用户名: 密码: 验证码:
水稻细胞质雄性不育系育性稳定性和柱头外露率遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国香稻和高柱头外露率的川香29B的重组自交系为材料,构建一张遗传连锁图谱。以水稻重组自交系的每个家系为父本分别与母本川香29A杂交,得到细胞质雄性不育为遗传背景的测交F1群体,定位控制自然结实率、套袋结实率、柱头外露率、柱头单露率、柱头双露率、对细胞质雄性不育性育性影响的数量性状位点(QTL)和开花习性,并选育以川香29为主要遗传背景的优良三系不育系。这些结果如下:
     1.基于重组自交系,构建了一张包含144个SSR分子标记的遗传连锁图谱,其共覆盖水稻全基因组1884.7 cM,标记间的平均图距为12.9 cM。
     2.考察测交F1群体的自然结实率、套袋结实率、花粉可育率,共定位到7个QTL,控制柱头自然结实率的2个QTL分别位于第6,11染色体;控制套袋结实率的2个QTL分别位于第6,11染色体;控制花粉可育率的3个QTL分别位于第3,4,6染色体。基于以上三种表型,同时定位到2个影响不育系育性稳定性的QTL,位于第6染色体的RM585-RM510区间和第11染色体的RM2459-RM26115区间。这2个影响育性稳定性的QTL,其增效基因均来源于中国香稻。
     3.考察测交F1群体的柱头外露率、柱头单露率、柱头双露率,共定位到10个QTL。控制柱头外露率的3个QTL分别位于第1,2,11染色体;控制柱头单露率的4个QTL分别位于1,2,11,12号染色体;控制柱头双露率的3个QTL分别位于1,2,11号染色体上。这些QTL解释了6.25到34.85%的全部表型变异。在第1,第2,第11染色体检测到三个区段,能够控制柱头外露率、柱头单露率和柱头双露率,说明这些区段是控制柱头外露性状的主效区域,并且这些区段的增效基因均来源于川香29B。
In this study, based on recombinant inbred lines derived from the cross of Zhongguo Xiangdao and Chuanxiang 29B,a genetic linkage map were constructed. Crossing Chuanxiang 29A with each line of recombinant inbred lines(RILs) in order to make a testcross F1 population withg genetic background of cytoplasmic male sterility to map quantitative trait loci (QTLs) for natural seed-setting rate, bagged seed-setting rate, single stigma exsertion rate, double stigma exsertion rate, stigma exsertion rate and pollen fertility rate and breed sterile lines with genetic background of Chuanxiang 29. These results are as follows:
     1.Based on recombinant inbred lines, a genetic linkage map were developed containing 144 SSR markers, which covers a total of 1884.7cM with an average interval of 12.9cM.
     2.Investigated natural seed-setting rate, bagged seed-setting rate and pollen fertility rate in the testcross F1 population,7 QTLs were detected. Two QTLs for natural seed-setting rate were located on the chromosome 6,11,respectively; There were 2 QTLs for bagged seed-setting rate, locating on the chromosome 6,11,respectively; three QTLs for pollen fertility rate were identified on chromosome 3,4,6.Based on natural seed-setting rate, baged-setting rate and pollen fertility rate, we identified 2 QTLs related to fertility stability of rice sterile line.Zhongguo Xiangdao alleles of all QTLs for fertility stability of rice sterile line contributed to an increase in each trait and most QTLs showed a small effect.
     3.There were 3 QTLs for rice stigma exsertion rate, located on chromosome 1,2, 11;4 QTLs for rice single stigma exsertion rate, located on chromosome 1,2,11,12;3 QTLs of double stigma exsertion rate were located on chromosome 1,2,11.These QTLs expained 6.25 to 34.85% of total phenotypic variation. Three intervals for the three traits were detected on the chromosomel,2,11, indicating these regions were major regions for stigma exsertion. All the favorable QTLs related to rice stigma exsertion were orignated from alleles of Chuanxiang 29B.
引文
1.陈锐,高之桢,詹树萱,孙崇荣,曹凯鸣.2个水稻花发育相关MADS-box基因的全序列cDNA克隆及结构分析.复旦大学学报,2003,42(4):113-118
    2.黄真生,曾东海,陈治官.籼稻细胞质雄性不育育性恢复基因之遗传分析.中华农业研究,1989,36(2):37-150.
