用户名: 密码: 验证码:
青藏高原一年生野生大麦的农艺性状及品质性状分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麦是世界上最古老的作物之一,在世界禾谷作物中占有重要的地位,是位于小麦、玉米和水稻之后的第四大谷类作物。青藏高原一年生野生大麦是珍贵的种质资源,在世界大麦研究中具有重要意义,为我国所独有。本研究对13份野生二棱大麦,17份野生六棱大麦进行了10个农艺性状考察、籽粒蛋白质与淀粉含量测定,分析了青藏高原一年生野生二棱大麦在这些性状上的遗传变异,以及其农艺性状与籽粒蛋白质、淀粉含量的关系,以期为青藏高原一年生野生大麦种质资源的合理利用提供一些有用信息。主要研究结果有以下几个方面:
     1.不同棱形野生大麦10种农艺性状比较分析表明,各性状间遗传差异较大,在17个供试的六棱野生大麦中,单株有效穗数标准差最小为1.10;单株小穗数的标准差最大,为89.92。穗颈节到旗叶叶枕距离的变异系数最大,最大值为54%,株高的变异系数最小,最小值为16%。在13个供试的二棱野生大麦中,主穗长标准差最小为1.02;单株小穗数的标准差最大为39.75。穗颈节到旗叶叶枕距离的变异系数最大,最大值为40%,主穗长和主穗小穗数的变异系数最小,最小值均为13%。这些说明青藏高原一年生野生大麦具有较大的遗传多样性。
     2.在30份供试材料中,二棱野生大麦的蛋白质含量变化范围为15.00—16.52%。平均值为15.54%。变异系数为3.21%。其中材料D136蛋白质含量最低,为15.00%。材料D134蛋白质含量最高,为16.52%。六棱野生大麦的蛋白质含量变化范围为14.51—16.74%。平均值为15.10%。变异系数为3.61%。其中材料D47蛋白质含量最低,为14.51%。材料D161蛋白质含量最高,为16.74%。这些材料可作为啤酒大麦和饲料大麦育种的重要优质资源。
     3.在30份供试材料中,二棱野生大麦的淀粉含量变化范围为49.64—51.63%。平均值为50.49%。变异系数为1.09%。其中材料D134淀粉含量最低,为49.64%。材料D311蛋白质含量最高,为51.63%。六棱野生大麦的淀粉含量变化范围为48.98—51.85%。平均值为50.53%。变异系数为1.25%。其中材料D161淀粉含量最低;为48.98%。材料D252淀粉含量最高,为51.85%。
     4.供试大麦材料蛋白质含量与株高、主穗小穗数、单株小穗数、单株实粒数、单株粒重、淀粉含量呈负相关,且与主穗小穗数在5%水平上显著负相关。而与单株有效穗、主穗长、芒长、主穗下第一节间长、穗基部到旗叶叶枕距呈正相关。供试大麦材料淀粉含量与株高、单株有效穗、主穗长、主穗下第一节间长、穗基部到旗叶叶枕距、单株小穗数、单株实粒数、单株粒重、蛋白质含量呈负相关,且与单株有效穗在5%水平上显著负相关,与单株粒重在1%水平上极显著负相关,而与芒长、主穗小穗数呈正相关。
Barley is one of the most important ancient cereal crops, and also the fourth ranking staples after wheat, maize and rice in the world. The annual wild barley (Hordeum Spontaneum) of Qinghai-Tibetan Plateau is a very precious resource for the research of barley in the world. A total of 30 barley varieties, including 13 two-rowed wild barley lines and 17 six-rowed barley varieties, were used to detect their genetic diversities, based on 10 agronomic characters, protein and starch. Some basic information were presented for barley genetic breeding. The main results of this research were as follows:
     1. For barley of different rows, the results respectively indicated that there were significant differences among all germplasm resources in agronomic characters. In six-rowed barley, the lowest standard deviation of the single plant available spikes was 1.10, and the highest of the single plant spikes was 89.92. The genetic variance of distance of flag leaf phyllula to neck was highest, with the coefficient of variation of 54%. The genetic coefficient of variation of plant hight was 54%, the lowest. In two-rowed barley, the lowest standard deviation of main spike length was 1.02, and the highest of the single plant spikes was 39.75. The distance of flag leaf phyllula to neck displayed the highest coefficient of variation,40%. The main spike length and spikelet number of main spike showed the least variation, both 13%.
