用户名: 密码: 验证码:
基于变精度粗糙集理论的焊接动态过程知识建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接自动化是焊接技术发展的一个趋势,由于焊接过程的高度复杂性,使得难以获得焊接过程的精确数学模型,从而限制了传统控制方法的应用。近年来,智能控制由于对复杂过程的适应性而得到重视,而在智能控制系统设计中,建模一般是必不可少且具有重要意义的。用模糊集方法、神经网络方法以及两者相结合的方法获取焊接过程的知识模型成为科研人员关注的焦点,但这些方法都存在一些本身难以克服的缺点。基于粗糙集(Rough Set, RS)的建模方法作为一种较新的方法已在焊接中得到应用,体现出较好的对焊接过程的适用性。但其应用水平还只是停留在经典RS集的程度上。为克服经典RS模型的一些不足,本文引入了变精度粗糙集理论(Variable Precision Rough Set,VPRS),提出了一种基于VPRS的知识建模方法。
     该方法考虑焊接过程和VPRS理论本身的特点,主要包含四个步骤:源数据的获取、数据的预处理、VPRS模型约简和知识推理。
     (1)源数据的获取
     这是VPRS建模方法的前提和基础。本文采用实验设计法来获取焊接过程的数据。以脉冲钨极氩弧焊(Gas Tungsten Arc Welding,GTAW)
Welding automation is a trend of welding technical development. Be-cause of the high complexity of arc welding process, it is hard to obtain an accurate mathematical models, which limits the further application of tradi-tional control method. Recently, more attention has been paid to intelligent control for its adaptability to complex processes. Intelligent modeling is usu-ally essential and significant to the design of intelligent control system. Re-searches are focused on fuzzy set method, neural network method or their hybrid method for welding process’s intelligent modeling. However, these methods have some disadvantages that are hard to overcome by themselves. Rough set (RS) based modeling method, being a relative new modeling method, has been used in welding field and has shown its adaptability. How-
引文
1. Zadeh L. A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3, 28-44.
    2. 王其隆, 弧焊过程质量实时传感与控制, 北京, 机械工业出版社, 2000.
    3. 李少远, 陈增强, 智能控制的新进展 (ⅰ), 控制与决策, 2000, 15 (001), 1-5.
    4. 秦勇, 吴连伟, 多变量模糊系统建模与控制理论, 计算机仿真, 1999, 16 (003), 15-18.
    5. 张金明, 模糊控制的系统化设计和稳定性分析, 自动化学报, 1999, 25 (4).
    6. 李少远, 陈增强, Sugeno 模糊模型的辨识与控制, 自动化学报, 1999, 25 (004), 488-492.
    7. 王宏伟, 马广富, 模糊辨识理论与应用研究, 系统仿真学报, 2000, 12 (002), 87-90.
    8. 李少远, 席裕庚, 陈增强, etc., 智能控制的新进展 (ⅱ), 控制与决策, 2000, 15 (02), 136-140.
    9. 李士勇, 模糊控制· 神经控制和智能控制论 (第二版), 哈尔滨: 哈尔滨工业大学出版社, 1996.
    10. 王士同, 模糊系统, 模糊神经网络及应用程序设计, 上海: 上海科学技术文献出版社, 1998.
    11. 孙增圻, 模糊神经网络及其在系统建模与控制中的应用, 南京化工大学学报 (自然科学版), 2000, 22 (04), 1-6.
    12. Kovacevic R., Zhang Y. M., Online measurement of weld fusion state using weld pool image and neurofuzzy model, in, Proceedings of the IEEE International Symposium on Intelligent Control, 1996, 307-312.
    13. 王伟, 朱六妹, 丁争, 焊接电弧电压模糊模型的相关辨识, 电 工 技 术 学 报, 1998, 13 (1), 59-63.
    14. 李文, 孙辉, 模糊系统辨识方法在 tig 焊过程建模中的应用, 铁道学报, 1998, 20 (6), 111-114.
