用户名: 密码: 验证码:
复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以复杂切削条件高速铣削加工为研究对象,深入研究了与铣削加工动力学建模与仿真相关的若干问题,进行了刀柄(主轴)-铣刀响应耦合建模研究,构建了圆角铣削、T型槽铣削动态切削力及颤振稳定域解析模型,在动力学建模与仿真研究的基础上实现了铣削加工过程切削参数优化。基于理论研究成果开发了相应的功能模块,开发的模块已得到实验验证并已成功应用于实际工程中,扩充了铣削加工动力学仿真优化系统的功能。
     在立铣加工动力学建模与仿真拓展研究方面,通过使用数值方法对铣削动力学微分方程进行求解实现了铣削加工时域仿真,在此基础上综合使用时域稳定性判据对时域仿真数据进行处理,获得了颤振稳定域时域解。基于传统的颤振稳定域解析算法,通过仿真系统地分析了固有频率、阻尼比和刚度等工艺系统模态参数对颤振稳定域的影响,得到了模态参数简化的一般原则和方法。使用解析法计算铣刀子结构端部的原点响应和跨点响应,使用锤击实验测量刀柄末端的频响函数,通过构建的刀柄(主轴)-铣刀响应耦合模型快速获得机床-刀具系统的频响函数。在此基础上,利用开发的功能模块分析了铣刀直径和安装悬伸长度对机床-刀具系统频响函数及工艺系统颤振稳定域的影响,并以此作为选择切削参数的依据。使用正交多项式模态参数整体估计方法,可直接由频响函数获得工艺系统的模态参数,以供动态切削力仿真及颤振稳定域时域仿真使用。
     在复杂切削条件高速铣削动力学建模与仿真方面,首先,通过借鉴圆柱立铣刀切削力建模与仿真方法,用离散方法对R刀切削刃进行处理,获得了R刀切削力模型及切削力系数辨识公式。其次,基于T型铣刀的切削刃几何建模,建立考虑再生作用的铣削动力学微分方程,通过数值方法进行求解,获得了T型槽铣削动态切削力时域解。借鉴圆柱立铣刀颤振稳定域解析算法,通过数值积分方法计算平均方向系数,获得了T型槽铣削颤振稳定域分析解。在此基础上,根据实际工程的应用需求,开发了固定轴向切深条件下用于描述主轴转速与临界径向切深关系及固定径向切深条件下用于描述主轴转速与临界轴向切深关系的两种颤振稳定域算法。T型槽铣削动态切削力验证实验及颤振稳定域验证实验分别对各自仿真模型和算法的正确性进行了证实。最后,通过构建典型的圆角铣削几何模型,对圆弧走刀轨迹进行离散化处理,利用计算得到的不同离散位置处的铣刀与工件的啮合角来求出作用在整个铣刀上的瞬时切削力,以实现对整个圆角铣削过程中切削力、切削功率和切削力矩的预测。建立了考虑再生切屑厚度的圆角铣削动力学方程,通过使用数值积分方法计算平均方向系数,推导出可将直线铣削颤振稳定域解析模型应用于圆角铣削中,前提是采用圆角铣削中最大径向啮合角来代替名义径向啮合角。在此基础上,根据圆角铣削中铣刀与工件之间的几何关系,推导出了均匀径向切深与非均匀径向切深两种圆角铣削的最大径向啮合角的计算公式。切削实验证实了圆角铣削切削力预测模型及颤振稳定域解析模型的正确性。
     在铣削加工动力学建模与仿真分析的基础上,以铣削加工工艺参数为设计变量,以最小加工时间为优化目标函数,以动力学仿真结果为约束条件,将复杂的切削参数优化问题分解成若干个相对简单的条件极值问题进行处理,可方便获得优化的切削参数。针对型腔铣削和T型槽铣削两个切削参数优化实例进行的验证实验,不仅证实了本文所述的动力学建模与仿真算法的正确性,而且使加工零件的表面质量和切削效率得到了显著的提高。同时,多个工程应用实例也揭示复杂切削条件高速数控铣削动力学仿真与切削参数优化技术具有较大的应用价值。
With high speed milling under complicated cutting conditions as the research object of this paper, several problems corresponding to dynamic modeling and simulation of end milling are investigated. The dynamic cutting force model and the analytical chatter stability model for both circular corner milling and tee slot milling are setup. The receptance coupling model of a spindle-holder with a cutting tool is presented. With the result of dynamic simulation, the cutting parameters of milling process are optimizated. Based on the related researches and achievements, several functional modules are developed which are verified by cutting experiments and have some successful applications in practical engineering.