     2. Among all the barley germplasm resources investigated, the protein content of two-rowed barley ranged from 15.00% to 16.52%, with an average of 15.54% and the coefficient of variation of 3.21%. The cultivar D136 displayed the lowest average protein content of 15.00%, while D134 showed the highest that of 16.52%. For six-rowed barley, protein content data demonstrated a range of 14.51% to 16.74% and an average of 15.10%, with the coefficient of variation of 3.61%. Among them, the material D47 had the lowest average protein content of 14.51%, while D161 has the highest,16.74%.
     3. Among the 30 barley varieties studied, the starch content of two-rowed barley ranged from 49.64% to 51.63%, with an average of 50.49% and the coefficient of variation of 1.09%. The material D134 showed the lowest average starch content of 49.64%, while D311 displayed the highest that of 51.63%. As to six-rowed barley, the results indicated a range of 48.98% to 51.85% and an average of 50.53%, with the coefficient of variation of 1.25%. Among them, the variety D161 had the lowest average starch content of 48.98%, while D252 has the highest,51.85%.
     4. The correlation analysis illustrated that protein content had negative correlation with plant hight, spikelet number of main spike, the single plant spikes, the single plant fact seed numbers, single plant kernel weight and starch content, significant with spikelet number of main spike on level 0.05, while the correlation with the single plant available spikes, main spike length, awn length, uppermost inter-node length and distance of flag leaf phyllula to neck was positive. The results showed that starch content had negative correlation with plant hight, the single plant available spikes, main spike length, uppermost inter-node length, distance of flag leaf phyllula to neck, the single plant spikes, the single plant fact seed numbers, single plant kernel weight and protein content, significant with the single plant available spikes on level 0.05 and exceedingly significant with single plant kernel weight on level 0.01. There was positive correlation when compared with awn length and spikelet number of main spike.
引文
1.马得泉.西藏近缘野生大麦系统分类的研究.大麦科学,1991(2):17—26
    2.马得泉.西藏野生大麦的分类和分布.中国农业科学,1987(2):1-6
    3.侯永翠,颜泽洪,兰锦绣,魏育明,郑有良.利用RAMP和ISSR标记分析大麦种质资源的遗传多样性.中国农业科学,2005
    4.祝丽.大麦开颖性状的遗传分析.[硕士学位论文].扬州.扬州大学图书馆.2004
    5.马得泉.中国近缘野生大麦遗传资源目录(1988-1995).北京:中国农业出版,1995
    6.李造哲,披碱草和野大麦杂交后代的遗传特性及育性研究,内蒙古农业大学,2001,22:120-150
    7.洪棋斌,侯磊,罗小英等.应用RAPD分析川西北高原青棵的遗传背景.中国农业科学,2001,34(2):133—138
    8.邵启全等.栽培大麦的起源与进化—我国西藏和川西的野生大麦.遗传学报,1975(2):123—138
    9.马得泉.西藏野生六棱大麦的分类和分布研究.大麦科学,1997(2):7—10
    10.马得泉.中国西藏大麦遗传资源.中国农业出版社,2002
    11.姚珍,栽培大麦和野生大麦染色体N-带的研究[J],遗传学报,1982,02
    12.侯永翠,郑有良,魏育明,青藏高原近缘野生大麦醇溶蛋白遗传多样性分析,西南农业学报,2004,05:11~16
    13.方嘉禾.“八五”作物品种研究进展.北京:中国农业出版社,1998
    14.马得泉.西藏野生瓶形大麦79个新变种的发现.大麦科学,1997(3):4—9
    15.徐廷文,马得泉.西藏山南地区大麦种质资源的分类和分布.中国农业科学,1984(2):41—48
    16.湛小燕,俞志隆,黄培忠,我国大麦醇溶蛋白多肽的多态性研究,中国农业科学,1997,34:136—138
    17.卢良恕主编.中国大麦学.北京:中国农业出版社,1996,48
    18.孙立军编著.中国大麦遗传资源和优异种质.北京:中国农业科技出版社,2001
    19.孙东发,徐廷文等.大麦核质互作雄性不育系88BMCS的选育及遗传特性研究.中国农业科学,1995(2):31—36
    20.徐廷文.中国栽培大麦的分类和变种鉴定.中国农业科学,1982(6):39—46
    21.周泽其.两个不同地区的二棱野生大麦的比较研究,遗传学报,1981,8(4): 344—349.
