用户名: 密码: 验证码:
电动汽车热系统性能及控制优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机、全球变暖、环境污染等因素促使电动汽车成为未来汽车的发展方向。动力电池需要热管理才能保证其使用安全性及较高的性能。另外,汽车动力系统更改后,整车热特性有很大的变化,对空调,特别是对取暖有本质的影响。电动车不仅要提供乘员舱舒适驾乘环境,还要为动力电池及其他电动机及逆变器等电器部件进行热管理。热管理系统的性能优劣及能效比将直接决定了电动车的续航里程、驾乘舒适性及行驶安全。设计开发高能效比、节能和稳定的热系统与控制系统对电动车的开发与推广具有非常高的现实意义。因此,本文在分析比较电动车热管理系统方案的基础上,搭建了电动车热管理系统,并通过理论结合实验的研究手段对空调箱及控制系统进行了设计与节能优化。本文主要内容及成果如下:
     一、采用层次分析方法建立了电动车热管理方案的工程评价模型。对常见的电动车热管理可行方案进行了分析,并基于专家的群决策知识开展支持,通过电动车热管理系统功能相对于客户需求总目标优劣次序的排序。模型在定量分析各方案的技术、成本、性能、控制等多方面因素的基础上,获取最优的电动车热管理系统工程应用方案。研究结果表明采用独立的电池空调箱对电池进行热管理具有明显的优势。随后,通过实验对比研究了电池采用风冷与电池采用水冷这两种独立空调的热管理方案。实验表明:两种电池热管理形式都可以满足工程应用,而相对而言,水冷方案具有更好的空调降温和升温特性,且电池SOC消耗也要小于风冷形式。
     二、通过数值分析理论与实验验证的方法建立了空调箱空气侧数值分析的CFD模型,模型流量最大误差为3%,最大温度误差为1.4℃。并通过CFD模拟结合实验的研究手段,基于节能目的对电动车乘员舱空调箱进行了空气侧优化设计。在满足空调箱的各项舒适性指标的同时,优化了空调箱内部流道,降低了内部流阻、减少了暖风芯体的漏热、改善了气流在蒸发器表面的分布。优化后制冷模式风量提升11%,制冷性能提升16.6%;制热模式风量提升16.5%,制热性能提升11.1%。大大提升了空调箱的能效比,达到了节能的设计优化目的。
     三、提出了人体/电池及电器件的热感知舒适度指标TCI,并基于此建立了前向神经网络,在分析电动车热系统特点的基础上,基于热系统节能的目标,结合模糊神经网络控制理论,建立了电动车热系统控制的模糊神经网络模型。以TCI指标作为热管理系统的控制目标参数,控制对象为电动压缩机、PTC加热器、电动水泵、鼓风机、步进电机、电磁阀等。控制的主体策略为根据输入条件判断,在各个控制对象之间找到一种最匹配的控制方式,使得车厢内、电池包及电器的温度快速达到设定温度,温度波动小、SOC消耗低。
     四、基于节能目的,结合微通道蒸发器系统特点,开发了一套更适于电动车微通道蒸发器空调系统的温度控制系统。控制系统具有更好的控制灵敏度和控制反应特性,温控区间可设置在[0,4]。最低蒸发温度达到冷凝水的冰点温度0℃,低于传统设计采用空气温度传感器的[4,5.5],最低蒸发温度下降2℃,最大极限地挖掘了空调系统的制冷性能。
     五、将本文研究得到的基于节能的空调箱优化方案和热管理系统控制策略应用于本文搭建的电动车热管理系统中进行实验研究,并与优化前的方案及传统原型车进行对比。试验结果表明:优化设计后的热系统控制稳定,且可根据用户设定迅速响。电动车空调箱及控制系统优化后,降温性能得到明显提升,降温速率提升,出风口温度下降2.2℃,头部温度下降2.0℃;升温性能速率略有提升,另外由于控制策略,限制PTC加热器及发动机的运行间隔和时常,升温特性优化前后无明显差异。而同时,空调系统对SOC的消耗则得到了明显改善,制冷工况能耗降低SOC17%;制热工况能耗降低SOC18%。
The energy crisis, global warming, environmental pollution and other factorshave contributed to the electric vehicles to become the future of automotivedevelopment. Battery pack needs thermal management to ensure its safety andhigh performance. In addition, after power system changing, the vehicle thermalcharacteristics changed a lot correspondingly, which impacts a lot on the airconditioning, especially for heating. Electric vehicles are not only required toprovide comfortable driving environment in cabin, but also required to thermalmanage the battery pack, motor, inverter and other electrical components in ahappy working condition. The performance of thermal management systems andenergy efficiency will directly determine the electric car's mileage, ridingcomfort and driving safety. Researching and development on thermal systemsand control systems with high energy efficiency, energy saving, stability androbustness will have a high practical significance for the development andpromotion of electric vehicles. Therefore, on the basis of the analysis of currenthigh protential electric vehicle thermal management system options, one electricvehicle thermal management system built and then the performance and energyefficiency optimized by means of theory analysis and experience study. The maincontents and results are as follows.
