用户名: 密码: 验证码:
钒钛磁铁矿的微波消解及极谱法测定钒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁矿石是国家建设进程中大量使用的资源,随着铁矿石的大量开采以及进口带来的质量问题也不容忽视。钒钛磁铁矿是我国大量进口的一种铁矿石,同时也是一种较为难溶的矿石,因此具有代表性。本课题通过采用钒钛磁铁矿标准品作为研究对象,进行了微波消解及主元素测定研究,具体研究内容与结果如下:
     1.建立了以下四种微波消解体系:
     (1)硫磷混酸消解体系:0.2000g样品,少量水润湿,9.00mL浓磷酸,3.00mL浓硫酸及少量浓硝酸,在微波功率350 W持续2 min,560 W持续6 min,350 W持续2 min的消解程序下进行样品消解。
     (2)氢氟酸与磷酸消解体系:0.1000g样品,少量水润湿,2.00mL氢氟酸,8.00mL浓磷酸,在微波功率280W持续6min,350W持续2min的消解程序下对样品进行消解。
     (3)添加络合物的消解体系:0.1000g样品,0.0400g 8-羟基喹啉,少量水润湿,10.00~12.00mL浓盐酸,在微波功率385W下对样品消解10~12min。
     (4)碱熔体系:0.1000g样品加入到高铝坩埚中,3.000g溶剂(m_(NaOH):m_(Na2O2)=1:2),在微波功率385W下对样品消解10min。
     体系(1)与体系(2)采用钛铁连续测定的方法来确定其中铁与钛的含量,体系(3)与体系(4)采用重铬酸钾法对铁进行测定,通过对样品中钛、铁含量的测定来判断微波消解的完全程度。结果表明,建立的四种微波消解体系对钒钛磁铁矿均能消解完全,结果符合分析化学的要求。
     2.建立了醋酸-醋酸钠—邻菲罗啉测定钒钛磁铁矿中微量钒的新方法。
     经过实验优化,最佳试剂条件:5.00mL pH≈4.5醋酸-醋酸钠缓冲溶液,3.00mL 1.00g/L邻菲罗啉,蒸馏水定容至25.00mL;最佳测定条件:测试波形为一阶导数波,起始电位为-0.20V,扫描速率为1.00V/s,扫描次数为4次,静止时间为14s。在最佳试剂和测定条件下,钒(V)浓度在0.050~5.0μg/mL的范围内,峰电流的峰高与钒的浓度呈线性关系,线性回归方程Ip’(×10~4nA) = 13.631-1.7678c(μg/mL) (n=7,R~2 = 0.9953),方法的检出限为0.0042μg/mL。该方法灵敏度高,测定范围宽,操作简便快速。新建立的方法应用于实际样品钒钛磁铁矿中微量钒的测定,分析的准确度和精密度满足分析化学要求。
     本文研究了电极反应物的反应机理,结果表明,主要电极反应物为质子化的邻菲罗啉,该极谱波为不可逆的吸附波。
Iron ore was the resource that largely used in national construction process. The quality problem of iron ore would not be igored with minings and imports of plenty of iron ore. Vanadium and titanium magnetite was one of the inport iron ores in our country, and it was hard to digest, so the vanadium and titanium magnetite was representative. This topic had studied microwave digestion and determination of main element of vanadium and titanium magnetite standard sample. The main research content and results were followed:
     1. Four kinds of microwave digestion system had been established:
     (1) Mixed system of sulfuric acid and phosphoric acid: 0.2000g of vanadium and titanium magnetite sample, 3.00mL of concentrated H_2SO_4, 9.00mL of concentrated H_3PO_4, 5 droplets of HNO_3, The digestion procedure was: holding 2min in microwave power of 350W and holding 6min in microwave power of 560W, holding 2min in microwave power of 350W at last.
     (2) Mixed system of hydrofluoric acid and phosphoric acid: 0.1000g of vanadium and titanium magnetite sample, 10.00mL of mixed acid (VH_3PO_4 / V_(HF) was 2:8), The digestion procedure was: holding 6min in microwave power of 280W and holding 2min in microwave power of 350W.