    15. Andersen K., Cook G. E., Karsai G., etc., Artificial neural networks applied to arc welding process modelingand control, IEEE Transactions on Industry Applications, 1990, 26 (5), 824-830.
    16. Cook G. E., Barnett R. J., Andersen K., etc., Weld modeling and control using artificial neural networks, IEEE Transactions on Industry Applications, 1993, 31 (6), 2181-2189.
    17. Chan B., Pacey J., Bibby M., Modelling gas metal arc weld geometry using artificial neural network technology, Canadian Metallurgical Quarterly(Netherlands), 1999, 38 (1), 43-51.
    18. Kim I. S., Prasad Y. K. D. V., Son J. S., etc., A study on prediction of bead height in robotic arc welding using a neural network, Journal of Materials Processing Technology, 2002, 130-131, 229-234.
    19. Nagesh D. S., Datta G. L., Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks, Journal of Materials Processing Technology, 2002, 123 (2), 303-312.
    20. Jin B. Z., Liu W. H., Ohshima K. J., Control of weld pool width and cooling rate in circumferential gta welding of pipe by using neural network model, in, International IEEE/IAS conference on industrial automation and control, Taipei, Taiwan, 1995, 41-46.
    21. Ohshima K., Yabe M., Akita K., etc., Sensor fusion using neural network in the robotic welding, in, Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), Orlando, FL, USA, 1995, 1764-1769.
    22. Di L., Srikanthan T., Chandel R. S., etc., Neural-network-based self-organized fuzzy logic control for arc welding, ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (2), 115-124.
    23. Li P., Fang M. T. C., Lucas J., Modelling of submerged arc weld beads using self-adaptive offset neutral networks, Journal of Materials Processing Technology, 1997, 71 (2), 288-298.
    24. Lin R. H., Fischer G. W., An on-line arc welding quality monitor and process control system, Industrial Automation and Control: Emerging Technologies, 1995., International IEEE/IAS Conference on, 1995, 22-29.
    25. 黄石生, 李迪, 焊接过程的神经网络建模及控制研究, 机械工程学报, 1994, 30 (3), 24-30.
    26. Chen S. B., Wu L., Wang Q. L., Self-learning fuzzy neural networks for control of the arc weldingprocess, IEEE International Conference on Neural Networks, 1996, 2.
    27. 陈善本, 具有时滞的不确定性系统神经网络模糊自学习控制, 控制理论与应用, 1996, 13 (3), 347-355.
    28. Chen S. B., Lou Y. J., Wu L., etc., Intelligent methodology for sensing, modeling and control of pulsed gtaw: Part i - bead-on-plate welding, WELDING JOURNAL, 2000, 79 (6), 151S-163S.
    29. Chen S. B., Zhao D. B., Wu L., etc., Intelligent methodology for sensing, modeling and control of pulsed gtaw: Part 2: Butt joint welding, WELDING JOURNAL, 2000, 79 (6), 164-174.
    30. Zhao D. B., Chen S. B., Wu L., etc., Intelligent control for the shape of the weld pool in pulsed gtaw with filler metal, WELDING JOURNAL, 2001, 80 (11), 253S-260S.
    31. Zhang G. J., Chen S. B., Liu X., etc., Predicting the backside width of weld pool during pulsed gtaw process based on a neural network model [4565-30], PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 2001, 131-137.
    32. 张勇, 陈善本, 焊接柔性加工单元中熔池的实时控制, 焊接学报, 2002, 23 (4), 1-5.
    33. Liu Z., Wang Q., Zheng B., Process control based on double-side image sensing of the keyhole in vppa welding, Journal of Materials Processing Technology, 2001, 115 (3), 373-379.
    34. Tarng Y. S., Wu J. L., Yeh S. S., etc., Intelligent modelling and optimization of the gas tungsten arc welding process, JOURNAL OF INTELLIGENT MANUFACTURING, 1999, 10 (1), 73-79.