     As for the further research of dynamic modeling and simulation of end milling, the time domain simulation is inplemented by applying the numerical integration algorithm to solve the dynamic differential equations, and as a result, the chatter stability lobes in the time domain are otained by applying some chatter detection criteria synthetically to the simulated data. With the traditional analytical solution for the stability limits, the influence of modal parameters, i.e frequency, damping ratio and stiffness, on the chatter stability lobes are discussed, and a general method for modal simplification is achieved.
     With receptance coupling model, the end point receptances of the tool obtained by an analytical model, and the frequency response function of the spindle-holder assembly obtained by hammer tests, the receptance of spindle-holder and tool assembly is achieved. Futher more, the effects of cutter’s diameter and the overhange length on the chatter limits of the machining system have been investigated according to the developed functional module.
     By applying the orthogonal polynomial global estimation approach to the FRF of the tool tip, the modal parameters of a machining system are obtained, which are indispensable to the simulation of dynamic cutting force and the chatter stability in the time domain.
     As for the dynamic modeling and simulation of a milling process under complicated cutting condition, firstly, when the approach of cutting force modeling and simulation of flat end mill is used as reference and the discretiztion approach is applied to the cutting edges of a bull nose end mill, the cutting force model and the cutting force coefficients identification expressions for a bull nose end mill are obtained.
     Secondly, based on the geometrical modeling for the cutting edges of a tee slot end mill, the dynamic differential equations are set up, in which the regenerative effect is taken into account. When the numerical integration approach is used for solving of these equations, the dynamic cutting forces of tee slot milling are achieved. On the basis of the above achievements, the stability lobes in terms of axial depth of cut under a given radial depth of cut and the stability lobes in terms of radial depth of cut under a given axial depth of cut are both created to meet the requirements of practical applications. The cutting experiments for both dynamic cutting forces and chatter stability of tee slot milling have approved the validation of the related simulation model and algorithm.
     Lastly, when a typical geometrical model of circular corner milling is constructed and the circular cutting path is discretized, the engagement angles between the tool and the workpiece at each discretized positions are first calculated, and then the overall cutting forces acting on the cutter are obtained. As a result, the cutting forces, the power and the torque during the whole process of the circular corner milling are predicated. The dynamic equations for circular corner milling are set up, in which the regenerative effect is taken into account. When the average directional coefficients are obtained by numerical intergration, the analytical determination of chatter limits used for linear milling can be adopted for circular corner milling, the precondition is that the maximal radial engagement angle instead of the nominal radial engagement angle should be used. The expressions of the maximal radial engagement angle for circular corner milling with both uniform and non-uniform radial depth of cut are derived by the geometrical relationship between the cutter and the workpiece. The cutting force and the chatter stability models were verified by cutting experiments.
     With the result of the dynamic modeling and simulation of a milling process, the optimization of the milling process is further studied. The optimization variables include the spindle speed n, the axial depth of cut ap, the radial depth of cut ae and the feedrate per flute ft. The minimal cutting time is selected as the target of the optimization and the result of dynamic simulation is selected as the constraint condition of the optimization. It is convenient to obtain the optimized cutting parameters when the complicated optimization problem is divided into several relative simple conditional extremum problems. The constraint condition of chatter stability is introduced into the optimization of the milling process. As a result, the dynamics of high speed milling can further be reflected and the optimization of cutting parameters is more scientific and effective. The verification tests conducted for the cutting parameters optimization of both pocket milling and tee slot milling have approved that when the approach of dynamic simulation and optimization presented in this paper are used the machining efficient can be improved remarkably. Meanwhile, several successful engineering applications have also revealed the significant applied value of dynamic simulation and cutting parameters optimization.
