用户名: 密码: 验证码:
基于DR图像的股骨个体化姿态估计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
股骨干骨折是骨科一种常见的临床创伤,如果手术治疗不当,会造成患者行走功能障碍、肢体变形等后遗症,严重影响患者的生活质量。在现代医学诊断中,常见的临床三维影像检查方式主要包括计算机断层扫描(CT)和磁共振成像(MRI)。这两种成像手段虽然能够直接获得患肢的三维数据,但是在检查费用、操作便利性、成像快捷性等方面都远逊于数字X线(DR)成像,特别是CT扫描过程的有害辐射剂量远高于DR成像。然而DR图像是二维投影图像,缺少三维空间信息进行临床诊断是DR成像的最大弊端。因此,研究一种仅利用单张或少数有限张二维DR图像,在手术前获取股骨三维空间姿态的成像方法,具有极其重要的临床实用价值和广阔的市场应用前景。
     本文旨在利用股骨DR图像,建立一种能够快速、有效地重建股骨个体化姿态的方法,进而实现股骨三维空间姿态可视化。针对姿态估计过程中存在的DR成像系统标定、灰度不均匀图像特征轮廓提取、基于2D-3D的图像配准以及二维点集配准过程中多极值优化等关键问题,研究相应的解决方法。并深入研究灰度不均匀图像分割、多极值优化和2D-3D图像配准方法,这三项关键技术,从而实现术前股骨个体化姿态的三维重建,促进基于图像引导的三维可视化技术的发展。论文的主要研究内容包括:
     针对普通平面标定板在X射线环境下成像不清晰,无法实现DR成像系统标定的问题,利用覆铜线格PCB板做为标定板,采用基于平面标定板标定法,获得DR成像系统的标定参数。
     针对骨折股骨DR图像拓扑结构复杂、灰度分布不均匀的特点,研究一种结合灰度波动信息的活动轮廓模型,利用灰度波动概念获得图像的灰度波动曲线;依据对波动曲线单调区间的判断结果,对图像进行灰度波动变换;将灰度波动变换函数引入Chan-Vese(C-V)模型并重新定义能量函数,获得新的活动轮廓模型。通过人造图像与医学图像的分割实验表明,该模型既能继承C-V模型抗噪性强、运算复杂度低、对初始轮廓不敏感的优点,又可克服C-V模型不能分割灰度分布不均匀图像的弊端,并以较高的分割精度提取出DR图像中股骨干内外腔壁和骨折断端完整、连续的特征轮廓。
     点集配准问题实质上是一个多极值优化问题,常规的智能优化算法存在容易陷入局部极值和搜索效率不高的问题。针对此类问题,将一种全局性优化算法——特征统计算法(CSA)应用到点集配准中,研究一种基于高斯混合模型CSA优化的点集配准算法。通过重新组合高斯混合模型中的配准参数,确定与目标函数关系密切的特征统计项目,能够更好地解决点集配准中多参数估计易陷入局部极值的问题,提高算法的搜索效率。测试数据配准实验结果表明,该配准算法具有良好的抗噪声、抗缺失点、抗出格点能力,同时具有较高的配准精度和配准成功率。
     针对股骨DR图像缺少临床诊断所需的三维空间信息的问题,研究一种基于双平面DR图像2D-3D仿射配准的姿态估计方法。在完成股骨特征轮廓提取的基础上,利用点集配准算法获得正、侧位股骨DR图像特征轮廓与通用股骨模型投影轮廓之间的二维配准参数;利用相机标定法所确定的二维平面与三维空间的变换关系,获得三维变换矩阵,并作用到股骨通用模型上获得股骨个体化姿态。配准实验表明该方法能够在缺少个体化三维信息情况下,仅利用股骨正、侧位DR图像信息及股骨通用模型,重建出股骨个体化姿态。
Femoral shaft fracture is a common clinical orthopedic trauma. Walk dysfunction, limb deformity or other consequences may happen to the patients if it is not treated properly, which will significantly affect patients’ life quality. In modern medical diagnosis, the common clinical approaches for three-dimensional (3D) imaging mainly include computed tomography (CT) and magnetic resonance imaging (MRI). Although the3D data of limbs can be obtained directly by these two imaging methods, the cost, convenience in operation, imaging speed, and harmful radiation amount are inferior to that of digital radiograph (DR) imaging. However, DR images are2D projected images, and lacking of3D spatial information is the biggest shortcoming in clinical diagnosis with DR imaging equipment. Therefore, developing one approach for recovering3D pose of femur before surgery only by using one single or few limited two-dimensional (2D) DR images is of extremely clinical values and broad application prospects.