    3.李文宏,董国军,胡新民,滕胜,郭龙彪,曾大力,钱前.水稻柱头外露率的QTL分析.遗传学报,2003,30(7):637-640.
    4.李晨,孙传清,穆平,陈亮,王象坤.栽培稻与普通野生稻两个重要分类性状花药长度和柱头外露率的QTL分析.遗传学报,2001,28(8):746-751.
    5.李维明,蔡俊迈.稻雄性不育系天然异交率与花器形状遗传相关研究Ⅰ,福建农学院学报,1988,17(8):85-92.
    6.李陶,陈一吾.水稻柱头外露的遗传研究.作物学报,1987,13(4):314-321.
    7.罗琼,周开达.水稻无内稃突变体的遗传分析和基因定位.遗传学报.2002,29(3):230-234.
    8.王文明,文宏灿.水稻异交性状的质核互作分析.四川农业大学学报.1995,13(4):451-455.
    9.王鹏.利用回交重组自交系分析水稻株型与穗部性状的遗传基础.武汉:华中农业大学图书馆,2007.
    10.韩赞平,汪旭东,王彬等.7个籼型水稻细胞质雄性不育系异交习性的研究.西南农业学报,2004,17(4):413-417.
    11.吴为人,李维明.基于性状-标记回归的QTL区间测验方法.遗传,2001,23:143-146.
    12.杨仁崔,卢浩然.水稻恢复系IR24恢复基因的初步分析.作物学报,1984,10(2):81-86.
    13.喻婷,张玲,胡中立,宋文贞,刘少佳,章志宏,朱英国.水稻籼粳交DH群体花器性状的遗传分析.遗传学报,2003,06:33-38.
    14.张戟,陆建国,盛金元.籼粳交后代柱头外露率的遗传表现与选择.江苏农业科学,2000(2):45-48.
    15.张桂权,卢永根.栽培稻杂种不育性的遗传研究Ⅱ花粉不育性的基因模式.遗传学报,1993,20:222-228.
    16.张桂权,卢永根,刘桂富,杨进吕,张华.栽培稻杂种不育性的遗传研究Ⅲ不同类型品种F1花粉不育性的等位基因分化.遗传学报,1993,20:541-551.
    17.应存山,章善庆.对国际热带农业研究所收集的稻属种的柱头外露性状的研 究.中国水稻科学,1989,3(2):62-66.
    18.朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报.1999,33(3):327-335.
    19.Akagi H, Nakamura A, Sawada R, Oka M, Fujimura T. Genetic diagnosis of cytoplasmic male-sterile hybrid plants of rice. TheorAppl Genet.1995,90:948-951.
    20.Alpert K B, Tanksley S D.High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato.Proc Natl Acad Sci USA,1996,93:15503-15507.
    21.Azzini LE, Rutger JN. Amount of outcrossing on different male steriles of rice.Crop Sci,1982,22:905-907.
    22.Bernacchi D,Beck-Bunn T, Emmatty D,Eshed Y, Inai S,Lopez J, Petiard V,Sayama H, Uhlig J, Zamir D,Tanksley S.Advanced backcross QTL analysis of tomato.Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellif olium. Theor Appl Genet,1998,97:170-180.
    23.Bharaj T S,Bains S S,Sidhu G S,et al.Genetics of fertility restoration of 'Wild Abortive'cytoplasic male sterility in rice(Oryza sativa L.).Euphytica,1991,56(3): 199-203.
    24.Bradshaw Jr HD, Otto KG,Frewen BE, McKay JK, Schemske DW Quantitative Trait Loci Affecting Differences in Floral Morphology Between Two Species of Monkeyflower(Mimulus).Genetics,1998,149:367-382.
    25.Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics,1994,138:963-971.
    26.Covinda Raj K,Virmani S S.Genetics of fertility restoration of WA type cytoplasmic male sterility in rice.Crop Sci,1988,28:787-792.
    27.Devicente M C,Tanksley S D.QTL analysis of transgressive segregation in an interspecific tomato cross.Genetics,1993,134:585-596.
    28.Doi K, Taguchi K, Yoshinura A. A new locus affecting high F1 pollen sterility found in backcross progenies of japonica rice and African rice.RGN,1998(15):146-148.