     1) The Analytic Hierarchy Process (AHP) engineering evaluation model was builtfor the analysis of electric vehicle thermal management solutions. Some highpertential electric vehicle thermal management options were analysised in thispaper. With the support of expert group decision making knowledge, to carryout the sort of electric vehicle thermal management system solutions based on customer request and its function. Based on the quantitative analysis oftechnical, cost, performance, control, and other factors for each options, thebest engineering application solution for electric vehicle thermal managementsystem abtained. The analysis results show that the independent battery airconditioning unit for the battery thermal management has obvious advantages.Subsequently, through the experimental comparison of two theraml systemswith air-cooled battery and coolant-cooled battery. We found that two thermalmanagement solutions meet the requirement of engineering applications.Relatively speaking, the Coolant-cooling scheme has better air conditioningcooling and heating features, and better battery SOC consumption thanair-cooled scheme.
     2) The CFD model for HVAC module air side performance analysis was found inthis paper by using the theory of numerical analysis and experimentalvalidation. The maximum error of the model for flow rate is3%. And themaximum temperature error is1.4℃. With the help of CFD analysiscombining with experiment study, the HVAC module designed for electricvehicle was optimized on account of energy saving. The airside resistance,heat pick-up reduced, and the KPI of evaporator improved without decreasingthe comfort index. After optimization, airflow enhanced11%and coolingcapacity enhanced16.6%on full cold mode.16.5%and11.1%enhancementrespectively for airflow and heating capacity as well on full heating mode.Which greatlly improved the energy efficiency of HVAC module.
     3) The thermal sensing comfort index TCI for passenger, battery and electricalparts established in this paper. And then a feedforward neural networkestablished for forcasting thermal comfort of monitoring components. On thebasis of the characteristics of electric vehicle thermal systems and energysaving goal, combined with the theory of fuzzy neural network control, onefuzzy neural network model for electric vehicle thermal control established inthis paper. TCI index is the control target and HV electric compressor, HV PTC heater, electric water pump, blower, actuator, solenoid valve and etc. arecontrol objects. The main strategy is to find a matching point between allcontrol objects according to TCI index. Which make cabin, battery and HVcomponents reaches set temperature quickly, smaller temperature fluctuations,and lower SOC consumption.
     4) Based on the purpose of energy conservation, combined with thecharacteristics of the micro-channel evaporator system, one temperaturecontrol system was developed in this paper for electric vehicle cooling system.This temperature control system is more suitable for the micro-channelevaporator air conditioning system of the electric vehicle. The control systemhas better control sensitivity and control response characteristics, thetemperature interval can be set in [0,4]. Minimum evaporation temperaturereaches the freezing point of the condensate, lower than the traditional designwhich uses air temperature sensor with [4,5.5], the minimum evaporationtemperature decreased by2℃. Which achieved the maximum coolingperformance of air-conditioning system.
     5) The optimized HVAC module and thermal management control system basedon energy efficient strategy were used into the electric vehicle thermal systemwe built in this paper. Then experience performed to study the performanceand control robustness. Compared with the pre-optimized thermal system andtraditional benchmark vehicle, the results showed that: optimum design ofthermal system has better control performance and stability, and can quickrespond to user setting. After optimization, the cooling down performance hasbeen improved significantly and the cooling rate as well, the vent outlettemperature decreased2.2℃, breath temperature dropped2.0℃. There wasno big improvement on heating up performance. Moreover, because of controlstrategy on power limiting of the PTC heater and the engine running intervalsand time duration, there was not no significant difference in heatingcharacteristic before and after optimization. However, the consumption of air conditioning system on battery SOC has been significant improved. Theenergy consumption has been decreased by17%and18%battery SOC oncooling down and heating up conditions respectively.
