用户名: 密码: 验证码:
西藏尼玛盆地南部坳陷古近纪沉积记录研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有“世界屋脊”和“第三极”之称的青藏高原,以其独特的地质、地貌特征与形成演化历史成为国内、外地质学界的研究重点。新生代印度板块与亚洲板块碰撞导致青藏高原隆升并且对全球气候、环境产生的重大影响,青藏高原成为全球环境变化与岩石圈演化的理想场所。
     本文以“青藏高原重点盆地油气资源战略调查与选区”项目为依托,对发育于班公湖—怒江结合带中段的的尼玛盆地南部坳陷的沉积记录进行了研究,探讨青藏高原腹地新生代陆相盆地的形成演化机制。主要对南部坳陷的地层时代、地质构造背景、沉积相、沉积物源供给及盆地构造—沉积演化进行综合分析研究,取得了几点认识,分别介绍如下:
     1.通过与王波明、Kapp、DeCelles等所测剖面及伦坡拉钻井资料进行综合地层对比,重新厘定了尼玛盆地南部坳陷地层的时代。南部坳陷的地层时代为古近纪始新世—渐新世,剖面P01、P02时代为古近纪渐新世,为渐新统丁青湖组;剖面P03下部地层时代为古近纪始新世,为始新统牛堡组,上部地层时代为古近纪渐新世,为渐新统丁青湖组。
     2.依据沉积物的岩性、结构、构造、颜色、古生物化石、粒度分析、古流向与沉积组合等综合分析,尼玛盆地南部坳陷古近系地层主要识别出2个沉积相类型:扇三角洲相与湖泊相,扇三角洲可以进一步划分为扇三角洲平原(可划分为辫状河道、河道间湾2个微相)、扇三角洲前缘(可划分为水下分流河道、分流间湾2个微相)、前扇三角洲3个亚相;湖泊相可以划分为滨湖、浅湖、深—半深湖亚相。
     3.利用波痕指数与不对称指数,可以把南部坳陷的波痕分为流水波痕与浪成波痕。古流向玫瑰花图显示,南部坳陷的沉积物源主体为南、北向供给、少量为东西向物源供给,这是因为尼玛盆地南部坳陷形成演化受盆地东西向边界断裂的控制。
     4.砂岩组分分析显示,南部坳陷西部丁青湖组从剖面P01到P02稳定颗粒单晶石英与石英颗粒总量含量显著较少,而非硅质岩屑、岩屑、火山岩岩屑、变质岩岩屑、长石、碳酸盐岩屑等不稳定组分的含量显著增加;并且坳陷东部牛堡组到丁青湖组也有相似的变化。这种稳定组分的减少、不稳定碎屑的增加的变化与渐新世晚期强烈的构造抬升密不可分。Qm-F-Lt,Qt-F-L三角图解显示,南部坳陷的砂岩颗粒组分落入再旋回造山带,极少量落入再旋回造山带与岩浆岛弧混合带,说明古近纪南部坳陷构造活动整体比较强烈。
     5.南部坳陷酸性、中酸性岩浆岩来源的重矿物占14.42%,基性、超基性岩来源的占重矿物含量的23.62%,沉积岩最高占60.96%,变质岩来源的重矿物仅占1%。古水流数据与重矿物组合证明了南部坳陷的主要为南、北向沉积物源,兼有少量其他方向的物源供给。安山岩岩屑来至去申拉安山岩、英安岩组合,而P01湖相沉积中急剧增加的酸性来源的锆石与尼玛盆地北部的早白垩世花岗岩有关。依据各种重矿物纵、横向含量变化、ZTR指数、GZi指数,重矿物变化曲线可以划分为3个明显不同的阶段:不稳定段(I)、极稳定段(II)、极不稳定段(III)。
     6.根据沉积相与重矿物演化,可以把南部坳陷的构造、沉积演化划分为4个阶段:构造稳定期(始新世早期)、构造活跃期(始新世晚期)、构造极稳定期(渐新世早期)、构造极活跃期(渐新世晚期)。
As the“roof of the world”and the“third pole”, Qinghai-Tibet Plateau, with its unique geological, geomorphological features and forming, evolutionary history,become one of research focus in domestic and foreign geological field. Cenozoic collision of Indian plate with the Asian plate led to uplift of the Qinghai-Tibet Plateau and make significant impact on global climate and environment,the Qinghai-Tibet Plateau become the ideal place for global environmental change and lithospheric evolution.