    35. Juang S. C., Tarng Y. S., Lii H. R., A comparison between the back-propagation and counter-propagation networks in the modeling of the tig welding process, Journal of Materials Processing Technology, 1998, 75 (1), 54-62.
    36. Pawlak Z., Rough sets, International Journal of Computer and Information Science, 1982, 11 (5), 341-356.
    37. Czogala E., Mrozek A., Pawlak Z., The idea of a rough fuzzy controller and its application to the stabilization of a pendulum-car system, FUZZY SETS AND SYSTEMS, 1995, 72 (1), 61-73.
    38. Munakata T., Rough control: A perspective, Rough Sets and data mining: analysis of imprecise data, 1997, 77-87.
    39. Pawlak Z., Rough real functions and rough controllers, in, Rough sets and data mining, Kluwer Academic Publishers, Boston, 1997, 139–147.
    40. Arima M., Hara E. H., Katzberg J. D., A fuzzy logic and rough sets controller for hvac systems, WESCANEX 95. Communications, Power, and Computing. Conference Proceedings. IEEE, 1995, 1, 133-138.
    41. Peters J. F., Ziaei K., Ramanna S., etc., Adaptive fuzzy rough approximate time controller design methodology: Concepts, petri net model and application, IEEE International Conference on Systems, Man, and Cybernetics, 1998, 3, 2101-2106.
    42. Mrozek A., Plonka L., Kedziera J., The methodology of rough controller synthesis, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, 1996, 2, 1135-1139.
    43. Shen Q., Chouchoulas A., Data-driven fuzzy rule induction and its application to systems monitoring, Fuzzy Systems Conference Proceedings, 1999, 2, 928-933.
    44. Liu P., Peters J. F., Risk analysis for high-voltage transmission line de-icing system, IEEE Canadian Conference on Electrical and Computer Engineering, 1999, 3, 1248-1252.
    45. Chen-Jimenez I. E., Kornecki A., Zalewski J., Software safety analysis using rough sets, Southeastcon'98. Proceedings. IEEE, 1998, 15-19.
    46. Ruhe G., Rough set based data analysis in goal oriented software measurement, Proceedings of the Third International Software Metrics Symposium, 1996, 10–19.
    47. An A., Chan C., Shan N., etc., Applying knowledge discovery to predict water-supply consumption, Expert, IEEE [see also IEEE Intelligent Systems], 1997,12 (4), 72-78.
    48. Yao Y. Y., A comparative study of fuzzy sets and rough sets, INFORMATION SCIENCES, 1998, 109 (1-4), 227-242.
    49. Mordeson J. N., Algebraic properties of spaces in rough fuzzy set theory, Proceeding of the 18th International Conference of the North American on Fuzzy Information, 1999, 56-59.
    50. Chakrabarty K., Biswas R., Nanda S., Fuzziness in rough sets, FUZZY SETS AND SYSTEMS, 2000, 110 (2), 247-251.
    51. Radzikowska A. M., Kerre E. E., A comparative study of fuzzy rough sets, FUZZY SETS AND SYSTEMS, 2002, 126 (2), 137-155.
    52. Intan R., Mukaidono M., Generalized fuzzy rough sets by conditional probability relations, INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2002, 16 (7), 865-881.
    53. Jelonek J., Krawiec K., Slowinski R., Rough set reduction of attributes and their domains for neural networks, COMPUTATIONAL INTELLIGENCE, 1995, 11 (2), 339-347.
    54. Jagielska I., Hybrid rough sets/neural network approach to the development of a decision support system, IEEE International Joint Conference on Neural Networks, 1998, 1, 24-28.
    55. Bertalan Z., Kadar P., Application of rough set theory for determining the significant inputs of an ann, 10 th Mediterranean Electrotechnical Conference(MALECON 2000), 2000, 2, 582-585.
    56. Lazar A., Sethi I. K., Decision rule extraction from trained neural networks using rough sets, Intelligent Engineering Systems Through Artificial Neural Networks, 1999, 9, 493-498.