引文
[1] Ivester R.W., Kennedy M. Davies M. et al. Assessment of machining models: progress report [EB/OL]. Official contribution of NIST on the website(http://www.nist.gov/amm/), 2000
    [2] Fu H.J., Devor R.E., Kapoor S.G. A Mechanistic Model for the Predication of the Force System in Face Milling Operation [J]. Journal of Engineering for Industry, 1984, 106(1): 81-88
    [3] Endres W.J., Sutherland J.W., et al. A Dynamic Model of the Cutting Force System in the Turning Process [J]. Monitoring and Control of Manufacturing Processes, 1990, 44(ASME PED): 193-212
    [4] Subramani G., Suvada R., Kapoor S.G. A Model for the Predication of Force System for Cylinder Boring Process [C]. Transactions of NAMRI/SME, 1987, 2(1): 439-446
    [5] Chandrasekharan V., Kapoor S.G., DeVor R.E. A Mechanistic Approach to Predicating the Cutting Forces in Drilling: With Application to Fiber-Reinforced Composite Materials [J]. Journal of Engineering for Industry, 1995, 117(1): 559-570
    [6] Shin Y.C., Waters A.J. Face Milling Process Modeling with Structural Nonlinearity [C]. Transactions of NAMRI/SME, 1994, 22(1): 157-164
    [7] Altintas Y., Lee P. A General Mechanics and Dynamics Model for Helical end Mills [C]. Annals of the CIRP, 1996, 45(1): 59-64
    [8] Schulz H., Moriwaki T. High Speed Machining [C]. Annals of the CIRP, 1992, 41(2): 637-643
    [9] Dewes R.C., Aspinwall D.K. A review of ultra high speed milling of hardened steels [J]. Journal of material processing technology, 1997, 69(1-3): 1-17
    [10] Tobias S.A. Machine Tool Vibration Research [J]. International Journal of Machine Tool Design Research, 1961, 1(1): 1- 44
    [11] Tlusty J., Polacek M. The Stability of Machine Tools Against Self Excited Vibrations in Machining [J]. ASME International Research in Production Engineering, 1963, 1(1): 465 - 474
    [12] Merritt H.E. Theory of Self-Excited Machine-Tool Chatter [J]. Journal of Engineering for Industry, 1965, 87(4): 447- 454
    [13] Usui E., Shirakashi T. Kitagawa T. Analytical prediction of three-dimensional cutting process, Part 3: Cutting temperature and crater wear of carbide tool [J]. Transactions of ASME, Journal of Engineering for Industry, 1978, 100(1): 236 - 243
    [14] Klocke F., Konig W. Gerschwiler. Advanced Machining of Titanium and Nickel-Based Alloys [J]. Advanced Manufacturing Systems and Technology, Springer Verlag, New York, USA, 1996
    [15] Taylor F.W. On the Art of Cutting Metal [C]. Trans. Of the ASME, 1907, 28-31(1): 100-110
    [16] Koenigsberger F., Tlusty J. Machine Tool Structures [M]. London: Pergamon Press, 1970:1-100
    [17] Merchant M.E. Mechanics of the Metal Cutting Process: Plasticity Conditions in Orthogonal Cutting [J]. Journal of Applied Physics, 1945, 16(1): 18- 324
    [18] Lee E.H., Shaffer B.W. Theory of Plasticity Applied to the Problems of Machining [J]. Journal of Applied Mechanics, 1951, 18(1): 405- 413
    [19] Tobias S. A. The vibration of vertical milling machines under test and working conditions [C]. Proc. of the Inst of Mech. Eng, 1959, 173(1): 474-484
    [20] Oxley P.L.B. Introducing Strain-rate Dependent Work Material Properties into the Analysis of Orthogonal Cutting [C]. Annals of the CIRP, 1966, 13(1): 127-138
    [21] Lee A.C., Liu S., Chiang S. T. Analysis of chatter vibration in a cutter-workpiece system [J]. International Journal of Machine Tool Design and Research, 1991, 31(2): 221
    [22] Albrecht P. Dynamics of the Metal-cutting Process [C]. Trans. of the ASME, 1965, 87(1): 429 -440
    [23] Shaw M.C. Cutting Characteristics with Variable Un-deformed Chip Thickness [C]. Annals of the CIRP, 1962, 10(1): 240-247
    [24] Tlusty J. Dynamics of high speed milling [J]. ASME Journal of Engineering For Industry, 1984, 12(1): 101-126
    [25] Sabberwaal A.J. Chip section and cutting force during the milling operation [C]. Annals of the CIRP, 1961, 10(3):197-203