     (3) Digestion system with complex: 0.1000g of vanadium and titanium magnetite, 0.0400g of complexant(8-hydroxyquinoline), 12.00mL of concentrated HCl, digestion time was 10~12min, microwave power was 385W.
     (4) Alkali fusion: 0.1000g of vanadium and titanium magnetite, 3.000g of total mixed-flux (m_(NaOH)/m_(Na2O2) was 1:2), holding 10 min in microwave power of 385W.
     Titanium and iron were determined one after another in the first and second system. Iron was determined by dichromatemethod in the third and forth system. The level of digestion was judged by the concentrations of titanium and iron in samples. The results showed that the four systems could digest vanadium and titanium magnetite completely and the consequences had met the analytical chemistry requirements.
     2. A new method had been developed for the determination of micro amounts of vanadium in a buffer solution of HAc-NaAc.
     Optimization reagent conditions: 5.00mL of buffer solution of HAc-NaAc at a pH of 4.5, 3.00mL of 1.00g/L phenanthroline(Phen) solution, then final volume was 25.00mL through adding distilled water. Optimization instrument conditions: determination waveform was the first order derivative wave, starting potential was -0.20V, scanning rate was 1.00V/s, scanning times was four and static time was 14s. Under the optimal condition, the linear range of vanadium determination was 0.050-5.0μg/mL, the linear equation was Ip’(×10~4nA) = 13.631-1.7678c(μg/mL) (n=7,R~2 = 0.9953), the detection limit was 0.0042μg/ml. The method had the advantage of the high sensitivity, wide linear range, simpleness and celerity. This method had been successfully applied to determination of micro amounts of vanadium in vanadium and titanium magnetite. The results had met with requirements of analytical chemistry.
     The mechanism of electrode reactant had been also studied. The results showed that the main electrode reactant was protonated Phen, and the polarographic wave was an irreversible adsorption wave.
引文
[1]刘动.近年我国进口铁矿石的现状与分析[J].金属矿山,2009(1): 12-15
    [2]国内铁矿石供给不足,矿石要以进口为主[J].矿业快报,2003(8):43
    [3]杜延杰,雷志敏.中国铁矿石进口现状及需求形势浅析[J].商场现代化,2009(19): 8
    [4]国土资源部网站2010202203
    [5]杨立明,苏征.我国进口铁矿石质量状况及对策[J].现代矿业2009(4):15-18
    [6]汪模辉,朗春燕.复杂物质分析[M].电子科技大学出版社.2004.
    [7]四川省地质局攀枝花地质综合研究队,四川省地质局中心实验室.钒钛磁铁矿石分析[M].地质出版社,四川省攀枝花,1980
    [8]百度百科http://baike.baidu.com/view/935564.htm?fr=ala0_1
    [9]冯映芬,王梅.铬铁矿中钛含量的测定[J].新疆有色金属,2009(2):47-48
    [10]任文焕.单项测定铁矿石中钛的快速分析方法[J].分析实验室,2008(27)增刊:296-297
    [11]周晓东,张云梅,周清,等.浓磷硫混酸分解矿样测定钛铁矿中钛含量[J].昆明冶金高等专科学校学报,2007(23)1:28-30
    [12]胡宏卫,陆伟星.ICP-AES内标法测定钛铁中钛、铝、锰和铜[J].梅山科技,2008(2):53-54
    [13]崔礼生,谢文清.矿物的微波处理[J].中国粉体工业,2008(6):6-7.