引文
[1] C. Laura. World Energy Outlook2007: China and India Insights. Presentation atShanghai Jiao Tong University.2007.
    [2]《节能与新能源汽车产业规划(2011-2020)》
    [3]电动汽车产业研究分析报告,2011
    [4]新能源汽车动力电池行业深度研究,2009.5
    [5] Jossen, V. Spath, H. Doring, J. Garche, Reliable battery operation-a challenge for thebattery management system, Journal of Power Sources,84,1999,283–286.
    [6] K.J. Kelly, M. Mihalic, and M. Zolot, Battery Usage and Thermal Performance of theToyota Prius and Honda Insight for Various Chassis Dynamometer Test Procedures,January14-18,2002, Proceedings of the17th Annual Battery Conference on Applicationsand Advances, Long Beach, California.
    [7]李相哲、苏芳、林道勇,电动汽车动力电源系统,化学工业出版社,2011.5
    [8]吴凯,张耀,曾毓群,等.锂离子电池安全性能研究[J].化学进展,2011,23(2/3):401-408.
    [9] A.A. Pesaran, A. Vlahinos, S.D. Burch, Thermal Performance of EV and HEV BatteryModules and Packs, Proceedings of the14th International Electric Vehicle Symposium,Orlando, Florida, December15–17,1997.
    [10] L.J. Oswald and G.D. Skellenger, The GM/DOE Hybrid Vehicle Propulsion SystemsProgram: A Status Report, Proceedings of the14th International Electric VehicleSymposium, Orlando, Florida, December15–17,1997.
    [11] A.A. Pesaran, S.D. Burch, M. Keyser, An Approach for Designing ThermalManagement Systems for Electric and Hybrid Vehicle Battery Packs, May24-27,1999,Proceedings of the4th Vehicle Thermal Management Systems, London, UK.
    [12] A.A. Pesaran, Battery Thermal Management in EVs and HEVs: Issues and Solutions,February6-8,2001, Advanced Automotive Battery Conference, Las Vegas, Nevada.
    [13] H. Maleki, G. Deng, A. Anani, J. Howard, Thermal stability studies of bindermaterials in anodes for lithium-ion batteries, J.Electrochem. Soc.146,1999,3224–3229.
    [14] Jossen, V. Spath, H. Doring, J. Garche, Reliable battery operation-a challenge for thebattery management system, Journal of Power Sources,84,1999,283–286.
    [15] D. Y. Jung, B. H. Lee, S. W. Kim, Development of battery management system fornickel–metal hydride batteries in electric vehicle applications, Journal of Power Sources,109,2002,1-10.
    [16] R. Kizilel, R. Sabbah, J. R. Selmana, S. Al-Hallaj, An alternative cooling system toenhance the safety of Li-ion battery packs, Journal of Power Sources,194,2009,1105–1112.
    [17] S. Al-Hallaj, J.R. Selman, US Patent6,468,689B1. Novel Thermal Management ofBattery Systems, Oct.22,2002.
    [18] S. Al-Hallaj, J.R. Selman, US Patent6,942,944B2. Battery System ThermalManagement, Sept.13,2005.
    [19] S. Al-Hallaj, J.R. Selman, A novel thermal management system for electric vehiclebatteries using phase-change material, J. Electrochem. Soc.147,2000,3231–3236.
    [20] S. Al-Hallaj, R. Kizilel, A. Lateef, R. Sabbah, M. Farid, R. Selman, Passive thermalmanagement using phase change material (PCM) for EV and HEV Li-ion batteries, IEEEVehic. Power Propuls. Conf.,2005,376–380.
    [21] R. Kizilel, A. Lateef, R. Sabbah, M.M. Farid, J.R. Selaman, S. Al Hallaj, Passivecontrol of temperature excursion and uniformity in high-energy Li-ion battery packs at highcurrent and ambient temperature, J. Power Sources183,2008,370–375.
    [22] R. Sabbah, R. Kizilel, J.R. Selman, S. Al-Hallaj, Active (air-cooled) vs. passive(phase change material) thermal management of high power lithium-ion packs-Limitation oftemperature rise and uniformity of temperature distribution, Journal of Power Sources182,2008,630–638.
    [23] A.A. Pesaran,“Battery thermal models for hybrid vehicle simulations,” Journal ofPower Sources,110,2002,377–382.