    22.张启发,戴先凯,M.A.Saghai Maroof;西藏和埃塞俄比亚大麦6个同工酶位点遗传变异的对比分析[J],遗传学报,1992,03
    23.马得泉.中国西藏大麦蛋白质和淀粉含量研究.中国大麦文集(第三集).南昌:江西科学技术出版社,1993,7—12
    24.杨金华等.应用IA450型分析仪测定蛋白质、淀粉含量的研究.作物品种资源.1990(3):27—28
    25.张启发,戴先凯,Saghai Maroof MA.西藏和埃塞俄比亚大麦6个同工酶位点遗传变异的对比分析.遗传学报,1992,19(3):236—243
    26.湛小燕,愈志隆,黄培忠.我国大麦醇溶蛋白多肤的多态性研究.遗传学报,1991,18:252—262
    27.唐慧慧,丁毅,胡耀军.中国近缘野生大麦醇溶蛋白的遗传多态性研究.武汉植物学研究,2002,20:251-257
    28.徐廷文,黄文俊.青藏高原近缘野生大麦和栽培大麦的几种同工酶研究.中国大麦文集(第二集).西安:陕西科技出版社,1991,215—223
    29.马得泉.西藏山南地区加查等县的大麦资源.作物品种资源,1983(4):16-20
    30.侯永翠,颜泽洪,魏育明,郑有良.利用RAPD标记分析大麦种质资源的遗传多样性.植物遗传资源学报,2005,6(2):145—150
    31.马得泉.西藏野生二棱大麦47个新变种的发现.作物品种资源,1997(3):4—6
    32. Aberg E. Hordeum agriocritlzon nova ssp. a wild six-rowed barley. Ann Agric coll Sweden,1938,6:159-216
    33. Aberg E. The taxonomy and phyogeny of Hordeum L. sect. Cerealia Ands with special reference to Tibetan barleys. Symb Bot Ups,1940.4:153-156
    34. Abeau M, P. Vos Selective restriction fragment amplification:a general method for DNA fingerpringting. European Patent Application,1993. Publ. No:EP0534858, no. 92402629.7.
    35. Anderson, J. A., G. A. Churchill, J. E. Antrique, S. D. Tanksley, and M. E. Sorrels, Optimising parental selection for genetic linkage maps. Genome.1993.36,181-188
    36. Baum B R, Mecbandal S, Pemrer G A. Establislunent of a scheme for the identification of Canadian barley six-rowed cultivars using RAPD diagnostic bands. Seed Science &Technology.1998.26:449-462
    37. Behele E. Some measures of gene diversity analysis on land race populations of Ethiopian barley. Hereditas,1983.98:127-143
    38. Baum B R, Nevo E, Johnson D A, etal. Genetic diversity in wild barley(Hordeum spontaneum C. Koch) in the Near East:A molecular analysis using random amplified polymorphic DNA (RAPD). Genetic Resources and Crop Evolution,1997.44 (2): 147-157
    39. Bernacchi C J, Singsaas E L, Pimentel C, et al. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ,2001, (24):253-259
    40. Backes G, Hatz B, Jahoor A, FischBbeck G, RFLP diversity within and between major groups of barley in Europe. Plant breeding,2003.4:291-299
    41. Bhattramakki D, Rafalski A. Discovery and application of single nucleotide poly-morphisms markers in plant, lant Genotyping:The DNA Fingerprinting of Plant. CABInternational,2001.179-192
    42. Brookes A J. The essence of SNPs. Gene,1999.234:177-186.
    43. Botstein D, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet,1980.32:314-33
    44. Casas A M, I gartuae, Valles M P, Molina-Cano J L, Plant breeding,1998.117(5): 429-435
    45. Choumane W, Achtar S, Valkoun J, et al. Genetic variation in core and base barley collections form WANA as revealed by RAPDs. Triticeae III. Proceedings of the Third International Triticeae Symposium, Aleppo, Syria,1998.159-163
    46. Dai XK, Zhang QF. Genetic diversity of six isozymes loci in cultivated barley of Tibet. Theor Appl Genet,1989.78:281-286.