    [26] Kline W.A., DeVor R.E., Lindberg J.R. The Predication of Cutting Forces in End Milling with Application to Cornering Cut [J]. International Journal of Machine Tool Design and Research, 1982, 22(1):7-22
    [27] Kline W.A., DeVor R.E. The Effect of Cutting Geometry and Forces in Milling [J]. International Journal of Machine Tool Design and Research, 1983, 2(1): 123-140
    [28] Sutherland J.W., DeVor R.E. An Improved Method for Cutting Force and Surface Error Predication in Flexible End Milling Systems [J]. Journal of Engineering for Industry, 1986, 108(4):269-79
    [29] Armarego E.J.A, Deshpande N.P. Computerized End-Milling Force Predications With Cutting Models Allowing for Eccentricity and Cutter Deflections [J]. Annals of the CIRP, 1991, 40(1): 25-29
    [30] Elbestawi M.A., Ismail F., Du R. et al. Modeling Machining Dynamics Including Damping in the Tool-Workpiece Interface [J]. Journal of Engineering for Industry, 1994, 116(4): 435- 439
    [31] Fu H.J., DeVor R.E., Kapoor S.G. A Mechanistic Model for the Predication of the Force System in Face Milling Operations [J]. Journal of Engineering for Industry, 1984, 106: 81- 88
    [32] Waters A.J. Modeling and Simulation of Cutting Forces during Face Milling Operation [D]. USA: Purdue University, 1995: 1-200
    [33] Jensen S.A. Vibration and Stability Analysis of Face Milling Operations [D]. USA: Purdue University, 1997: 1-150
    [34] Altintas Y., Budak E. Analytical Predication of Stability Lobes in Milling [C]. Annals of the CIRP, 1995, 44(1): 357-362
    [35] Altintas Y., Lee P. Combined Mechanics and Dynamics of Ball End Milling [C]. ASME Winter Annual Meeting, 1995, MED 2(1): 657-677
    [36] Altintas Y., Lee P. A General Mechanics and Dynamics Model for Helical end Mills [C]. Annals of the CIRP, 1996, 45(1): 59-64
    [37] Smith S., Tlusty J. An Overview of Modeling and Simulation of the Milling Process [J]. ASME Journal of Engineering for industry, 1991, 113(1): 169-175
    [38] Yang M., Park H. The prediction of cutting force in ball-end milling [J]. International Journal of Machine Tools and Manufacture, 1991, 31(1): 45 -54
    [39] Budak E., Altintas Y. Armarego E.J.A. Prediction of milling force coefficients from orthogonal cutting data [J]. Transactions of the ASME Journal of Manufacturing Science and Engineering, 1996, 118(2): 216 -224
    [40] Wang J.J.J., Zheng C.M. Identification of shearing and plowing cutting constants from average forces in ball-end milling [J]. International Journal of Machine Tools and Manufacture, 2002, 42(6): 695-705
    [41] Azeem A., Feng I.Y., Wang L.H. Simplified and efficient calibration of a mechanistic cutting force model for ball-end milling [J]. International Journal of Machine Tools & Manufacture, 2004, 44(2-3): 291-298
    [42] Engin S., Altintas Y. Mechanics and dynamics of general milling cutters Part I: helical end mills [J]. International Journal of Machine Tools & Manufacture, 2001, 41(15): 2195-2212
    [43] Engin S., Altintas Y. Mechanics and dynamics of general milling cutters Part II: inserted cutters [J]. International Journal of Machine Tools & Manufacture, 2001, 41(15): 2213-2231
    [44] Fussel B.K., Sirinivasan K. An investigation of the end milling process under varying machining conditions [J]. Transactions of the ASME, Journal of Engineering for Industry, 1989, 111(1): 27-36
    [45] Li Y., Liang S.Y. Cutting force analysis in transient state milling processes [J]. The International Journal of Advanced Manufacturing Technology, 1999, 15(1): 785-790
    [46] Yun W.S., Ko J.H., et al. Development of a virtual machining system Part III: Cutting process simulation in transient cuts [J]. International Journal of Machine Tools & Manufacture, 2002, 4(15): 1617-1626
    [47] Lazoglu I. Sculpture surface machining: a generalized model of ball-end milling force system [J]. International Journal of Machine Tools & Manufacture, 2003, 43(5): 453-462.