    29.Doi K, Taguchi K, Yoshimura. A. RFLP mapping of S20 and S21 for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrina.RGN, 1999,16:65-68.
    30.Drews G N, Lee D,Christensen C A.Genetic analysis of female gametophyte development and function.Plant Cell,1998,10:5-17.
    31.Eshed Y, Zamir D.An introgression line population of lycepersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated. Genetics,1995,141:1147-1162.
    32.Fan C C,Xing Y Z,Mao H L,Lu T T,Han B,Xu C G,Li X H,Zhang Q F.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Gene, 2006,112:1164-1171.
    33.Frary A, Nesbitt T C, Frary A, Grandillo S,Vander Knaap E, Cong B,Liu J.Meller J, Elber R, Alpert K B,Tanksley S D.fw2.2:a quantitative trait locus to the evolution of tomato fruit size. Science,2000,289:85-88.
    34.Fridman E, Pleban T, Zamir D.A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA,2000,97:4718-4723.
    35.Fulton T M, Berk-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D.QTL analysis of an advanced backcross of lycoperslcan peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet,1997,95:881-894.
    36.Georgiady MS,Whitkus RW, Lord EM Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.)Mill.Genetics,2002,161:333-344.
    37. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Khush G S, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics,1998,148:479-494.
    38.Heuer S,Miezan K M.Assessing analysis hybrid sterility in Oryza glaberrima O.sativa hybrid progenies by PCR marker and crossing with wide compatibility varieties.Theor Appl Genet,2003,107:902-909.
    39.Hua J P, Xing Y Z,Xu C G, Sun X L, Yu S B,Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance.Genetics,2002,162:1885-1895.
    40. Ikehashi H, Araki H.Genetics of F1 sterility in remote crosses of rice. In:Rice Genetics.Proceedings of the International Rice Genetic Symposium. IRRI, Malina, 1986,119-130.
    41.Iwabuchi M, Kyozuka J, Shimamoto K. Processing followed by complete editing of an altered motochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J.1993,12:1437-1446.
    42.Kang H G, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene(OsPPDKB).Plant J,2005,42:901-911
    43.Kao H Namai H. Floral characteristics and environmental factors increasing natual outcrssing rate for F1 hybrid seed production in rice (Oryza Sativa L.).Jpn J Breed, 1987b(37):318-33
    44.Kazama, T, Nakamura, T, Watanabe, M, Sugita, M, and Toriyama, K. Suppression mechanism of mitochondrial ORF79 accumulation by Rfl protein in BT-type cytoplasmic male sterile rice.Plant J.2008,55:619-628.
    45.Keightley P D, Blfield G.Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res,1993,62;195-203.
    46.Kinoshito T. Report of the committee on gene symbolization, nomenclature and linkage group.Rice Genet Newsl,1995,12:9-13.
    47.Lander E S,Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage map.Genetics,1989,121:185-199.
    48.Lander ES, Green P, Abrahamson J, Barlow A,Daly MJ, Lincoln.SE, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics,1987,1:174-181.
    49.Li H B,Wang J, Liu A M, et al.Genetic basis of low temperature sensitive sterility in indica/japonica hybrids of rice as determined by RFLP analysis.Theor Appl Genet, 1997,95:1092-1097.
    50.Liu Y S,Zhu L H, Sun J S, Chen Y.Mapping QTLs for defective female gametophyte development in an intersubspecific cross in Oryza sativa L.Theor Appl Genet,2001, 102:1243-1251.
    51.Liu H Y, Xu C G,Zhang Q.Male and female gamete abortions,and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice.Sex Plant Reprod,2004,17:55-62.
    52.McCouch SR, Cho YG,Yano M,Paul E, Blinstrub M, MorishimaH, Kinoshita T Report on QTL nomenclature.Rice Genet News lett,1997,14:11-13.
    53.McCouch S R, Chen X, Panaud O,Temnykh S,et al.Microsatelite marker development, mapping and applications in rice genetics and breeding.Plant Mol Biol, 1997,35:89-99.
    54.Moreno-Gonzalez J.Genetic models to estimate additive and non-additive effects of marker-associated QTL using multipie regression techniques.Theor Appl Genet, 1992,85:435-444.