    47. Dawson I K, K J Chalmers, R Waugh, W Powell. Detection genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol. 1993,2:51-59
    48. Edwards K J, Mogg R. Plant genotyping by analysis of single nucleotide polymorphi-isms. PlantGenotyping:The DNA Fingerprinting of Plant. CABInternational,2001. 1-13
    49. EI-Sharkawy M A, Cock J h, Lynam J k, et al. Relationship between biomass root-yield and sindle leaf photosynthesis is I field-grown cassava. Field Crop Sci,1990, 25:183
    50. Edvards G, Walker D. Primary carboxylase and environmental regulation of photosyn-thesis and transpiration in Edvards, G. Walker, D.(eds) C3, C4:mechanisms, and cellular and environmental regulation of photosynthesis. Blackwell Scientific Publications,1983.410-444
    51. Frank R B, Ana GBM. RAPD data do not support a second center of barley domesti-cation in Morocco. Genetic Resources and Evolution.2001.48:13-19 52. Freisleben R. Ein neuer Fund von Hordeum agiocrithon Aberg. Zuechter,1943. 16:49-63
    53. Feng Zong-Yun, Liu Xian-Jun, Zhang Yi-Zheng, Ling Hong-Qing, Genetic Diversity Analysis of Tibetan Wild Barley Using SSR Markers. Acta Genetics Sinica, October. 2006.33 (10):917-928
    54. Fernandez M E, Figueiras A M, Beuto C. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cnltivars withknown origin. Theoretical and Applied Genetics.2002.104: 845-851
    55. Fernandez J A, J Sanz, N Jouve, Biochemical variation to determine phylogenetic relationships between Hordeum chilense and other American species of the genus Ho rdeum(Poaceae). Plant Syst.Evol.1987.157:105-119
    56. HaBu Y, et al. Amplifired restriction fragment length polymorphism based mRNA fingerprinting using a single restriction enzyme that recongnize a 4bp sequence. Biochem Biophys Res Commun,2000.234(2):516-521
    57. Giessen J E, et al. Z. Pflzncht,1956.35:377-440.
    58. G. Li, C F Quiros. Sequence-related amplified polymorphism(SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2001.103:455-461
    59. HAMZA Sonia,BEN HAMIDA Wafa,REBAI Ahmed, HARRA Moncef. SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits. Euphytica,2004.135(1):107-118
    60. Godw IN I D, Aitken E A, Smith L W. Aplication of inter-simplc sequence repeat (ISSR) markers to plant genetics.Electrophoresis,1997,18:1524-1528
    61. Hamada H. A novel reptead element with Z-DNA-forming potential is widely foun-din evolutionarily diverse eukaryotic genomes[J]. Proc Natl Acad Sci USA,1982, 79:6465-6469
    62. Helentjaris T, et al. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol.Biol.1985, 5:109-118.
    63. J Vrgen Knoetul, David Simpson. Expression and organisation of antenna protein in the light and temperature-sensitive barley mutant chloria. Planta.1991185(1):111-123
    64. Jaradat A A. Grain protein variability among populations of wild barley (Hordeum spontaneum C. Koch) from Jordan. Theor Appl Genet,1991.83:164-168
    65. Jorgensen R B, Relationships in the barley genus (Hordeum):an electrophoretic examination of proteins. Hereditas,1986.104:273-291
    66. Kahler A L, Allard. Genetics of isoryme variants in barley. I. Esterases. Crop Sci, 1970.10:444-448
    67. Kahier A L, Allard R W. Worldwide patterns of genetic variation among four esteraseloci in barley(Hordeum vulgare L). Theor Appl Genet,1981.59:101-111
    68. Kantety R V, X Zhang, J L Bennetzen, B Z Zehr, Assessment of genetic diversity in dent and popcorn(Zea mays L.) inbred lines using inter-simper sequence repeat (ISSR) amplification. Mol. Breed.1995,1:365-373
    69. L Petersen, et al. Genetic diverdsity among wild and cultivated barley as revealed by RFLP. Theoretical and Applied Genetics.2004.676-681
    70. Lundqvist U, Franckowiak I D, Konoshi T. New and revised descriptions of barley genes. Barley Genet Newslett,1997.26
    71. Moreno S, MartinA J P, Ortiz J M. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica,1998,101: 117-125
    72. Mather D E, Tinker N A, LaBerge D E, et al. Regions of the genome that affect grain and malt quality in North American two-row barley cross. Crop Sri,1997.37(2): 544-551
    73. Marquez-Cedillo L A, Hayes P M, Kleinhofs A, et al. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet,2001,103: 625-637