    [24] S. Al-Hallaj, J.R. Selman, Thermal modeling of secondary lithium batteries forelectric vehicle/hybrid electric vehicle applications, Journal of Power Sources110,2002,341–348.
    [25]张国庆,吴忠杰,饶中浩,傅李鹏,动力电池热管冷却效果实验,化工进展,2009年第28卷第7期1165-1168.
    [26]吴忠杰,张国庆,混合动力车用镍氢电池的液体冷却系统,广东工业大学学报,2008年第25卷第4期,28-31.
    [27] M. Zolot, A.A. Pesaran, M. Mihalic, Thermal Evaluation of Toyota Prius Battery Pack,SAE2002-01-1962.
    [28] N. Sato, Thermal behavior analysis of lithium-ion batteries for electric and hybridvehicles, Journal of power sources,99,2001,70-77.
    [29] R. Mahamud, C. W. Park, Reciprocating Air Flow for Li-Ion Battery ThermalManagement to Improve Temperature Uniformity, Journal of Power Sources (2010),doi:10.1016/j.jpowsour.2011.02.076
    [30] C.W. Park,A.K. Jaura, Transient Heat Transfer of42V Ni-MH Batteries for an HEVApplication, SAE2002-01-1964
    [31]梁昌杰,混合动力车用镍氢电池组散热性能CFD仿真与试验研究,重庆大学,硕士论文,2010
    [32] D. Ghosh, K. King, B. Schwemmin, D. zhu, Full Hybrid Electrical Vehicle BatteryPack System Design, CFD Simulation and Testing, SAE2010-01-1080
    [33] A.A. Pesaran, D. Swan, J. Olson, J.T. Guerin, S. Burch, R. Rehn, G. D. Skellenger,Thermal Analysis and Performance of a Battery Pack for a Hybrid Electric Vehicle, NRELreport,1999
    [34]楼英莺,混合动力车用镍氢电池散热系统研究,上海交通大学,硕士论文,2007.2
    [35] K.J. Kelly, T. Abraham, K. Bennion, D. Bharathan, S. Narumanchi, and M. O’Keefe,Assessment of Thermal Control Technologies for Cooling Electric Vehicle PowerElectronics, December2–5,2007, Proceedings of the23rd International Electric VehicleSymposium (EVS-23), Anaheim, California
    [36] Ma, Y., Teng, H., Thelliez, M., Electro-Thermal Modeling of a Lithium-ion Battery,SAE2010-01-2204
    [37]陈磊涛,许思传,常国峰,混合动力汽车动力电池热管理系统流场特性研究,汽车工程,2009年(第31卷)第3期,224-227
    [38]吴忠杰,张国庆,混合动力车用镍氢电池的液体冷却系统,广东工业大学学报,2008年第25卷第4期,28-31
    [39] N. Tomohiko, K. Isao, K. Sadayuki and O. Toshio, Ultra-Thin and Light-Weight RSEvaporator. SAE technical paper2003-01-0527,2003.
    [40] J. Pettersen, A.H., G. Skaugen, Development of compact heat exchangers for CO2air-conditioning system. International Journal of Refrigeration,1998.21(3):180-193.
    [41] J. Pettersen, Two-phase flow pattern, heat transfer, and pressure drop in paraflowvaporization of CO2. ASHRAE Transactions,2003(109):523-532.
    [42] Y.P. Chang, Experimental and numerical study on paraflow and round-tubecondensers in a R410a residential air-conditioning system. International Journal ofRefrigeration,2008.31(5):822-831.
    [43] A.D.L. Hrnjak, Paraflow, heat exchangers for charge minimization in air-cooledammonia condensers and chillers. International Journal of Refrigeration,2008(31):658-668.
    [44]周子成,平行通道换热器及其应用实例.家电科技,2009(01):271-274.
    [45]李越峰,陈王晰,平行通道换热器在家用空调的应用和分析.家电科技,2009(01):1-3.
    [46] X.H Qu, J.Y. Shi, Z.G. Qi, J.P. Chen, Experimental study on frosting control ofmobile air conditioning system with microchannel evaporator. Applied ThermalEngineering,2011,31,2778-2786.
    [47] J.H. Kim, J.E. Braun, and E.A. Groll, A hybrid method for refrigerant flow balancingin multi-circuit evaporators: Upstream versus downstream flow control. InternationalJournal of Refrigeration,2009.32(6):1271-1282.