    [48] Larue A., Altintas Y. Simulation of flank milling processes [J]. International Journal of Machine Tools & Manufacture, 2005, 45(4-5): 549-559
    [49] Ozturk B., Lazoglu I. Machining of free-form surfaces Part I: Analytical chip load [J]. International Journal of Machine Tools & Manufacture, 2006, 46(7-8): 728-735
    [50] Xu A.P., Qu Y.X., Zhang D.W., et al. Simulation and experimental investigation of the end milling process considering the cutter flexibility [J]. International Journal of Machine Tools & Manufacture, 2003, 43(3): 283-292
    [51] Zhang Lei, Zheng Li. Prediction of cutting forces in milling of circular corner profiles [J]. International Journal of Machine Tools & Manufacture, 2004, 44(2-3): 225-235
    [52] Salgado M.A., Lopez de Lacalle L.N., et al. Evaluation of the stiffness chain on the deflection of end-mills under cutting forces [J]. International Journal of Machine Tools & Manufacture, 2005, 45(6): 727-739
    [53] Kim G.M., Kim B.H., Chu C.N. Estimation of cutter deflection and form error in ball-end milling Processes [J]. International Journal of Machine Tools & Manufacture, 2003(9), 43: 917-924
    [54] Ratchev S., Liu S., Becker A.A. Error compensation strategy in milling flexible thin-wall parts [J]. Journal of Materials Processing Technology, 2005, 162-163(SPEC ISS): 673-681
    [55] Depince P., Hascoet J.Y. Active integration of tool deflection effects in end milling. Part I, Prediction of milled surfaces [J]. International Journal of Machine Tools & Manufacture, 2006: 46(9): 937-944
    [56] Law M.Y., Geddam A. Error compensation in the end milling of pockets: a methodology [J]. Journal of Materials Processing Technology, 2003, 139(1-3): 21-27
    [57] Rao V.S., Rao P.V.M. Tool deflection compensation in peripheral milling of curved geometries [J]. International Journal of Machine Tools & Manufacture, 2006, 46(15): 2036-2043
    [58] 武凯,何宁,廖文和等. 基于变形控制的薄壁结构件高速铣削参数选择[J]. 机械科学与技术, 2005, 24(7): 788-791
    [59] 黄志刚, 柯映林. 飞机整体框类结构件铣削加工的模拟研究[J]. 中国机械工程, 2004, 15(11): 991-995
    [60] Lee K.Y., Kang M.C., Jeong Y.H., et al. Simulation of surface roughness and profile in high-speed end milling [J]. Journal of Material Processing Technology, 2001, 113(1-3): 410-415
    [61] Chen J.S., Huang Y.K., Chen M.S. A study of the surface scallop generating mechanism in the ball-end milling process [J]. International Journal of Machine Tools & Manufacture, 2005, 45(9): 1077-1084
    [62] Omar O.E.E.K., El-Wardany T., Ng E., et al. An improved cutting force and surface topography prediction model in end milling [J]. International Journal of Machine Tools & Manufacture, 2007, 47(7-8): 1263-1275
    [63] Schmitz T.L., Couey J., Marsh E., et al. Run-out effects in milling: Surface finish, surface location error, and stability [J]. International Journal of Machine Tools & Manufacture, 2007, 47(5): 841-851
    [64] Lazoglu I., Altintas Y. Prediction of tool and chip temperature in continuous and interrupted machining [J]. International Journal of Machine Tools & Manufacture, 2002, 42(9): 1011-1022
    [65] Richardson D.J., Keavey M.A., Dailami F. Modeling of cutting induced workpiece temperatures for dry milling [J]. International Journal of Machine Tools & Manufacture, 2006, 46(10): 1139-1145
    [66] 黄志刚, 柯映林, 王立涛. 金属切削加工的热力耦合模型及有限元模拟研究[J]. 航空学报, 2004, 125(13):317-320
    [67] Tobias S.A., Fishwick W. A Theory of Regenerative Chatter [J]. the Engineer, 1958, 205(1):200-213
    [68] Merrit H.E. Theory of self-excited machine tool chatter [J]. Transactions ASME, Journal of Engineering for Industry, 1965, 87 (4): 447- 454
    [69] Tlusty J., Ismail F. Basic nonlinearity in machining chatter [C]. Annals of the CIRP, 1981, 30(1): 299-304