    [14]Abu-Sarma A, Morris J S, Koirtyohann S R. Wet ashing of some biological samples in microwave oven [J]. Anal Chem,1975,47:1475
    [15]Henryk. Matusiewiez et al. Present status of microwave sample dissolution and decomposition for elemental analysis[J]. Prog Anal Spect,1989(12):21
    [16]张磊,王晓艳,李波.微波消解技术在金属分析中的应用[J].光谱实验室,2010(27):953-957
    [17]李洁,张穗忠,宋卫良.微波消解溶样技术在冶金化学分析中的应用[J].钢铁研究, 2006(34):41-43
    [18]李真,陈文宜,甘培新,等.家用微波炉在矿石分析中的应用[J].中国矿业,1999(8):152-156
    [19]周晓东,张云梅.微波辐照过氧化钠熔融钛铁矿方法研究[J].云南师范大学学报,2007(27):67-69
    [20]李报厚,于仲权、韩铠.微波消解,ICP、AA测定钒钛铁矿中硅铝钙镁铁钒钛锰铜钴和镍[J].光谱学与光谱分析,1991 (1):60-63
    [21]尹继先罗华魏,黎永强,等.钒钛磁铁矿的微波消解溶样研究[J].分析实验室,2009(28)增刊:79-81
    [22]陶俊,郑玲.三氯化铁分解重铬酸钾滴定法测定直接还原铁中金属铁[J].冶金分析,2009 (6) :65-68
    [23]张燕娟,黎铉海,李华生,潘柳萍. EDTA连续滴定法分析铁酸锌中锌和铁[J].冶金分析,2010 (3):53-56
    [24]易凤兰,梁仑龙. ICP_AES法同时测定热镀锌液中铁、铝、镉、铅[J].涟钢科技与管理,2006(3):47-48
    [25]董丙成,陈学琴,程梅,等.二安替比林甲烷光度法快速测定铜合金中的铁[J].莱钢科技,2009(3):74-75
    [26]申明乐.火焰原子吸收光谱法测定拟薄水铝石中铁[J].光谱实验室,2010,5(27):945-948
    [27]赵树宝.三氯化钛还原高锰酸钾无汞滴定法测定铁矿石中全铁量[J].冶金分析,2010,30(1):77-80
    [28]王瑞斌,刘步明,王高祥. EDTA无汞无铬滴定法快速测定废水中铁含量研究[J].化学试剂,2007 ,29 (9) :551-552
    [29]Lo?c Perring, Jo?lle Blanc. Faster Measurement of Minerals in Milk Powders: Comparison of a High Power Wavelength Dispersive XRF System with ICP-AES and Potentiometry Reference Methods[J]. Food Analytical Methods,2008,1(3):205-213
    [30]Bhadani S N,TiwariM,Agrawal A,et al. Spectrophotometric Determination of Fe( III) with T iron in the Presence of Cationic Surfactant and Its Application for the Determination of Iron in Al-Alloys and Cu-Based Alloys[J]. Mikrochim. Acta,1994,117(1):15-22.
    [31]李专洋,冒爱荣.火焰原子吸收光谱法测定镀铬液中铁含量[J].理化检验-化学分册,2010(46):34-35
    [32]Niklaus Kl?ntschi,Arnold Esenwein,Thomas Müller. Simultaneous determination of Si, Mn,P,Cu,Al,Ni,Cr,Mo,V,Ti,Co and As in steels by ICP-AES[J]. Fresenius' Journal of Analytical Chemistry,1987,328(8): 657-661
    [33]Markus Tibi and K. G. Heumann. Determination of trace elements in quartz glass by use of LINA-Spark–ICP–MS as a new method for bulk analysis of solid samples[J]. Fresenius' Journal of Analytical Chemistry,2007,370(5):521-526
    [34]周晓东,张云梅.钛铁矿中钛的测定[J].理化检验-化学分册,2007(7):544-546
    [35]赵明,王文奇.二氧化钛的测定方法[J].陶瓷.1995(3):50-51
    [36]汤家华,麻翔华.光度法快速测定水泥中的钛[J].化学分析剂量,2009(18),4:57-59
    [37]吴丽香,宋官龙,甘羽.邻氯苯基荧光酮分光光度法测定钢样中的钛[J].分析仪器,2009(4):66-68
    [38]丁仕兵,刘稚,刘淑珍. X射线荧光光谱法测定矾土中硅、铁、钾、钙、钛、锰、铝、镁、磷等氧化物含量[J].冶金分析,2003,8(23):21-23
    [39]周柏明,唐励文,齐丽华,等.原子吸收石墨炉法快速测定饮用水中钛[J].科技创新导报,2008(15):69-71