    57. Wang S., Scott E., Gamermann A., Extract rules by using rough set and knowledge-based nn, JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 1998, 13 (3), 279-284.
    58. Banerjee M., Mitra S., Pal S., Rough fuzzy mlp: Knowledge encoding and classification, IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (6), 1203-1216.
    59. Sarkar M., Yegnanarayana B., Fuzzy-rough neural networks for vowel classification, IEEE International Conference on Systems, Man, and Cybernetics, 1998, 5, 4160-4165.
    60. Sarkar M., Yegnanarayana B., Application of fuzzy-rough sets in modular neural networks, IEEE International Joint Conference on Neural Networks, 1998, 1, 741-746.
    61. Yen J. H., Yang S. M., Jeon H. T., Structure optimization of fuzzy neural network using rough set theory, Proceedings IEEE International Conference on Fuzzy Systems, 1999, 3, 1666-1670.
    62. 李文, 陈善本, 一种建立模糊模型的粗糙集方法, 控制理论与应用, 2001, 18 (001), 69-75.
    63. 王兵, 林涛, 漏焊智能检测系统中的知识获取, 焊接学报, 2001, 22 (003), 29-32.
    64. Wang B., Chen S. B., Lin T., Rough set based knowledge acquiring method in intelligent detecting system for lack of weld, Proceedings of the 4th World Congress on Intelligent Control and Automation, 2002, 4, 2887- 2891
    65. 王兵, 基于粗糙集理论的知识建模方法与焊接动态过程知识模型的研究, [学位论文], 上海, 上海交通大学, 2003.
    66. Wang B., Chen S. B., Wang J. J., Rough set based knowledge modeling for the aluminum alloy pulsed gtaw process, The International Journal of Advanced Manufacturing Technology, 2005, 25 (9), 902-908.
    67. 朱国光, 焊接过程粗糙集建模中离散化方法的研究, [学位论文], 上海, 上海交通大学, 2003.
    68. 张淑荣, 焊接过程粗糙集建模中推理方法的研究, [学位论文], 上海, 上海交通大学, 2004.
    69. 郑虹, 杨鸿雁, Rough 知识发现在焊接领域中的应用, 鞍山师范学院学报, 2006, 8 (4), 66-67.
    70. Kattan M., Cooper R., The predictive accuracy of computer-based classification decision techniques, A Review and Research Directions OMEGA, 1998, 26 (4), 467-482.
    71. Ziarko W., Variable precision rough set model, Journal of Computer and System Sciences, 1993, 46 (1), 39-59.
    72. Katzberg J. D., Ziarko W., Variable precision rough sets with asymmetric bounds, in, Banff, Alberta, Can, 1993, 167.
    73. Katzberg J. D., Ziarko W., Variable precision extension of rough sets, FUNDAMENTA INFORMATICAE, 1996, 27 (2-3), 155-168.
    74. Beynon M., Reducts within the variable precision rough sets model: A further investigation, EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (3), 592-605.
    75. 陈湘晖, 朱善君, 基于熵和变精度粗糙集的规则不确定性量度, 清华大学学报: 自然科学版, 2001, 41 (003), 109-112.
    76. Ziarko W., Probabilistic decision tables in the variable precision rough set model, COMPUTATIONAL INTELLIGENCE, 2001, 17 (3), 593-603.
    77. Beynon M. J., The introduction and utilization of (l, u)-graphs in the extended variable precision rough sets model, INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2003, 18 (10), 1035-1055.
    78. Mi J. S., Wu W. Z., Zhang W. X., Approaches to knowledge reduction based on variable precision rough set model, INFORMATION SCIENCES, 2004, 159 (3-4), 255-272.
    79. Inuiguchi M., Several approaches to attribute reduction in variable precision roughset model, in, Modeling Decisions for Artificial Intelligence: Second International Conference, Tsukuba, Japan, 2005, 215-226.
    80. Slezak D., Ziarko W., Variable precision bayesian rough set model, in, Chongqing, China, 2003, 312-315.
    81. Slezak D., Ziarko W., Attribute reduction in the bayesian version of variable precision rough set model, in, Warsaw, Poland, 2003, 271-281.