     This dissertation aims to design a method for quickly and effectively reconstructing femur patient-specific pose by using femoral DR images, and then realize description of femur in3D space. In this dissertation, corresponding solutions have been studied to handle the existed key problems such as DR imaging system calibration, feature extraction issue of inhomogeneous intensity distribution image,2D-3D image registration, and multiple extremum optimization of2D point set registration, which realizes patient-specific pose visualization of3D preoperative femoral fracture. It is studied deeply about three key technologies which are segmentation of inhomogeneous intensity distribution image, multiple extremum optimization problem and2D-3D image registration. The results promote the image-based guided visualization technology. The main contents of this dissertation are as follows:
     DR imaging system cannot be calibrated since images got from common plane calibration board are not clear under condition of X-rays. To handle this problem, PCB board containing copper grid was used to be new calibration board, the same calibration method based on plane calibration board was applied, and finally we obtained calibration parameters for the DR imaging system.
     Femoral fracture DR image is of complicated topology and inhomogeneous intensity distribution. To respond such kind characteristics, a new active contour model combined with grayscale fluctuation information was proposed. In details, we get grayscale fluctuation curve of an image basing on the concept of grayscale fluctuation; taking grayscale fluctuation transform to the image according to the judgment on the fluctuation range of a monotonic curve; introducing grayscale fluctuation transform function into a Chan-Vese (C-V) model and redefining the energy function, we finally obtain the new active contour model. Synthetic and medical image segmentation experiments showed that this new model not only inherits characteristics of perfect anti-noise performance, low computational complexity, initial contour insensitivity, etc., but also overcomes the shortcoming that C-V model cannot segments inhomogeneous intensity images. In addition, the new model can extract intact and continuous characteristic contour of femur fracture and marrow cavity in DR image with high accuracy.
     Point set registration is essentially a multiple extremum optimization process. Traditional intelligent optimization algorithms easily fall into local minimum and are inefficient in searching when they are used for complicated or special optimization problems. To address this issue, a characteristics statistical algorithm (CSA) was adopted to the point set registration and we proposed a point registration algorithm based on Gaussian mixture model (GMM). After determining the characteristics statistical items which are closely related to target function through recombining the registration parameters, it will be better to address the problem that parameter estimation of point set registration easily fall into local minimum and improve the efficiency of the algorithm in searching. Registration results of testing data proved that the proposed algorithm has good anti-noise, anti-point-missing and outliers resistant abilities. This algorithm is of higher registration accuracy and success rate for registration.
     To address the limitation of lacking of3D spatial information in DR images for clinical diagnosis, a3D pose estimation method based on affine2D-3D image registration using bi-planar DR images was proposed. After extracting characteristic contour of femur, we got2D registration parameters between segmented contours of DR image and projected contours of femur generic model by using point set registration. We further obtained3D pose matrix which is got through determining the transform relationship between2D plane and3D space based on pinhole calibration method. And then applying the pose matrix to generic model we finally obtain the patient-specific femoral pose. Experimental results showed that, under condition of lacking of3D patient-specific spatial information, this method can reconstruct patient-specific femur pose which is only depending on DR images from anteroposterior and lateral views with femoral generic model.
引文
[1]张丽明.股骨干骨折图像形状识别研究[D].保定:河北大学,2011:1-2.
    [2]陆裕朴,胥少汀,葛宝丰.实用骨科学[M].北京:人民军医出版社,1991:148-149.
    [3] Fakhry S M, Rutledge R, Dahners L E, et al. Incidence,management,andoutcome of femoral shaft fracture: a statewide population-based analysis of2805adult patients in a rural state[J]. The Journal of Trauma and Acute CareSurgery,1994,37(2):255-261.
    [4]李晶.梅花型带锁髓内钉固定股骨粗隆下骨折的生物力学研究[D].汕头:汕头大学,2012:1-3.
    [5]王雄,戴七一,李书振.扩髓与不扩髓条件下髓内钉置入内固定治疗成人股骨干骨折的系统评价[J].中国组织工程研究,2012,16(26):4812-4816.
    [6]唐德环,姬文婕,王京,等.数字化X线摄影技术在职业健康监护中的应用展望[J].中国工业医学杂志,2010,23(2):157-158.
    [7]林永楷.介入治疗导航系统的多模态图像配准方法研究[D].哈尔滨:哈尔滨工业大学,2011:19-20.
    [8]张存利.基于互信息的多模态医学图像CT-MRI配准[D].长春:吉林大学,2011:1-2.
    [9]秦维昌,刘传亚,亓恒涛.重视医用X线检查低剂量成像方法学的研究[J].中华放射学杂志,2008,42(10):1013-1014.
    [10]孙泓泓,赵京龙,杨全新,等.骨骼系统螺旋CT三维重建的技术探讨[J].陕西医学杂志,2003,35(5):405-407.
    [11]秦绪佳.医学图象三维重建及可视化技术研究[D].大连:大连理工大学,2001:1-12.