    55.Miyata M,Yamamoto T, omori T, Nitta N. Maker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet,2007,114:539-548.
    56.Redona E D, Mackill D J.Quantitative trait locus analysis for rice panicle and grain characteristics.Theor Appl Genet,1998,96:957-963.
    57.Rodolphe F, Lefort M.A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics,1993,134:1277-1288.
    58.Sano Y. Interspecific cytoplasm substitutions of an indica strain of Oryza sativa L. and O. glaberrina Steud. Euphytica,1985(34):587-592.
    59.Sano Y. A new gene controlling sterility in F1 hybrids of two cultivated rice species. JHered,1983(74):435-439.
    60.Sax K. The association of size differences with seedcoat pattern and pigmentation in Phaseolus vulgaris. Genetics,1923,8:552-560.
    61.Singh P K, Thakur R, Chaudary V K. Genetics of fertility restoration of wild abortive cytoplasmic male sterile lines in rice.IRRN,1994,19(1):5.
    62.Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Gene,1976,47:5-39.
    63.Taguchi K, Doi K, Yoshinura A. RFLP mapping of S19, a gene for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O.glaberrima.RGN,1999, (16):70-71.
    64.Tanksley S D, Nelson J C.Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theor Appl Genet,1996,92:191-203.
    65.Tanksley SD,Grandillo S,Fulton TM, Zamir D,Eshed T, Petiard.V, Lopez J,Beck Bunn T Advanced backcross QTL analysis in a cross between an elite processing line of tomato.and its wild relative L.pimpinellifolium. Theor Appl Genet,1996,92: 213-224.
    66.Tao D Y,Xu P,L i J,et al.Inheritance and mapping of male sterility restoration gene in upland japonica restorer lines. Euphytica,2004(138):247-254.
    67.Thoday J M.Location of polygenes.Nature,1961,191:368-370.
    68.Uga Y, Dac LX, Fukuta Y, Fujimura T QTL analysis for floral traits of rice using the RI populations. Breed Res,2001,3(Suppl 1):232
    69.Uga Y, Fukuta Y, Cai HW, Iwata H, Ohsawa R, Morishima H, Fujimura T Mapping QTLs influencing rice floral morphology using recombinant inbred lines derived from a cross between Oryza sativa L.and Oryza rufipogon Griff.Theor Appl Genet,2003,107:218-226.
    70.Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y.Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties.Theor Appl Genet,2002,104:1-8.
    71.Virmani SS.Heterosis and hybrid rice breeding. Springer.Verlag, Berlin pp 79-96.
    72.Virmani SS,Athwal DS.Inheritance of floral characters influencing outcrossing in rice.Crop Sci,1974,14:350-353.
    73.Volibrecht E, Hake S.Deficiency analysis of female gametogenesis in maize. Dev Genet,1995,16:44-63.
    74. Wang D L, Zhu J, Li Z K, Paterson A H.Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches.Theor Appl Genet, 1999,99:1255-1264.
    75.Wang Z, Wu Z,Xing Y, Zheng F, Guo X, Zhang W,Hong M.Nucleotide sequence of rice waxy gene. Nucleic Acids Res,1990,18:5898.
    76. Wang S,Basten C J, Zeng Z B.Windows QTL Cartographer 2.0.Department of Statistics, North Carolina State University, Raleigh, NC,2006.
    77.Yabuno T. A gametocidal factor of Oryza glaberrina Steud. in O. sativa L.Euphytica, 1995(45):191-195.
    78.Yamamoto T, Takemori N, Sue N,Nitta N.QTL analysis of stigma exsertion in rice. Rice Genet Newsl,2003,20:33-34.
    79.Yan, W.,Li,Y,Agrama, H.A.,Luo, D.,Gao,F.,Ren, G.Association mapping of stigma and spikelet characteristics in rice(Oryza sativa L.).Molecular Breeding 2009, 24(3):277-292.
    80. Yu S B,Li J X, Xu C G, Tan Y F, Li X H, Zhang Q F. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice.Theor Appl Genet,2002,104:619-625.
    81.Zeng Z B. Precision mapping of quantitative trait loci.Genetics,1994,136: 1457-1468.
    82.Zeng Z B.Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci.Proc Natl Acad Sci USA,1993,90:10972-10976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700