    82. Nishino T., Nagamachi M., Tanaka H., Variable precision bayesian rough set model and its application to human evaluation data, in, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Regina, Canada, 2005, 294-303.
    83. Liu H., Tuo H., Liu Y., Rough neural network of variable precision, NEURAL PROCESSING LETTERS, 2004, 19 (1), 73-87.
    84. Zhou Q., Yin C., An integrated approach to fault diagnosis based on variable precision rough set and neural networks, in, Chongqing, China, 2005, 514-520.
    85. Zhai J., Xu X., Xie C., etc., Fuzzy control for manufacturing quality based on variable precision rough set, in, Hangzhou, China, 2004, 2347-2351.
    86. Hou T. H., Huang C. C., Application of fuzzy logic and variable precision rough set approach in a remote monitoring manufacturing process for diagnosis rule induction, JOURNAL OF INTELLIGENT MANUFACTURING, 2004, 15 (3), 395-408.
    87. Mieszkowicz-Rolka A., Rolka L., Fuzzy implication operators in variable precision fuzzy rough sets model, in, Zakopane, Poland, 2004, 498-503.
    88. Mieszkowicz-Rolka A., Rolka L., Remarks on approximation quality in variable precision fuzzy rough sets model, in, Uppsala, Sweden, 2004, 402-411.
    89. Zhao S. X., Zhang Z. R., A generalized definition of rough approximation based on similarity in variable precision rough sets, in, International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005, 3153-3156.
    90. Gong Z. T., Sun B. Z., Shao Y. B., etc., Variable precision rough set model based on general relation, in, Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004, 2490-2494.
    91. Tsumoto S., Ziarko W., Shan N., etc., Knowledge discovery in clinical databases based on variable precision rough set model, Proc Annu Symp Comput Appl Med Care, 1995, 270, 4.
    92. An A., Chan C., Shan N., etc., Applying knowledge discovery to predict water-supply consumption, IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1997, 12 (4), 72-78.
    93. Beynon M., Buchanan K., An illustration of variable precision rough set theory: The gender classification of the european barn swallow (hirundo rustica), BULLETIN OF MATHEMATICAL BIOLOGY, 2003, 65 (5), 835-858.
    94. Beynon M., Driffield N., An illustration of variable precision rough sets model: An analysis of the findings of the uk monopolies and mergers commission,COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (7), 1739-1759.
    95. 雷鹏, 顾冲时, 基于 vprs 理论的裂缝影响因素分析, 水电能源科学, 2004, 22 (4), 47-50.
    96. 卢兆辉, 李忠良, 刘春林, 基于变精度粗集模型的大坝裂缝研究, 东北电力技术, 2005(11), 1-4.
    97. Mieszkowicz-Rolka A., Rolka L., Variable precision fuzzy rough sets model in the analysis of process data, in, Lecture notes in computer science, Regina, Canada, 2005, 354-363.
    98. Nishino T., Nagamachi M., Tanaka H., Variable precision bayesian rough set model and its application to human evaluation data, in, Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, United States, 2006, 294-303.
    99. Zhou Q., Yin C., Li Y., Application of variable precision rough set model and neural network to rotating machinery fault diagnosis, in, Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, United States, 2006, 575-584.
    100. Wang Z., Shao X., Zhang G., etc., Integration of variable precision rough set and fuzzy clustering: An application to knowledge acquisition for manufacturing process planning, in, Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, United States, 2006, 585-593.
    101. 石纯一, 王家钦, 数理逻辑与集合论, 北京: 清华大学出版社, 2000.
    102. 马振华, 离散数学导引, 北京, 清华大学出版社, 1993.
    103. Pawlak Z., Rough sets: Theoretical aspects of reasoning about data, Kluwer Academic Publishers Norwell, MA, USA, 1992.
    104. 张文修, 吴伟志, 梁吉业, etc., 粗糙集理论与方法, 北京, 科学出版社, 2001.