     This Article , based on“oil and gas resources strategical investigation and selection of the Qinghai-Tibet Plateau Basin”project,make a research on the sedimentary record of south depression of Nyima basin at the middle of Bangong -Nujiang suture zone in order to explore the forming and evolutionary mechanism of Cenozoic continental basins in hinterland of Qinghai-Tibet Plateau,and Mainly research on stratigraphic age, tectonic setting, sedimentary facies, sedimental supply and comprehensive analysis of tectonic-sedimentary evolution. Accomplishments are introduced as follows:
     1. By comprehensive stratigraphic correlation with the measured sections of Wang Boming, Kapp, DeCelles and Lunpola well data, we redetermine the Stratigraphic era of sections in the south depression of Nyima basin. Stratigraphic age of the south depression is of Eocene - Oligocene, age of section P01 and P02 is of Oligocene and their strata should be Dingqing Hu formation; Stratigraphic age of the lower strata of P03 is of Paleogene Eocene and corresponding strata is assigned to Niubao Formation; the upper strata P03 is of Paleogene Oligocene and Oligocene strata is assigned to Dingqing Hu Formation.
     2. According to lithology, sedimentary structure, color, fossils, grain size analysis, palaeocurrents and comprehensive analysis of the sedimentary assemblage, we identify two kinds of sedimentary facies:fan delta facies and lacustrine facies of the Paleogene strata in the south depression of Nyima basin. Fan delta can be further divided into fan delta plain (can be divided into braided channels, and interdistributary areas two sedimentary microfacies), fan delta front (can be divided into the underwater distributary channels and undrerwater interdistributary areas two sedimentary microfacies), and Pre-fan delta three subfacies. lacustrine facies can be divided into the shore Lake, shallow lake, semideep-deep lake three subfacies.
     3. Using ripple index and the asymmetry index,ripples of south depression can be divided into current and wave ripple marks. Paleocurrent rose diagrams show that the main source of sedimentary supply of south depression from south and north, a small amount of source supply from east and west, because formation and evolution of the south depression of Nyima basin was controlled by the east-west stretching boundary faults.
     4.Sandstone composition analysis show that the Dingqing Hu Formation from P01 to P02 in western of south depression , stable particles as single-crystal quartz and total quartz particles were significantly declining, rather than nonsiliceous debris, debris and volcanic rocks debris, metamorphic lithic, feldspar, carbonate debris and other unstable components were significantly increased; and there were similar changes form Niubao to Dingqing Hu Formation in the east of south depression.The changes of reduction of stable components and the increasing of unstable debris are inseparable with late Oligocene tectonic uplift. Qm-F-Lt, Qt-FL triangular diagram show that sandstone componental particles mainly falling into recycling orogenic zone, a very small amount into recycling of orogenic belts and volcanic arc mixing zone, indicating that there were overall more intensive tectonic activities of south depression in the Paleogene.
     5. In the south depression, heavy minerals stemming from acid, intermediate magma accounted for 14.42%, basic, heavy minerals of ultrabasic rocks source accounted for 23.62% in the total heavy minerals, source of sedimentary rocks accounted for the highest of 60.96%, source of metamorphic accounted for 1%. Paleocurrent data and heavy mineral assemblages show the sediment major source of the South depression were south and North, plus a small amount of source from other direction. Andesitic debris came from the andsite plus dacite rock assemblage of Qushen La Formation, and the dramatic increasing of zircon of acidic sources in section P01 was in connection with the Early Cretaceous granite in north of Nyima basin. Based on the vertical and horizontal variation of all kinds of heavy minerals, ZTR index, GZi index,curve of heavy minerals can be divided into three distinct phases: unstable segment I, most stable segment II, unstable segment III.
     6. According to sedimentary facies and variation of heavy minerals, tectonic and sedimentary evolution in the south depression of Nyima basin can be divided into four phases: the stable tectonic stage (Early Eocene), the strong tectonic stage (late Eocene), the highly stable stage (early Oligocene), the highly active tectonic stage (late Oligocene).
引文
[1] DeCelles P G, Quade J, Kapp P, et al. High and dry in centralTibet during the late Oligocene [J]. Earth and PlanetaryScience Letters, 2007, 253:389~401.
    [2] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous tomiddle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning,aridification and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5~6):654~680.
    [3] Dickinson W R, Suczek C C. Platetectonics and sandstone compositions[J]. America Association of Petroleum Geologists, Bulletin, 1979, 63:2164~2182.
    [4] Dickinson W R. Compositions of sandstone in circum-pacific subduction complexes and fore-arcbasins[J]. America Association of Petroleum Geologists, Bulletin, 1982, 66:121~137.
    [5] Dickinson W R, Beard L S, Breakenridge G R, et al. Provenance of north American Phanerozoic sandstone in relation to tectonic setting[J]. Geoligical Society of America,Bulletin, 1983, 94:225~235.
    [6] Diemb. Analytical method for estimating palaeowave climate and water depth from wave ripple marks[J]. Sedimentology, 1985, 32:705-720.
    [7] Haines S S, Klemper S L, Brown L,et al. (INDEPT H) Seismic data: From surface observation stodeep crustal processes in Tibet[J]. Tectonics, 2003, 22: 1001.