    [48] J.M. Yin, C.W. Bullard, S. Hrnjak, Single-Phase Pressure Drop Measurements in aParaflow Heat Exchanger. Heat Transfer Engineering. Taylor&Francis Ltd,2002:3-12.
    [49] Z. Zhang, Y. Li, CFD simulation on inlet configuration of plate-fin heat exchangers.Cryogenics,2003(43):673-678.
    [50] A. Jiao, R. Zhang, S. Jeong, Experimental investigation of header configuration onflow maldistribution in plate-fin heat exchanger. Applied Thermal Engineering,2003(23):1235-1246.
    [51] C. Ranganayakulu, K.N. Seetharamu, The combined effects of wall longitudinal heatconduction, inlet fluid flow nonuniformity and temperature nonuniformity in compacttube-fin heat exchangers: a finite element method. International Journal of Heat and MassTransfer,1999(42):263-273.
    [52] T. Kulkarni, C.W. Bullard, K. Cho, Header design tradeoffs in paraflow evaporators.Applied Thermal Engineering,2004(24):759-776.
    [53] S. Horiki, M. Osakabe, Water flow distribution in horizontal protruding-type headercontaminated with bubbles. Proc. ASME Heat Transfer Div,1999(2):69-76.
    [54] M. Osakabe, T. Hamada, S. Horiki, Water flow distribution in horizontal headercontamined with bubbles. Int. J. Multiphase Flow,1999(25):827-840.
    [55] C. Honggi, C. Keumnam, Y. Bael, Y.S. Kim, Flow mal-distribution in micro-channelevaporator.9th International Refrig. and Air Conditioning Conf. at Purdue,2002.
    [56] D.M. Tomkins, T. Yoo, T. Newell, K. Cho, Flow distribution and pressure drop inmicro-channel manifolds.9th International Refrigeration and Air Conditioning Conference,Purdue,2002(Paper R6-4).
    [57] R.L. Webb, K. Chung, Two-phase flow distribution to tubes of parallel flowair-cooled heat exchangers. Heat Transfer Engineering,2005.26(4):3-18.
    [58] B. Wiebke, M.R.K. Brian Elmegaard, Modelling refrigerant distribution in paraflowevaporators. International Journal of Refrigeration,2009(32):1736-1743.
    [59]龚建英,袁秀玲,黄东,张兴群,不均风速场对中大型热泵结霜工况性能的影响.西安交通大学学报,2007(9):1058-1061.
    [60] S. Vist and J. Pettersen, Two-phase flow distribution in compact heat exchangermanifolds. Experimental Thermal and Fluid Science,2004.28(2-3):209-215.
    [61] Zhang, and S. Hrnjak, Air-side performance of a parallel-flow parallel-fin (PF2) heatexchanger in sequential frosting. International Journal of Refrigeration,2010.33(6):1118-1128.
    [62] W.M. Kays, L.A., Compact heat exchangers.3rd ed. McGraw-Hill Book Company,1984.
    [63] F.N. Beauvais, An aerodynamics look at automotive radiator. SAE Paper,1973.1973-0237.
    [64] Davenport, Correlation for heat transfer and flow friction for heat transfer and flowfriction characteristics of louver fin. AIChE Symposium Series,1983(225):19-27.
    [65] T.A. Cowell, M.R. Heikal, and A. Achaichia, Flow and heat transfer in compactlouvered fin surfaces. Experimental Thermal and Fluid Science,1995.10(2):192-199.
    [66] R.L. Webb and Trauger, How structure in the louvered fin heat exchanger geometry.Experimental Thermal and Fluid Science,1991.4(2):205-197.
    [67] A. Atoniou, M.R.H., T. A. Cowell, Measurements of local velocity and turbulencelevels in arrays of louvered plate fins. Proceedings of the International Heat TransferConference,1990.105.
    [68] N.C. DeJong and A.M. Jacobi, Flow, heat transfer, and pressure drop in the near-wallregion of louvered-fin arrays. Experimental Thermal and Fluid Science,2003.27(3):237-250.
    [69] R. L. Webb, S.H.J., Air-side performance of enhanced brazed aluminum heatexchangers. ASHRAE Transactions,1992.98(2):391-401.
    [70] H. Aoki, T. Shinagawa, and K. Suga, An experimental study of the local heat transfercharacteristics in automotive louvered fins. Experimental Thermal and Fluid Science,1989.2(3):293-300.