    [12] Kurazume R, Nakamura K, Okada T, et al.3D reconstruction of a femoralshape using a parametric model and two2D fluoroscopic images[J]. ComputerVision and Image Understanding,2009,113(2):202-211.
    [13] Joskowicz L, Milgrom C, Simkin A, et al. FRACAS: a system for computer-aided image-guided long bone fracture surgery[J]. Computer aided surgery,1998,3(6):271-288.
    [14] Knothe U, Knothe Tate M L, Klaue K, et al. Development and testing of a newself-locking intramedullary nail system: testing of handling aspects andmechanical properties[J]. Injury,2000,31(8):617-626.
    [15] Wu C, Tai C. A biomechanical comparison of unlocked or locked reamedintramedullary nails in the treatment of mid-third simple transverse femoralshaft fractures[J]. Chang Gung medical journal,2006,29(3):275-282.
    [16]张秀丽,刘勇.股骨远端几何学和解剖学的相关性研究[J].河北医药,2008,30(1):23-24.
    [17]肖军华.国际内固定协会(AO)理论在复杂性粉碎性骨折中的应用[J].医学理论与实践,2006,19(1):57-58.
    [18] Pfister U. Reamed intramedullary nailing[J]. Der Orthop de,2010,39(2):171-181.
    [19] Hodgson S. AO Principles of Fracture Management[J]. Annals of The RoyalCollege of Surgeons of England,2009,91(5):448-449.
    [20] Miyamoto S, Sugiura M, Watanabe S, et al. Development of minimallyinvasive surgery systems[J]. Hitachi Review,2003,52(4):189-195.
    [21] Smith K R, Frank K J, Bucholz R D. The Neurostation—A highly accurate,minimally invasive solution to frameless stereotactic neurosurgery[J].Computerized Medical Imaging and Graphics,1994,18(4):247-256.
    [22] Dorward N L, Alberti O, Palmer J D, et al. Accuracy of true framelessstereotaxy: in vivo measurement and laboratory phantom studies: technicalnote[J]. Journal of neurosurgery,1999,90(1):160-168.
    [23] Reinhardt H, Trippel M, Westermann B, et al. Computer aided surgery withspecial focus on neuronavigation[J]. Computerized medical imaging andgraphics,1999,23(5):237-244.
    [24] Keles G E, Lamborn K R, Berger M S. Coregistration accuracy and detectionof brain shift using intraoperative sononavigation during resection ofhemispheric tumors[J]. Neurosurgery,2003,53(3):556-564.
    [25] Tirakotai W, Miller D, Heinze S, et al. A novel platform for image-guidedultrasound[J]. Neurosurgery,2006,58(4):710-718.
    [26] Brodwater B K, Roberts D W, Nakajima T, et al. Extracranial application of theframeless stereotactic operating microscope: experience with lumbar spine[J].Neurosurgery,1993,32(2):209-213.
    [27] Roessler K, Ungersboeck K, Dietrich W, et al. Frameless stereotactic guidedneurosurgery: clinical experience with an infrared based pointer devicenavigation system[J]. Acta neurochirurgica,1997,139(6):551-559.
    [28] Haberland N, Ebmeier K, Hliscs R, et al. Intraoperative CT in image-guidedsurgery of the spine[J]. medicamundi,2000,43(4):24-31.
    [29] Foley K T, Simon D A, Rampersaud Y R. Virtual fluoroscopy: computer-assisted fluoroscopic navigation[J]. Spine,2001,26(4):347-351.
    [30] Xu R, Ebraheim N A, Ou Y, et al. Anatomic Considerations of Pedicle ScrewPlacement in the Thoracic Spine: Roy‐Camille Technique VersusOpen‐Lamina Technique[J]. Spine,1998,23(9):1065-1068.
    [31] Nolte L P, Visarius H, Arm E, et al. Computer-aided fixation of spinalimplants[J]. Computer Aided Surgery,1995,1(2):88-93.
    [32] Schatzker J, Tile M. The rationale of operative fracture care [M]. New York,Berlin Heidelberg: Springer,1996:15-18.
    [33] Kim Y H, Kim J K, Choi K. Three-dimensional reconstruction of human femurusing consecutive computer tomography images and simulated implantationsystem[J]. Journal of Medical Engineering&Technology,2004,28(5):205-210.
    [34] De Momi E, Pavan E, Motyl B, et al. Hip joint anatomy virtual andstereolithographic reconstruction for preoperative planning of total hipreplacement[C]//International Congress Series. Elsevier,2005,1281:708-712.
    [35] Langlotz F, B chler R, Berlemann U, et al. Computer assistance for pelvicosteotomies[J]. Clinical orthopaedics and related research,1998,354:92-102.
    [36] Krackow K A, Serpe L, Phillips M J, et al. A new technique for determiningproper mechanical axis alignment during total knee arthroplasty: progresstoward computer-assisted TKA[J]. Orthopedics,1999,22(7):698-702.