    [70] Altintas Y., Lee P. Mechanics and dynamics of ball end milling [J]. Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1998, 120(4): 684-692
    [71] Minis I., Yanushevsky R. Analysis of linear and nonlinear chatter in milling [C]. Annals of the CIRP, 1990, 39(1): 459-462
    [72] Budak E., Altintas Y. Analytical prediction of chatter stability in milling. Part 1: General formulation [J]. Proceedings of the ASME, Dynamic Systems and Control Division, 1995, 57(1): 545-556
    [73] Budak E., Altintas Y. Analytical prediction of chatter stability in milling. Part I: General formulation; part II: application to common milling systems [J]. Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, 1995, 57(1): 552-565
    [74] Altintas Y., Shamoto E., Lee P., et al. Analytical prediction of stability lobes in ball-end-milling [J]. Transactions of ASME, Journal of Manufacturing Science and Engineering, 1999, 121(1): 586-592
    [75] Altintas Y. Analytical prediction of three-dimensional chatter stability in milling [J]. Japan Society of Mechanical Engineers, International Journal Series: Mechanical Systems, Machine Elements and Manufacturing, 2001, 44 (3): 717–723
    [76] Slavicek J. The Effect of Irregular Tooth Pitch on Stability of Milling [C]. Proceedings of the Sixth MTDR Conference, Pergamon Press, London, 1965: 15-22
    [77] Opitz H., Dregger E.U., Roese H. Improvement of the dynamic stability of the milling process by irregular tooth pitch [C]. Proceedings of the Advanced MTDR Conference, 1966, 7(1): 213-227
    [78] Altintas Y., Engin S., Budak E. Analytical stability prediction and design of variable pitch cutters. Transactions of ASME, Journal of Manufacturing Science and Engineering, 1999, 121(2): 173-178
    [79] Budak E. An analytical design method for milling cutters with non-constant pitch to increase stability. Part I: Theory. Part II: application [J]. Transactions of ASME, Journal of Manufacturing Science and Engineering, 2003, 125(1): 29-38
    [80] Davies M.A., Dutterer B., Pratt J.R., et al. The stability of low radial immersion milling [C]. Annals of the CIRP, 2000, 49(1): 37-40
    [81] Merdol S.D., Altintas Y. Multi frequency solution of chatter stability limits for low immersion milling [J]. Transactions of ASME Journal of Manufacturing Science and Engineering, 2004, 126(3): 459-466
    [82] Al-Regib E., Ni J., Lee S.H. Programming spindle speed variation for machine tool chatter suppression [J]. International Journal of Machine Tools & Manufacture, 2003, 43(12): 1229-1240
    [83] Bravo U., Altuzarra O., et al. Stability limits of milling considering the flexibility of the work-piece and the machine [J]. International Journal of Machine Tools & Manufacture, 2005, 45(15): 1669-1680
    [84] Arvajeh T., Ismail F. Machining stability in high-speed drilling. Part 1: Modeling vibration stability in bending [J]. International Journal of Machine Tools & Manufacture, 2006, 46(12-13): 1563-1572
    [85] Gagnol V., Bouzgarrou B.C., et al. Model-based chatter stability prediction for high-speed spindles [J]. International Journal of Machine Tools & Manufacture, 2007, 47(7-8): 1176-1186
    [86] Shi H.M., Tobias S.A. Theory of Finite Amplitude Machine Tool Instability [J]. International Journal of Machine Tool Design and Research, 1984, 24(1): 45~69
    [87] 师汉民. 关于机床自激振动的一个非线性理论模型(第一部分) [J]. 应用力学学报, 1984, 24(1): 1-14
    [88] 师汉民. 关于机床自激振动的一个非线性理论模型(第二部分) [J]. 应用力学学报, 1984, 24(2): 75-88
    [89] 师汉民. 影响机床颤振的几个非线性因素及其数学模型[J]. 华中工学院学报, 1984, 12(6):102~112
    [90] Xiong G.L., Yi J.M., Zeng C., et al. Study of the gyroscopic effect of the spindle on the stability characteristics of the milling system [J]. Journal of Materials Processing Technology, 2003, 138(1-3): 379-384