    [40]马新蕊.ICP - AES测定石英砂中的铁、铝、钙、钛、硼、磷[J].化学工程师,2009,1:19-20
    [41]刘江晖,周华.ICP-MS测定奶粉中痕量钛的方法研究.食品科技[J],2003(11):79-81
    [42]I. Karadjova, L. Jordanova, S. Arpadjan. Reductive precipitation as a separation method for the determination of trace elements in tellurium oxide and bismuth oxide by flame and electrothermal AAS[J]. Fresenius' Journal of Analytical Chemistry,1995,352(6):604-605
    [43]S. Marin, S. Cornejo, C. Jara, N. Duran. Determination of trace level impurities in uranium compounds by ICP-AES after organic extraction[J]. Fresenius' Journal of Analytical Chemistry,1996,355(5-6):680-683
    [44]S.G Alejandro, M.G Juan Manuel. High-resolution ICP–MS determination of Ti,V,Cr,Co, Ni, and Mo in human blood and urine of patients implanted with a hip or knee prosthesis[J]. Analytical and Bioanalytical Chemistry,2008,391(7):2583-2589
    [45]A. C. Spinola Costa, Leonardo S. G. Teixeira, Helena Valli Jaeger, Sérgio L. C. Ferreira. Spectrophotometric determination of vanadium(IV) in the presence of vanadium(V) using Br-PADAP[J]. Microchimica Acta,1998,130(1-2):41-45
    [46]饶敏,董学畅,杨春梅,等.2-(2-喹啉偶氮)-1,3-二羟基苯分光光度法测定钒的研究[J].化学试剂.2005,27(1):35-36;48.
    [47]刘长增,韩长秀.钒(V)催化氧化二甲基黄的反应及其应用[J].理化检验-化学分册. 2002,38(11):558-559
    [48]王术皓,杜凌云,张爱梅,等.催化动力学光度法测定痕量钒的新体系[J].聊城师院学报.1995,8(1):73-75.
    [49]陈兰化,葛海燕.以酚藏花红为指示剂催化荧光法测定痕量钒的研究[J].光谱学与光谱分析.2003,23(6):1154-1156.
    [50]俞英,洪朝辉,吴志强,等.水杨醛缩7-氨基-8-羟基喹啉-5-磺酸催化荧光法测定痕量钒[J].分析化学.1996,24(4):479-482.
    [51]王术皓,杜凌云,张爱梅,等.催化动力学极谱法测定痕量钒[J].分析实验室,2001,20(2):55-57
    [52]张成孝,高晓杰.单扫描示波极谱法测度痕量钒[J].岩矿测试,1995,14(1):52-54
    [53]周连君,尤进茂,李怀娜,等.吸附溶出伏安法测定痕量钒[J].冶金分析,1996,16(3):17-19
    [54]郭月芳.钒钛磁铁矿中钛、钒、磷、钴、镍的测定[J].甘肃冶金,2009,31(4):78-79
    [55]闫学会,张前林. ICP-AES法测定钒钛磁铁矿中钒、钛元素的研究[J].天津冶金,2006(4): 46-48
    [56]马秀艳,尹琴.钒钛磁铁矿中二氧化钛的测定[J].南方钢铁,2000(116):20-22
    [57]宋新艳.过氧化氢光度法测定钒钛磁铁矿中二氧化钛[J].冶金分析,2006,26(5):102-103
    [58]凌学芳.钒钛磁铁矿中钛铁连测方法研究[J].矿物岩石,1990,10(2):105-107
    [59]黄雪生.重铬酸钾滴定法连续测定钛铁矿中二氧化钛及总铁[J].理化检验一化学分册,2001,37(3):136.
    [60]石美莲,段有构,颜文斌,等. V (Ⅴ)-KIO4-甲基红体系动力学光度法测定微量钒[J].吉首大学学报(自然学科版),2010.31(2):94-96
    [61]白林山.溴酸钾-甲基百里酚蓝催化光度法测定钢中微量钒[J].安徽工业大学学报,2001,18(3):226-228
    [62]汪尔康等.示波极谱及其应用[M].四川科学技术出版社,1984.5
    [63]朱明华编.仪器分析(第三版)[M].北京:高等教育出版社,2000:71-72.
    [64]Laviron, E.J.Interfacial Eletrochem [J].Electroanal.Chem.1979 (101):19-28
    [65]武汉大学主编.分析化学(第五版)上册[M].北京:高等教育出版社,2006:42.
    [66]常文保,李克安.简明分析化学手册[M],北京大学出版,1981.10: 262-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700