    [37] Klos T V S, Habets R J E, Banks A Z, et al. Computer assistance inarthroscopic anterior cruciate ligament reconstruction[J]. Clinical orthopaedicsand related research,1998,354:65-69.
    [38] de la Fuente M, Schkommodau E, Lutz P, et al.3D reconstruction andnavigated removal of femoral bone cement in revision THR based on fewfluoroscopic images[C]//International Congress Series. Elsevier,2004,1268:626-631.
    [39] Caponetti L, Fanelli A M. Computer-aided simulation for bone surgery[J].Computer Graphics and Applications, IEEE,1993,13(6):86-92.
    [40] Nikkhade-Dehkori B, Bro-Nielsen M, Darvann T, et al.3D reconstruction ofthe femoral bone using two X-ray images from orthogonal views[J]. ComputerAssisted Radiology,1996:26-29.
    [41] Westphal R, Winkelbach S, G sling T, et al. Telemanipulated long bonefracture reduction[J]. Medical Robotics,2007:507-526.
    [42] Graham A E, Xie S Q, Aw K C, et al. Robotic long bone fracture reduction[J].Medical Robotics. V. Bozovic,i-Tech Education and Publishing,2007:85-102.
    [43] Tomazevic D, Likar B, Slivnik T, et al.3-D/2-D registration of CT and MR toX-ray images[J]. IEEE Transactions on Medical Imaging,2003,22(11):1407-1416
    [44] Lavallée S, Szeliski R, Brunie L. Anatomy-based registration of three-dimensional medical images, range images, X-ray projections, and three-dimensional models using octree-splines[J]. Computer-Integrated Surgery:technology and clinical applications,1996:115-143
    [45] Livyatan H, Yaniv Z, Joskowicz L. Gradient-based2-D/3-D rigid registrationof fluoroscopic X-ray to CT[J]. IEEE Transactions on Medical Imaging,2003,22(11):1395-1406.
    [46] Penney G P, Weese J, Little J A, et al. A comparison of similarity measures foruse in2-D-3-D medical image registration[J]. IEEE Transactions on MedicalImaging,1998,17(4):586-595.
    [47] Lemieux L, Jagoe R, Fish D R, et al. A patient-to-computed-tomography imageregistration method based on digitally reconstructed radiographs[J]. Medicalphysics,1994,21:1749-1761.
    [48] LaRose D, Bayouth J, Kanade T. Transgraph: interactive intensity-based2D/3Dregistration of X-ray and CT data[C]//SPIE Image Processing.2000:385-396.
    [49] Baudoin A, Skalli W, de Guise J A, et al. Parametric subject-specific model forin vivo3D reconstruction using bi-planar X-rays: application to the upperfemoral extremity[J]. Medical&Biological Engineering&Computing,2008,46(8):799-805.
    [50] Bertrand S, Laporte S, Parent S, et al. Three-dimensional reconstruction of therib cage from biplanar radiography[J]. IRBM,2008,29(4):278-286.
    [51] Humbert L, De Guise J A, Aubert B, et al.3D reconstruction of the spine frombiplanar X-rays using parametric models based on transversal and longitudinalinferences[J]. Medical engineering&physics,2009,31(6):681-687.
    [52] Zheng G. Statistically deformable2D/3D registration for accuratedetermination of post-operative cup orientation from single standard X-rayradiograph[M].Medical Image Computing and Computer-AssistedIntervention–MICCAI2009. Springer Berlin Heidelberg,2009:820-827.
    [53] Zheng G, Gollmer S, Schumann S, et al. A2D/3D correspondence buildingmethod for reconstruction of a patient-specific3D bone surface model usingpoint distribution models and calibrated X-ray images[J]. Medical imageanalysis,2009,13(6):883-899.
    [54] Zheng G. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-rayradiograph[J]. Medical physics,2010,37:1424-1440.
    [55] Gamage P, Xie S Q, Delmas P, et al. Radiograph based patient-specificcustomization of a generic femur[C]//15th International Conference onMechatronics and Machine Vision in Practice,2008:622-627.
    [56] Gamage P, Xie S, Delmas P, et al.3D pose estimation of femur fracturesegments for vision guided robotic orthopaedic surgery[J]. InternationalJournal of Biomechatronics and Biomedical Robotics,2009,1(1):57-66.
    [57] Gamage P, Xie S Q, Delmas P, et al. Diagnostic radiograph based3D bonereconstruction framework:application to osteotomy surgical planning [C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI2010. Springer Berlin Heidelberg,2010:481-488.
    [58] Gamage P, Xie S Q, Delmas P, et al. Diagnostic radiograph based3D bonereconstruction framework: Application to the femur[J]. Computerized MedicalImaging and Graphics,2011,35(6):427-437.
    [59] Matthews F, Messmer P, Raikov V, et al. Patient-specific three-dimensionalcomposite bone models for teaching and operation planning[J]. Journal ofdigital imaging,2009,22(5):473-482.