    [91] 刘安民, 彭程, 刘兆吉等. 高速铣削时颤振的诊断和稳定加工区域的预报[J]. 机械工程学报, 2007, 43(1):164-169
    [92] 石莉, 贾春德, 孙玉龙. 应用小波研究动态铣削力及预报铣削颤振[J]. 哈尔滨工业大学学报, 2006, 38(10): 1978-1980
    [93] Altintas Y. Manufacturing Automation [M]. Cambridge: Cambridge University Press, 2000: 43-67
    [94] Schmitz T.L., Donaldson R. Predicting high speed machining dynamics by substructure analysis [C]. Annals of CIRP, 2000, 49(1): 303-308
    [95] Schmitz T.L., Davies M., Kennedy M.D. Tool point frequency response prediction for high-speed machining by RCSA [J]. Journal of Manufacturing Science and Engineering, 2002, 123(1): 700-707
    [96] Kivanc E., Budak E. Structural modeling of end mills for form error and stability analysis [J]. International Journal of Machine Tools and Manufacture, 2004, 44(11): 1151-1161
    [97] Movahhedy M.R., Gerami J.M. Prediction of spindle dynamics in milling by sub-structure coupling [J]. International Journal of Machine Tools & Manufacture, 2006, 46(3-4): 243-251
    [98] Park S.S., Altintas Y., Movahhedy M. Receptance coupling for end mills [J]. International Journal of Machine Tools & Manufacture 2003, 43(9): 889-896
    [99] Lee C.M., Kim S.W., Lee, Y.H. et al. The optimal cutter orientation in ball end milling of cantilever-shaped thin plate [J]. Journal of Materials Processing Technology, 2004, 153-154(1-3): 900-906
    [100] Guzel B.U., Lazoglu I. Increasing productivity in sculpture surface machining via off-line piecewise variable feedrate scheduling based on the force system model [J]. International Journal of Machine Tools & Manufacture, 2004, 44(1): 21-28
    [101] Bae S.H., Ko K., Kim B.H., et al. Automatic Feedrate Adjustment for Pocket Machining [J]. Computer aided design, 2003, 35(5): 495-500
    [102] Pateloup V., Duc E., Ray P. Corner optimization for pocket machining [J]. International Journal of Machine Tools & Manufacture, 2004, 44(12-13): 1343-1353
    [103] Chen J.S., Huang Y.K., Chen M.S. Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process [J]. International Journal of Machine Tools & Manufacture, 2005, 45(9): 1070-1076
    [104] Li Z.Z., Zhang Z.H., Zheng L. Feedrate optimization for variant milling process based on cutting force prediction [J]. International Journal of Advanced Manufacturing Technology, 2004, 24(7-8): 541-552
    [105] 张臣, 周来水, 余湛悦等. 基于仿真数据的数控铣削加工多目标变参数优化 [J]. 计算机辅助设计与图形学学报, 2005, 17(5):1039-1045
    [106] 刘强, 尹力. 一种面向数控工艺参数优化的铣削过程动力学仿真系统研究[J]. 中国机械工程, 2005, 16(13):1146-1150
    [107] 刘战强, 万熠, 艾兴. 刀具材料智能选择系统的研究与开发 [J].中国机械工程, 2003, 14(21): 1871-1874
    [108] 王太勇, 王晓斌, 王国锋等. 数控切削过程仿真系统的研究 [J].组合机床与自动化加工技术, 2004(1): 63-66
    [109] Armarego E.J.A., Whitfield R.C. Computer based modeling of popular machining operations for force and power predictions [C], Annals of the CIRP, 1985, 34(1): 65-69
    [110] Feng H.Y., Menq C.H. The prediction of cutting forces in the ball-end milling process—I. Model formulation and model building procedure [J]. International Journal of Machine Tools and Manufacture, 1994, 34 (5): 697-710
    [111] Yucesan G., Altintas Y. Prediction of ball end milling forces [J]. Journal of Engineering for Industry, 1996, 118(1): 95-103
    [112] Smith S., Tlusty J. Update on High-Speed Milling Dynamics [J]. J. Eng. Ind., 1990, 112(1): 142-149
    [113] Li H. Z., Li X. P., Chen X. Q. A novel chatter stability criterion for the modeling and simulation of the dynamic milling process in the time domain [J]. Int J Adv Manuf Technol, 2003,22(9-10): 619-625
    [114] Schmitz T. L. Chatter recognition by a statistical evaluation of the synchronously sampled audio signal [J]. Journal of Sound and Vibration, 2003, 262(3): 721-730
    [115] 金晓亮,刘强,袁松梅. 基于虚拟仪器的数控机床动态特性测试与分析系统研究 [J]. 制造技术与机床, 2007, 2007(6) : 77-80