    [8] John F H. Zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross compostion and texture of sandstones[J]. Journal of Sedimentary Petrology, 1962, 32(3):4402450.
    [9] Kapp P, Murphy M A,Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of Western Tibet [J]. Tectonics, 2003, 22( 4): 1029.
    [10] Kapp P, DeCelles PG , Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisionsin the Nima area of central Tibet[J]. GSA Bulletin, 2007, 119(7~8): 917~932.
    [11] Rowley D B, Currie B S. Palaeo-altimetry of thelate Eocene to Miocene Lunpola basin, central Tibet [J]. Nature, 2006, 439:677~681.
    [12] Morton A C, Hurst A. Correlation of sandstones using heavyminerals: An example from the Statfjord Formation of the Snorre Field, northern Northsea[M]. Geological Society Special Publication, 1995, 89:3 ~22.
    [13] Paul Kapp, An Yin, T. Mark Harrison, et al. Cretaceous-Tertiary shortening, basin development and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7~8):65~878.
    [14] Wang W L, Aitchison J C, Lo C H, et al. Geochemistry and geochronology of the amphibolite blocks in ophiolitic melange along Bangong-Nujing Suture, Central Tibet[J]. Journal of Asian Earth Science, 2008, 33:122~138.
    [15]崔军文,朱红,武长得.青藏高原岩石圈变形及其动力学[ R].地质专报( 17),地质出版社,1992.
    [16]成都理工大学地质调查研究院.1:25万措勤幅区域地质调查报告[R].中国地质调查局地质调查专报A第(H45C001001)号,2002.
    [17]《沉积构造与环境解释》编著组.沉积构造与环境解释[M ].北京科学出版社,1984:3~13.
    [18]冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报,1998,43(6):633-666.
    [19]和钟铧,刘招君,郭巍.柴达木盆地北缘大煤沟剖面重矿物分析及其地质意义[J].世界地质,2001,20(3):279~312.
    [20]胡晓强,陈洪德,纪相田,等.川西前陆盆地侏罗系三角洲沉积体系与沉积模式[J].石油实验地质,2005,27(3):227-237.
    [21]河南省地质调查院.1:25万尼玛区幅区域地质调查报告[R].中国地质调查局地质调查专报A第(H45C001003)号,2002.
    [22]吉林省地质调查院.1:25万帕度错幅区域地质调查报告[R].中国地质调查局地质调查专报A第(I45C004003)号,2006.
    [23]吉林省地质调查院.1:25万昂达尔错幅区域地质调查报告[R].中国地质调查局地质调查专报A第(H45C001004)号,2006.
    [24]吉林省地质调查院. 1:25万多巴区幅区域地质调查报告[R].中国地质调查局地质调查专报A第(H45C001004)号,2003.
    [25]江西省地质调查院.1:25万邦多区幅区域地质调查报告[R].中国地质调查局地质调查专报A第(H45C001002)号,2002.
    [26]蒋忠惕,张家强,王德杰.西藏尼玛地区油气显示的发现及其意义[J].地质通报,2006,25(9~10):1189~1193.
    [27]蒋斌,李凤杰,郑荣才,等.柴达木盆地北缘西段古近系路乐河组沉积相特征研究[J].岩性油气藏,2010,22(3):48~52.
    [28]姜在兴.沉积学.北京:石油工业出版社,2006,257~260.
    [29]李双建,王清晨,李忠.库车坳陷库车河剖面重矿物分布特征及其地质意义[J].岩石矿物学杂志,2005,24(1):53-61.
    [30]刘训,傅德荣,姚培毅,等.青藏高原地层学,岩相学与沉积构造演化[M].北京:地质出版社,1992:168.
    [31]李祥辉,曾庆高,王成善.西藏南部浪杰学群碎屑物质来源的古水流证据[J].地质论评,2003,49(2):132~137.
    [32]陆克政,朱筱敏,漆家福.含油气盆地分析[M].山东东营:石油大学出版社,2001,22.
    [33]鲁兵,李永铁,刘忠,等.青藏高原的盆地形成与分类[J].石油学报,2000,21(2):21~27.
    [34]杜远生,颜佳新,韩欣.造山带沉积地质学研究的新进展[J] .地质科技情报,1995,14 (1):29~34.
    [35]刘宝珺,曾允孚.岩相古地理基础和工作方法.北京:地质出版社,1985,248~251,442.
    [36]佩蒂庄.砂和砂岩[M].北京科学出版社,1977:343.
    [37]曲晓明,辛洪波,赵元艺,等.西藏班公湖中特提斯洋盆的打开时间:铁质蛇绿岩地球化学与锆石U-Pb LAICPMS定年结果[J].地学前缘,2010,17(3):53~63.