    [60]韦巍,王国荣,姜立军.医学X射线图像三维重建技术[J].北京生物医学工程,2004,23(3):236-238.
    [61]韦巍,王国荣,姜立军.基于X线图像的股骨骨干基准线的建立[J].中国医学影像技术,2004,20(5):789-791.
    [62] Zhang B, Sun S, Sun J, et al.3D Reconstruction method from biplanarradiography using DLT algorithm:Application to the Femur[C]//2010FirstInternational Conference on Pervasive Computing Signal Processing andApplications(PCSPA),2010:251-254.
    [63]邝宇,夏灵,汪元美.基于双平面正交投影X线成像系统的血管图像重建技术[J].国外医学(生物医学工程分册),2004,27(4):219-223.
    [64]张翼.脊柱外科手术导航关键技术的研究与系统建立[D].上海:复旦大学,2008:57-71.
    [65]张薇,黄毓瑜,栾胜等.基于灰度的二维/三维图像配准方法及其在骨科导航手术中的实现[J].中国医学影像技术,2007,23(7):1080-1084.
    [66]焦培峰.膝关节X线透视图像和CT数据的2D/3D配准及其应用研究[D].广州:南方医科大学,2010:6-33.
    [67] LaRose D A. Iterative X-ray/CT registration using accelerated volumerendering[D]. Carnegie Mellon University,2001:17-21.
    [68] Downing D T, Stranieri A M. Correction for deviation from the Lambert-Beerlaw in the quantitation of thin-layer chromatograms by photodensitometry[J].Journal of Chromatography A,1980,192(1):208-211.
    [69] Beutel J, Kundel H L, Van Metter R L. Handbook of Medical Imaging[J].volume1:Physics and Psychophysics,2000:50-51.
    [70]胡琴明,程明渊,贺奇才,等.基于穿越长度权重反投影重建算法的初步研究[J].中国医学物理学杂志,2012,29(2):3259-3262.
    [71]薛文东,水汶,张双燕.股骨CT图像的边缘提取[J].上海生物医学工程,2004,1:27-28.
    [72]杨伟华.用摄影法测量牙科X射线机焦皮距方法研究[J].中国辐射卫生,2005,14(3):207-208.
    [73]冯焕飞.三维重建中的相机标定方法研究[D].重庆:重庆大学,2013:2-5.
    [74]马岩,王振宏,龚琳.基于RAC标定法的CCD摄像机参数标定技术研究[J].光学仪器,2012,34(2):11-15.
    [75] Jiexian Z, F Xiang, et al. An improved method for camera calibration[C]//Image and Signal Processing,2nd CISP International Congress,2009:155-157.
    [76] Tsai R. A versatile camera calibration technique for high-accuracy3D machinevision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journalof Robotics and Automation,1987,3(4):323-344.
    [77] Moura D C, Barbosa J G, Reis A M, et al. A flexible approach for thecalibration of biplanar radiography of the spine on conventional radiologicalsystems[J]. Computer Modelling in Engineering and Sciences,2010,60(2):115-138.
    [78]才李铭.计算机视觉中的自标定方法[D].长春:吉林大学,2008:15-48.
    [79] Faugeras O D, Luong Q T, Maybank S J. Camera self-calibration: Theoryand experiments[C]//Computer Vision—ECCV'92. Springer Berlin Heidelberg,1992:321-334.
    [80] Maybank S J, Faugeras O D. A theory of self-calibration of a moving camera[J].International Journal of Computer Vision,1992,8(2):123-151.
    [81] Zhang Z. A flexible new technique for camera calibration [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [82]孙凤梅,胡占义.平面单应矩阵对摄像机内参数约束的一些性质[J].计算机辅助设计与图形学学报,2007,19(5):647-650.
    [83] Lorensen W E, Cline H E. Marching cubes: A high resolution3D surfaceconstruction algorithm[C]//ACM Siggraph Computer Graphics. ACM,1987,21(4):163-169.
    [84]张恒,雷志辉.一种改进的中值滤波算法[J].中国图像图形学报A辑,2004,9(004):408-411.
    [85]焦培峰,秦安,赵卫东,等.基于单幅X线图像和CT数据的2D/3D配准系统[J].医用生物力学,2010,25(6):460-464.
    [86] Gamage P.3D reconstruction of patient specific bone models for image guidedorthopaedic surgery[D]. New Zealand, The University of Auckland,2012:1-16.
    [87]依玉峰,高立群,崔兆华,等.基于PSO的Live Wire交互式图像分割算法[J].东北大学学报(自然科学版),2011,2:193-196.
    [88] Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary®ionsegmentation of objects in N-D images[C]//Eighth IEEE InternationalConference on Computer Vision.2001,1:105-112.