    105. 王国胤, Rough 集理论与知识获取, 西安, 西安交通大学出版社, 2001.
    106. Dave R. N., Krishnapuram R., Robust clustering methods: A unified view, IEEE Transactions on Fuzzy Systems, 1997, 5 (2), 270-293.
    107. 权光日, 刘文远, 连续属性空间上的规则学习算法, 软件学报, 1999, 10 (011), 1225-1232.
    108. Wong S. K. M., Ziarko W., On optimal rules in decision tables, Bulletin of the Polish Academy of Sciences, mathmatics, 1985(33), 693-696.
    109. Hand D. J., Mannila H., Smyth P., Principles of data mining, MIT Press Cambridge, Mass, 2001.
    110. 苗夺谦, Rough set 理论中连续属性的离散化方法, 自动化学报, 2001, 27 (03).
    111. Roy A., Pal S. K., Fuzzy discretization of feature space for a rough set classifier, PATTERN RECOGNITION LETTERS, 2003, 24 (6), 895-902.
    112. 侯利娟, 王国胤, 聂能, 粗糙集理论中的离散化问题, 计算机科学, 2000, 27 (12), 89-94.
    113. Liu H., Hussain F., Tan C., etc., Discretization: An enabling technique, DATAMINING AND KNOWLEDGE DISCOVERY, 2002, 6 (4), 393-423.
    114. Dougherty J., Kohavi R., Sahami M., Supervised and unsupervised discretization of continuous features, Proceedings of the Twelfth International Conference on Machine Learning, 1995, 202.
    115. Chmielewski M. R., Grzymala-Busse J. W., Global discretization of continuous attributes as preprocessing for machine learning, INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1996, 15 (4 SPEC. ISS.), 319.
    116. Holte R. C., Very simple classification rules perform well on most commonly used datasets, Machine Learning, 1993, 11 (1), 63-90.
    117. Nguyen H. S., Skowron A., Boolean reasoning for feature extraction problems, Proceedings of the 10th International Symposium on Foundations of Intelligent Systems, 1997, 117-126.
    118. Shannon C. E., A mathematical theory of communication, bell syst, Tech. J, 1948, 27 (3), 379–423.
    119. Quinlan J. R., Induction of decision trees, Machine Learning, 1986, 1 (1), 81-106.
    120. Quinlan J. R., C 4. 5: Programs for machine learning, Morgan Kaufmann, 1992.
    121. Catlett J., On changing continuous attributes into ordered discrete attributes, Proceedings of the European working session on learning on Machine learning table of contents, 1991, 164-178.
    122. Fayyad U. M., Irani K. B., Multi-interval discretization of continuous-valued attributes for classification learning, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, 1993, 2.
    123. Ho K. M., Scott P. D., Zeta: A global method for discretization of continuous variables, KDD97: 3rd International Conference of Knowledge Discovery and Data Mining. Newport Beach, CA, 1997, 191–194.
    124. 王建军, 铝合金脉冲 tig 焊熔池动态特征的视觉信息获取与自适应控制, [学位论文], 上海交通大学, 2003.
    125. Wang J., Miao D., Analysis on attribute reduction strategies of rough set, JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 1998, 13 (2), 5.
    126. Bazan J. G., Skowron A., Synak P., Dynamic reducts as a tool for extracting laws from decisions tables, Proceedings of the 8th International Symposium on Methodologies for Intelligent Systems, 1994, 346-355.
    127. Bazan J., A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables, Rough Sets in Knowledge Discovery, 1998, 1, 321–365.
    128. 上海交通大学, 基于粗糙集的焊接知识获取系统(rskasw),中国,软件著作权,软著登字第 049056 号, 2006.
    129. 杜全营, 填丝脉冲 gtaw 熔池三维特征实时提取与智能控制, [学位论文], 上海, 上海交通大学, 2006.
    130. 飞思科技产品研发中心, 神经网络理论与 matlab7 实现, 电子工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700