    [116] Park S., Altintas Y., Movahhedy M. Receptance coupling for end mill [J]. Journal of Machine Tools and Manufacture, 2003, 43(9): 889-896
    [117] Duncan G. S., Tummond M. F., Schmitz T. L. An investigation of the dynamic absorber effect in high-speed machining [J]. International Journal of Machine Tools & Manufacture, 2005, 45(4-5): 497-507
    [118] Blevins R. Formulas for Natural Frequency and Mode Shape [M]. New York: Van Nostrand Reinhold, 1979: 100-150
    [119] Bishop R. E. D., Johnson D. C. The Mechanics of Vibration [M]. Cambridge: Cambridge University Press, 1960 :40-200
    [120] Coleman T.F., Li Y. On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds [J]. Mathematical Programming, 1994, 67(2): 189-225
    [121] Bayoumi A.E., Yucesan G., Kendall L.A. An analytic mechanistic cutting force model for milling operations: a theory and methodology [J]. Transactions of the ASME, 1994 ,116(1): 324–330
    [122] Ramaraj T.C., Eleftheriou E. Analysis of the mechanics of machining with tapered end milling cutters [C]. Transactions of the ASME, 1994, 116(3): 398- 404
    [123] Kim H.S., Ehmann K.F. A cutting force model for face milling operations [J]. International Journal of Machine Tools and Manufacture, 1993, 33(5): 651-673
    [124] Endres W.J., DeVor R.E., Kapoor S.G. A dual-mechanism approach to the prediction of machining forces: PartI — Model development; Part II — Calibration and validation [J]. Transactions of the ASME, Journal of Engineering for Industry, 1995, 117(4): 526-541
    [125] Spiewak S.A. Analytical modeling of cutting point trajectories in milling [J]. Transactions of the ASME, Journal of Engineering for Industry, 1994, 116(4): 440-448
    [126] Wang Z.G., Rahman M., Wong Y.S., et al. Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing [J]. International Journal of Machine Tools & Manufacture, 2005, 45(15): 1726-1734
    [127] Budak E. Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity [J]. International Journal of Machine Tools & Manufacture, 2006, 46(12-13): 1478-1488
    [128] Petropoulos P.G. Optimal selection of machining rate variable by geometric programming [J]. International Journal of Production Research, 1973, 11(4): 305-14
    [129] Armarego E.J.A. Computer-aided constrained optimization analyses and strategies for multi-pass helical tooth milling operation [C]. Ann CIRP 1994, 43(1): 437-42
    [130] Gupta R., Batra J.L., Lal J.K. Determination of optimal subdivision of depth of cut in multi-pass turning with constraints [J]. International Journal of Production Research, 1995, 33(9): 115-27
    [131] Wang J., Kuriyagawa T., Wei X.P., et al. Optimization of cutting conditions for single pass turning operations using a deterministic approach [J]. International Journal of Machine Tools & Manufacturing, 2002, 42 (9): 1023-33
    [132] Holland H.J., Adaptation in natural and artificial systems: an introductory analysis with application to biology control and artificial intelligence [M], Ann Arbor: The University of Michigan Press, 1976: 100-180
    [133] Chung J.S., Hwang S.M. Application of a genetic algorithm to the optimal design of the die shape in extrusion [J]. Journal Material Processing Technology, 1997, 72 (1): 69-77
    [134] Dorigo M., et al. the ant system: Optimization by a colony of cooperating agents [C]. IEEE Transaction on Systems, Man and Cybernetics, Part B, 1996, 26 (1): 29-41
    [135] Kennedy J., Eberhart R. Particle swarm optimization [J]. Proceeding of the 1995 IEEE International Conference on Neural Network, 1995, 4(1): 1942-1948
    [136] Shi Y. H, Eberhart R. C. Empirical study of particle swarm optimization [C]. Proceedings of Congress on Evolutional Computation, 1999, 3(6-9 ):2867-2871

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700