    [89]郑伟,康朝红.基于梯度的低对比度X线图像分割方法[J].通信技术,2009,42(01):292-294.
    [90] Gamage P, Xie S Q, Delmas P, et al. Segmentation of radiographic imagesunder topological constraints: application to the femur[J]. International journalof computer assisted radiology and surgery,2010,5(5):425-435.
    [91] Wang L, Li C, Sun Q, et al. Brain MR image segmentation using local andglobal intensity fitting active contours/surfaces[M]. Medical Image Computingand Computer-Assisted Intervention–MICCAI2008. Springer BerlinHeidelberg,2008:384-392.
    [92] Li C, Xu C, Anderson A W, et al. MRI tissue classification and bias fieldestimation based on coherent local intensity clustering:A unified energyminimization framework[C]//Information Processing in Medical Imaging.Springer Berlin Heidelberg,2009:288-299.
    [93] Zhang T, Freedman D. Tracking objects using density matching and shapepriors[C]//Ninth IEEE International Conference on Computer Vision,2003:1056-1062.
    [94] Kichenassamy S, Kumar A, Olver P, et al. Gradient flows and geometric activecontour models[C]//Fifth International Conference on Computer Vision,1995:810-815.
    [95] Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions onimage Processing,2001,10(2):266-277.
    [96] Li C, Kao C Y, Gore J C, et al. Minimization of region-scalable fitting energyfor image segmentation[J]. IEEE Transactions on image Processing,2008,17(10):1940-1949.
    [97] Li C, Kao C Y, Gore J C, et al. Implicit active contours driven by local binaryfitting energy[C]//IEEE Conference on Computer Vision and PatternRecognition,2007:1-7.
    [98] Wang L, Li C, Sun Q, et al. Active contours driven by local and global intensityfitting energy with application to brain MR image segmentation[J].Computerized Medical Imaging and Graphics,2009,33(7):520-531.
    [99] Wang X F, Huang D S, Xu H. An efficient local Chan–Vese model for imagesegmentation[J]. Pattern Recognition,2010,43(3):603-618.
    [100]高梁,刘晓云,陈武凡.基于相位和GGVF的水平集乳腺超声图像分割[J].仪器仪表学报,2012,33(4):870-877.
    [101]周奔,何传江,原野.结合自适应变化停止函数的边缘活动轮廓模型[J].计算机应用研究,2012,29(1):366-368.
    [102]魏巍,申铉京,千庆姬.工业检测图像灰度波动变换自适应阈值分割算法[J].自动化学报,2011,37(8):944-953.
    [103]Kimia B B, Tannenbaum A, Zucker S W. Toward a computational theory ofshape: An overview [M]. Springer Berlin Heidelberg,1990:27-35.
    [104]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].科学出版社,2008:45-47.
    [105]Osher S, Sethian J A. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations[J]. Journal ofcomputational physics,1988,79(1):12-49.
    [106]Mumford D, Shah J. Optimal approximations by piecewise smooth functionsand associated variational problems[J]. Communications on pure and appliedmathematics,1989,42(5):577-685.
    [107]Vovk U, Pernus F, Likar B. A review of methods for correction of intensityinhomogeneity in MRI[J]. IEEE Transactions on Medical Imaging,2007,26(3):405-421.
    [108]Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation:A level set approach[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1995,17(2):158-175.
    [109]Sussman M, Smereka P, Osher S. A level set approach for computing solutionsto incompressible two-phase flow[J]. Journal of Computational physics,1994,114(1):146-159.
    [110]Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: a newvariational formulation[C]//IEEE Computer Society Conference on ComputerVision and Pattern Recognition,2005,1:430-436.
    [111]Yu X, Bui T D, Krzyzak A. Robust estimation for range image segmentationand reconstruction[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1994,16(5):530-538.
    [112]Yasnoff W A, Mui J K, Bacus J W. Error measures for scene segmentation[J].Pattern Recognition,1977,9(4):217-231.
    [113]Pal N R, Bhandari D. Image thresholding: some new techniques[J]. Signalprocessing,1993,33(2):139-158.
    [114]Hoover A, Jean-Baptiste G, Jiang X, et al. An experimental comparison ofrange image segmentation algorithms[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1996,18(7):673-689.
    [115]章毓晋.图像分割[M].北京:科学出版社,2001:1-9.
    [116]刘书琴,毋立芳,宫玉,等.图像质量评价综述[J].中国科技论文在线,2011,6(7):501-506.
    [117]BTITURR. Methodology for the subjective assessment of the quality oftelevision pictures[J]. International Telecommunication Union, Geneva,Switzerland,2002:53-56.
    [118]Cho M, Lee J, Lee KM. Reweighted random walks for graph matching[C]//European conference on computer vision. Heraklion,Greece,2010:492-450.