    [38]冉波,王成善,朱利东,等.距今40~30 Ma时期青藏高原北缘酒西盆地沉积物重矿物分析和构造意义[J].地学前缘,2008,15(5):388~397.
    [39] Shuichi Tokuhashi1,Christopher M. Agyingi.重矿物分析识别浊积体的沉积作用—日本中部Niigata、弧后含油盆地新第三纪浊积砂岩实例研究[J].地学前缘,2000,7(3):177~201.
    [40]宋春晖,孙淑荣,方小敏,等.酒西盆地晚新生代沉积物重矿物分析与高原北部隆升[J].沉积学报,2002,20(4):552~559.
    [41]王寿庆.扇三角洲模式[M].北京:石油工业出版社,1993,87~96.
    [42]王良忱,张金亮.沉积环境和沉积相[M].北京:石油工业出版社,1996,179.
    [43]王成善,李祥辉.沉积盆地分析原理与方法[M].北京:高等教育出版社,2005,73~84,100~116.
    [44]王明磊,张廷山,王兵,等.重矿物分析在古地理研究中的应用—以准噶尔盆地南缘中段古近系紫泥泉子组紫三段为例[J].中国地质,2009,36(2):456~464.
    [45]王希斌,鲍佩声,邓万明,等.喜马拉雅岩石圈构造演化:西藏蛇绿岩[J].岩石矿物地球化学,1987,6:138~214.
    [46]王明波,周家生,闻涛,等.西藏尼玛盆地陆相地层归属及其油气意义[J].天然气技术,2009,3(4):21~24.
    [47]王璞珺,Frank Mattern,Werner Schneider,等.西藏班公湖—怒江缝合带白垩系沉积特征及其构造意义[J].世界地质,2003,2(2):105~110.
    [48]武景龙,朱利东,杨文光,等.尼玛盆地南部古近系牛堡组沉积特征及其地质意义[J].华南地质与矿产,2011,27(1):59~63.
    [49]吴珍汉、吴中海、周继荣,等.中国大陆及邻区新生代构造—地貌演化过程与机理[M].地质出版社,2001,5~25.
    [50]谢国刚,廖思平,罗小川,等.西藏尼玛地区古近纪美苏组的建立[J].地质通报,2003,22(5):341~345.
    [51]肖序常,王军.青藏高原构造演化及隆升的简要评述[J].地质论评, 1998,44( 4):372~381.
    [52]徐亚军,杜远生,杨江海.沉积物物源分析研究进展[J].地质科技情报,2007,26(3):26~27.
    [53]西藏自治区地质调查院.1:25万日干配错幅区域地质调查报告[R].中国地质调查局地质调查专报A第(I45C004002)号,2002.
    [54]西藏自治区地质调查院.1:25万改则幅区域地质调查报告[R].中国地质调查局地质调查专报A第(I45C004001)号,2006.
    [55]西藏自治区地质调查院.1:25万班戈县幅区域地质调查报告[R].中国地质调查局地质调查专报A第(H46C001001)号,2002.
    [56]西藏自治区地质调查院.1:25万兹格塘错幅区域地质调查报告[R].中国地质调查局地质调查专报A第(I46C004001)号,2003.
    [57]鄢继华,陈世悦,程立华.扇三角洲亚相定量划分的思考[J].沉积学报,2004,22(3):443~448.
    [58]姚檀栋,王宁练.冰芯研究的过去、现在和未来[J].科学通报,1997,42(3):225~230.
    [59]姚檀栋,刘晓东,王宁练.青藏高原地区的气候变化幅度问题[J].科学通报,2000,45(1):98-106.
    [60]杨经绥,柴耀楚,冯秉贵.班公湖蛇绿岩中的地幔羽型洋中脊安山岩:地球化学证据(青藏高原地质文集( 21) [M].北京:地质出版社, 1991: 447~491.
    [61]周书欣,赖特V P,普拉特N H,等.湖泊沉积体系与油气[M].北京:科学出版社,1991,137.
    [62]朱利东,王成善,伊海生,等.青藏高原盆地系统演化与高原形成时间[J]. 2004,31(3):249~255.
    [63]钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科(辑),1996,26(4):289~295.
    [64]赵澄林.油区岩相古地理[M].山东东营:石油大学出版社,2001,4.
    [65]赵澄林.沉积学原理[M].北京.石油工业出版社,2001,91.
    [66]赵文津,刘葵,蒋忠惕,等.西藏班公湖-怒江缝合带-深部地球物理结构给出的启示[J].地质通报,2004,23(7):623~635.
    [67]郑度,姚檀栋.青藏高原隆升及其环境效应[J].地球科学进展,2006,21(5):451~458
    [68]郑伟,齐永安,刘顺喜,等.河南云台山世界地质公园云梦山组波痕类型及其成因分析[J].河南理工大学学报(自然科学版),2008,27(4):399~403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700