    74. Martin J M, Blake T K, Hockett E A. Diversity among North American spring barley cultivars based on coefficients of parentage. Crop sci,1991.31:1131-1137
    75. Matsui K, Oda S, Furusho M, Komatsuda T, et al. Evaluation of barley male-sterile cytoplasm based on fertility restoration and the effect of the cytoplasm on malting quality in Japan. Plant Production Science.2002,5 (3):194-197
    76. Muravenko O V, Badaev N S, Rudendko M I, et al. Patterns of formation and organization of cereal genomes. II. Chromosomal polymorphism in intervariety barley hybrids. Soviet Genetics,1990.26 (6):697-704
    77. Matus I A, Haves PM.Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome,2002.45(6):95-106
    78. Matsui K, Yoshida M, Ban T, et al. Rote of male-steriie cytoplasm in resistance to barley yellow mosaic virus and Fusarium head blight in barley. Plant Breeding,2002, 121 (3):237-240
    79. Matsui K, Mano Y, Taketa S, Kawada N, et a 1. Molecular mapping of a fertility restoration focus (Rfml) for cytoplasmic male sterility in barley (Hordeum vulgare L.). Theoreiical &Applied Genetics,2001.102 (4):477-482
    80. Nei M, Li W. Mathematical model for study genetic vatiarion in terms of restriction endonucleases. Proc Natl. Acad. USA[C].1979.76:5269-5273
    81. Poskuta J W, Nelson C J. Role of Photosynthesis andphotorespiration and of leaf area in determining yield of tall fescue genotypes. Photosynthetic,1986.20:94
    82. Nevo E, Baum B, Beiles A, et al. Ecological correlates of RAPD DNA diversity of wild barley (Hofdeum spontaneum) in the Fertile Crescent. Genetic Resources and Crop Evolution,1998.45 (2):151-159
    83. Olsen O A. Inheritance of protein and lysine content in barley, Hordeum vulgare and their relationships to other characters. Hereditas,1980.92:85-111
    84. N. Manmiroli, V. Terzi, M. Odoardi Stanca, et al. protein synthesis during cold shock in barley tissues. Theoretical and Applied Genetics,1986.73(2):190-196
    85. Reddy P V, Soliman K M. Identification of wild and cultivated Hordeum species two-primer RAPD fragments. Biologic Plantanim,1997.39 (4):543-552
    86. Rivin C J, et al. Evaluation of genomic variability at the nucleic acid level. Plant Mol. Biol. Rep,1983.1:159-161
    87. Rohlf F J. NTSYS-pc:numerical taxonomy and multivariate analysis system, version 5.1. Exeter Publishing Ltfd, Setauket, New York.1992.
    88. Sage R F, Reid C D. Photosynthetic response mechanisms to environmental change in C3 plants. In:Wilkinson R E.Plant-Environment Interactions[M]. New York: Marcel Dekker,1994.413499Riaz A, Li G, Quresh Z, Swati M S, Quiros C F. Genetic diversity of oilseed Brassica
    89. Tanyolac B. inter-simple sequence repeat (ISSR) and RAPD variation among wild barley, populations from west Turkey. Genetic Resources and CropEvolution,2003. 50:611-614
    90. Zietkiewicz E. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomes,1994.18:1524-1528
    91. napus inbred lines based on sequence-related amplified polymorphism and it relation to hybrid performance [J]. Plant Breeding,2001.120(5):411-415
    92. Turpeinen T, VanhalaT, Nevo E, NissilaE. AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populationsin Israel. Theoretical and Applied Genetics, 2003.106(7):1333-1339
    93. Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers[J].NucleicAcid Research,1989.17:6463-6471.
    94. Tolbert DM, Qualset CO, Jain SK, Craddock JC.1979. A diversity analysis of a world collection of barley. Crop Science,19:789-794.
    95. Welsh J, Mc Clelland M. Finger printing genomes using PCR with arbitrary primers. Nucl Acids Res.1990,18:7213-7218.
    96. Willians J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful a genetic markers. Nucl Acid Res.1990.18:6531-6535
    97. Ward D J. Some evolutionary aspects of certain morphologic characters in a world collection of barley. USDA Tech Bull,1962.1276:1-112.
    98. Z Vos P, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Resear- ch,1995.23:4407-4414
    99. Tanno K, Taketa S, Takeda K, Komatsuda T. A DNA marker closely linked to the vrsl locus(row-type gene) indicates multiple origins of six-rowed cultivated barley (HordeumL.). Theoretical & Applied Genetics,2002.104(1):54-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700