    [119]Yuan Y, Pang YW, Wang KQ. Shang MY(2012)Efficient image matchingusing weighted voting[J]. Pattern Recogn Letter33(4):471-475.
    [120]Simon D A, Hebert M, Kanade T. Techniques for fast and accurateintrasurgical registration[J]. Computer Aided Surgery,1995,1(1):17-29.
    [121]Zhang, Z. Iterative point matching for registration of free-form curves andsurfaces[J]. International journal of computer vision,1994,13(2):119-152.
    [122]刘繁明,屈昊. ICP算法的鲁棒性改进[J].仪器仪表学报,25(4):603-605.
    [123]Chetverikov D, Stepanov D, Krsek P. Robust Euclidean alignment of3D pointsets: the trimmed iterative closest point algorithm[J]. Image Vision Comput,2005,23(3):229-309.
    [124]Chui H, Rangarajan A. A new point matching algorithm for non-rigidregistration[J]. Computer Vision and Image Understanding,2003,89(2):114-141.
    [125]Yang Jinzhong. The thin plate spline robust point matching(TPS-RPM)algorithm: a revisit[J]. Pattern Recognition Letters,2011,32(7):910-918.
    [126]Chui H, Rangarajan A. A feature registration framework using mixturemodels[J]. IEEE Workshop on Mathematical Methods in Biomedical ImageAnalysis,2000:190-197.
    [127]Myronenko A, Song X B. Point set registration: coherent point drift[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2010,32(12):2262-2275.
    [128]Horaud R, Forbes F, Yguel M, Dewaele G, Zhang J. Rigid and articulated pointregistration with expectation conditional maximization[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,2011,33(3):587-602.
    [129]Jian, B, Vemuri B C. A robust algorithm for point set registration usingmixture of Gaussians[C]//Proceedings of the10th IEEE InternationalConference on Computer Vision.2010:1246-1251.
    [130]Fitzgibbon A W. Robust registration of2D and3D point sets[J]. Image andVision Computing,2003,21(13):1145-1153.
    [131]梁国远,查红彬,刘宏.基于三维模型和仿射对应原理的人脸姿态估计方法[J].计算机学报,2005,28(5):792-800.
    [132]田和强,吴冬梅,杜志江,等.基于ICP算法的脊椎手术导航配准技术[J].华南理工大学学报(自然科学版),2010,38(11):141-147.
    [133]Hennig C, Coretto P. The noise component in model-based cluster analysis[J].Data Analysis, Machine Learning and Applications,2008,2:127-138.
    [134]Sanroma G, Alquezar R, Serratosa F, Herrera B. Smooth point-setregistrationusing neighboring constraints[J].Pattern Recognition Letters,2012,33(15):2029-2037.
    [135]刘志宏.压水堆多循环堆芯燃料管理优化研究[D].北京:清华大学,2003:2-8.
    [136]邢文训,谢金星.现代优化计算方法[M].清华大学出版社,2005:15-37.
    [137Thomas Stützle, Holger H. Hoos. Max-Min Ant System[J]. Future GenerationComputer Systems,2000,16(8):889-914.
    [138]Yin P. Particle swarm optimization for point pattern matching[J]. Journal ofvisual communication and image representation,2006,17(1):143-162.
    [139]刘志宏,胡永明,施工.特征统计算法及其在NP组合优化问题上的应用[J].科技导报,2006,24(11):28-30.
    [140]刘志宏,胡永明,施工.特征统计算法(CSA)在堆芯装料方案优化中的应用[J].核动力工程,2007,28(2):1-4.
    [141]刘志宏,施工,胡永明.一种新的全局优化算法——统计归纳算法[J].清华大学学报(自然科学版),2002,42(5):580-583.
    [142]聂宏宾,侯晴宇,赵明等.基于似然函数EM迭代的红外与可见光图像配准[J].光学精密工程,2011,19(3)657-663.
    [143]侯晴宇,武春风,赵明,等.基于似然函数最速下降的红外与可见光图像配准[J].光子学报,2011,40(3):433-437.
    [144]李曙雄,杨振海.舍选法的几何解释及其应用.数理统计与管理,2002,21(4):40-41
    [145]Du S, Zheng N, Ying S, et al. Affine iterative closest point algorithm for pointset registration[J]. Pattern Recognition Letters,2010,31(9):791-799.
    [146]van de Kraats E B, Penney G P, Tomazevic D, et al. Standardized evaluationmethodology for2-D-3-D registration[J]. IEEE Transactions on MedicalImaging,2005,24(9):1177-1189.
    [147]Czopf á, Brack C, Roth M, et al.3D-2D registration of curved objects[J].Electrical Engineering and Computer Science,2000,43(1):19-41.
    [148]Guéziec A, Kazanzides P, Williamson B, et al. Anatomy-based registration ofCT-scan and intraoperative X-ray images for guiding a surgical robot[J]. IEEETransactions on Medical Imaging,1998,17(5):715-728.
