33(3): 266~274
    99 K. S. Gould. Nature's Swiss army knife: the Diverse Protective Roles of Anthocyanins in Leaves. Journal of Biomedi and Biotech. 2004: 314~320
    100 A. Mukhopadhyay, S. Vij, A. K. Tyagi. Overexpression of a Zinc-Finger Protein Gene from Rice Confers Tolerance to Cold, Dehydration, and Salt Stress in Transgenic Tobacoo. Proc. Natl. Acad. Sci. 2004, 101(16):6309~6314
    101 H. Sakamoto, T. Araki, T. Meshi, et al. Expression of a Subset of the Arabidopsis Cys2/His2-type Zinc-Finger Protein Gene Family under Water Stress. Gene. 2000, 248(1-2): 23~32
    102王东,杨金水.棉花类耐盐锌指蛋白基因的克隆与结构分析.复旦大学(自然科学版). 2002, 41(4): 42~46
    103黄骥,张红生,曹雅君等.一个新的水稻Cys2/His2型锌指蛋白cDNA的克隆与序列分析.南京农业大学学报. 2002, 25(2): 110~112
    104张国栋.抑制性消减杂交和cDNA微阵列技术研究星星草耐盐机理.东北林业大学硕士论文. 2006: 29~60
    105 T. F.Smith, Gaitatzes C, Saxena K, et al. The WD Repeat: a Common Architecture for Diverse Function. Trend Biochem Sci. 1999, 24(5): 181~185
    106闫龙凤,杨青川,韩建国等.植物半胱氨酸蛋白酶研究进展.草业学报. 2005, 14(5): 11~19
    107 S. Ramanjulu, D. Bartels. Drought and Desiccation-induced Modulation of Gene Expression in plants. Plant cell Environt. 2002, 25(2): 141~151
    108 B. S. Tiwari, B. Belenghi. Oxidative Stress Increased Respiration and Generation of Reactive Oxygen Species, Resulting in ATP Depletion, Opening of Mitochondrial Permeability Transition, and Programmed Cell Death. Plant Physiol. 2002, 128: 1271~1281
    109 Martin W, Brinkmann H, Savonna C, et al. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryoti glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA. 1993, 90(18): 8692~8696
    110 R. J. Redkar, R. W. Herzog, Singh NK. Transcriptional Activation of the Aspergillus Nidulans GpdA Promoter by Osmotic Signals. Appl Environ Microbiol. 1998, 64(6): 2229~2231
    111刘志华,杨谦.球毛壳菌甘油醛-3-磷酸脱氢酶基因克隆及特性分析.微生物学报. 2005, 45 (6): 885~889
    112石永丽.星星草(Puccinellia teniflora)响应Na2CO3胁迫差异表达蛋白质组学研究.哈尔滨师范大学硕士论文. 2009: 26~38
    113聂玉哲.星星草耐盐碱基因的分离及相关基因群的芯片分析.东北林业大学硕士论文. 2006: 20~39
    114 A. K. Parida,A. B. Das. Salt tolerance and salinity effects on plants: a renew Ecotoxicol. Environ Saf. 2005, 60(3): 324~349
    115 J. Sheen, L. Zhou, J. C Jang. Sugar as signaling molecules. Curr Opin Plant Bio1. 1999, 2(5): 410~418
    116 S. I.Gibson, Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 2000, 124: 1532~1539
    117 X. Miao, Q. Wu, G. F Wu, et al. Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Let. 2003, 218(1): 71~77
    118 S. K, Hanks, A. M. Quinn. Protein Kinase Catalytic Domain Sequences database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991, 200: 38~62
    119 S. R. Hubbard, L. Wei, L. Ellis, et al. Crystal Structure of the Tyrosine Kinase Domain of the Human Insulin Receptor. Nature. 1994, 372(6508): 746~754
    120 J. M. Stone, J. C. Walk. Plant Protein Kinase Families and Signal Transduction. Plant Physiol. 1995, 108(2): 451~457
    121孙大业.植物细胞信号转导研究进展.植物生理学通讯. 1996, 32(2): 81~91
    122 M. Santer, G .Rzewuski, T Marwedel, et al. The Novel Ethylene-regulated gene OsUspl from Rice Encodes a Member of a Plant Protein Family Related to Prokaryotic Universal Stress Proteins. J. Exper Bot. 2002, 53(379): 2325~233
    123 J. K. Zhu. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis. Plant Physiol. 2000, 124: 941~948
    124王宝山,邹琪. NaCl胁迫高粱根,叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物生理学报. 2000, 26(3): 181~188
    125 X. E. Yang, X. X. Long, H. B. Ye, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 2004, 259: 181~189
    126 J. V Sibole, C. Cabot, W. Michalke, et. al. Relationship between expression of the PM H+-ATPase, growth and ion partitioning in the leaves of salt-treated Medicago species. Planta. 2005, 221(4): 557~566
    127 L. Barbara, G. Danny, F. J. Quintero, et al. A Tobacco Syntaxin with a Role in Hormonal Control of Guard Cell Ion Channels. Sci. 1999, 283(5401): 537~540
    128 C. Curie, M. Axelos, C. Bardet, et a1. Modular Organization and Developmental Activity of an Arabidopsis thaliana EF-1a Gene Promoter. Mol Gen Genet. 1993, 238(3): 428~436

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700