    [149]Lavallée S, Szeliski R. Recovering the position and orientation of free-formobjects from image contours using3D distance maps[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1995,17(4):378-390.
    [150]Zollei L, Grimson E, Norbash A, et al.2D-3D rigid registration of X-rayfluoroscopy and CT images using mutual information and sparsely sampledhistogram estimators[C]//Proceedings of the2001IEEE Computer SocietyConference on Computer Vision and Pattern Recognition.2001:696-703.
    [151]Hill D L G, Batchelor P G, Holden M, et al. Medical image registration[J].Physics in medicine and biology,2001,46(3):1-45.
    [152]Hallpike L, Hawkes D J. Medical image registration: an overview[J]. Imaging,2002,14(6):455-463.
    [153]Markelj P, Toma evi D, Likar B, et al. A review of3D/2D registrationmethods for image-guided interventions[J]. Medical image analysis,2012,16(3):642-661.
    [154]Zitova B, Flusser J. Image registration methods: a survey[J]. Image and visioncomputing,2003,21(11):977-1000.
    [155]Amit Y. Graphical shape templates for automatic anatomy detection withapplications to MRI brain scans[J]. IEEE Transactions on Medical Imaging,1997,16(1):28-40.
    [156]Li H, Manjunath B S, Mitra S K. A contour-based approach to multisensorimage registration[J]. IEEE Transactions on Image Processing,1995,4(3):320-334.
    [157]Xia M, Liu B. Image registration by super-curves[J]. IEEE Transactions onImage Processing,2004,13(5):720-732.
    [158]Audette M A, Ferrie F P, Peters T M. An algorithmic overview of surfaceregistration techniques for medical imaging[J]. Medical Image Analysis,2000,4(3):201-217.
    [159]Vercauteren T, Pennec X, Perchant A, et al. Diffeomorphic demons: Efficientnon-parametric image registration[J]. NeuroImage,2009,45(1):61-72.
    [160]Radunovi D P. Least-squares approximation [M]. Wavelets from Math toPractice. Springer Berlin Heidelberg,2009:7-34.
    [161]Stockman G, Kopstein S, Benett S. Matching images to models for registrationand object detection via clustering[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence,1982(3):229-241.
    [162]Bookstein F L. Principal warps:Thin-plate splines and the decomposition ofdeformations[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1989,11(6):567-585.
    [163]Davis M H, Khotanzad A, Flamig D P, et al. A physics-based coordinatetransformation for3-D image matching[J]. IEEE Transactions on MedicalImaging,1997,16(3):317-328.
    [164]Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-formdeformations: application to breast MR images[J]. IEEE Transactions onMedical Imaging,1999,18(8):712-721.
    [165]Nelder J A, Mead R. A simplex method for function minimization[J]. Thecomputer journal,1965,7(4):308-313.
    [166]Brent R P. Algorithms for minimization without derivatives[M]. Courier DoverPublications,1973:12-43.
    [167]Moré J J. The Levenberg-Marquardt algorithm: implementation and theory
    [M]. Numerical analysis. Springer Berlin Heidelberg,1978:105-116.
    [168]Shanno D F. Conditioning of quasi-Newton methods for functionminimization[J]. Mathematics of computation,1970,24(111):647-656.
    [169]Fisher S R A. Statistical methods for research workers[M]. Edinburgh: Oliverand Boyd,1970:21-29.
    [170]McLachlan G, Krishnan T. The EM Algorithm and Extensions [M]. John Wiley&Sons,2007:9-57.
    [171]康立山,谢云,尤矢勇.非数值并行算法:模拟退火算法.第一册[M].科学出版社,1994:1-244.
    [172]刘勇.非数值并行算法:遗传算法.第二册[M].科学出版社,1995:1-215.
    [173]Kennedy J. Particle swarm optimization[M].Encyclopedia of MachineLearning. Springer US,2010:760-766.
    [174] Michalewicz Z. Genetic algorithms+data structures=evolution programs[M].springer,1996:18-34.
    [175]Maes F, Vandermeulen D, Suetens P. Comparative evaluation ofmultiresolution optimization strategies for multimodality image registration bymaximization of mutual information[J]. Medical Image Analysis,1999,3(4):373-386.
    [176]刘莉娜.图像特征点匹配算法研究[D].南京:南京理工大学,2006:16-20.
    [177]俞亚青,田学隆,闫春红.医学图像配准方法分类及现状[J].重庆大学学报(自然科学版),2003,8:114-118.
    [178]Wang P, Wang P, Qu Z G, et al. A refined coherent point drift (CPD) algorithmfor point set registration[J]. Science China Information Sciences,2011,54(12):2639-2646.
    [179]孙绍滨.股骨三维模型重建中的2D-3D非刚性配准方法研究[D].哈尔滨:哈尔滨工业大学,2012:49-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700