    [71] R.L.W. Sahnoun, Prediction of heat transfer and friction for the louver fin geometry.Journal of Heat Transfer,1992.114(4):893-900.
    [72] C.C. Wang, Y.T. Lin, and C.J. Lee, An airside correlation for plain fin-and-tube heatexchangers in wet conditions. International Journal of Heat and Mass Transfer,2000.43(10):1869-1872.
    [73] C.C.Wang, Y.T. Lin, and C.J. Lee, Heat and momentum transfer for compact louveredfin-and-tube heat exchangers in wet conditions. International Journal of Heat and MassTransfer,2000.43(18):3443-3452.
    [74] W. Pirompugd, S. Wongwises, and C.C. Wang, Simultaneous heat and mass transfercharacteristics for wavy fin-and-tube heat exchangers under dehumidifying conditions.International Journal of Heat and Mass Transfer,2006.49(1-2):132-143.
    [75] W. Pirompugd, C.C. Wang, and S. Wongwises, A review on reduction method for heatand mass transfer characteristics of fin-and-tube heat exchangers under dehumidifyingconditions. International Journal of Heat and Mass Transfer,2009.52(9-10):2370-2378.
    [76] W. Pirompugd, C.C. Wang, and S. Wongwises, Finite circular fin method for wavyfin-and-tube heat exchangers under fully and partially wet surface conditions. InternationalJournal of Heat and Mass Transfer,2008.51(15-14):4002-4017.
    [77] W. Pirompugd, C.C. Wang and S. Wongwises, Finite circular fin method for heat andmass transfer characteristics for plain fin-and-tube heat exchangers under fully and partiallywet surface conditions. International Journal of Heat and Mass Transfer,2007.50(3-4):552-565.
    [78] C. Oliet, et al., Numerical simulation of dehumidifying fin-and-tube heat exchangers:Semi-analytical modelling and experimental comparison. International Journal ofRefrigeration,2007.30(7):1266-1277.
    [79] Naphon, and S. Wongwises, A study of the heat transfer characteristics of a compactspiral coil heat exchanger under wet-surface conditions. Experimental Thermal and FluidScience,2005.29(4):511-521.
    [80] Naphon, and S. Wongwises, Heat transfer coefficients under dry-and wet-surfaceconditions for a spirally coiled finned tube heat exchanger. International Communicationsin Heat and Mass Transfer,2005.32(3-4):371-385.
    [81] X. Ma, et al., Airside characteristics of heat, mass transfer and pressure drop for heatexchangers of tube-in hydrophilic coating wavy fin under dehumidifying conditions.International Journal of Heat and Mass Transfer,2009.52(19-20):4358-4370.
    [82] X. Ma, et al., Airside heat transfer and friction characteristics for enhancedfin-and-tube heat exchanger with hydrophilic coating under wet conditions. InternationalJournal of Refrigeration,2007.30(7):1153-1167.
    [83] X. Ma, et al., Effects of hydrophilic coating on air side heat transfer and frictioncharacteristics of wavy fin and tube heat exchangers under dehumidifying conditions.Energy Conversion and Management,2007.48(9):2525-2532.
    [84] T. Kuvannarat, C.C. Wang, and S. Wongwises, Effect of fin thickness on the air-sideperformance of wavy fin-and-tube heat exchangers under dehumidifying conditions.International Journal of Heat and Mass Transfer,2006.49(15-14):2587-2596.
    [85] M.H. Kim and C.W. Bullard, Air-side performance of brazed aluminum heatexchangers under dehumidifying conditions. International Journal of Refrigeration,2002.25(7):924-934.
    [86] M.H. Kim, B. Youn and C.W. Bullard, Effect of inclination on the air-sideperformance of a brazed aluminum heat exchanger under dry and wet conditions.International Journal of Heat and Mass Transfer,2001.44(24):4613-4623.
    [87] R. W. Cummings, R.K.S., Experimental Performance Evaluation of AutomotiveAir-Conditioning Heat Exchangers as Components and in Vehicle Systems. SAE Paper,2005.2005-01-2003.
    [88] J.R. Thome, V. Dupont, A.M. Jacobi, Heat transfer model for evaporation inmicro-channels, Part I: presentation of the model. International Journal of Heat and MassTransfer,2004,47,3375–3385.
    [89] V. Dupont, R. Thome, A.M. Jacobi, Heat transfer model for evaporation inmicro-channels, ParⅡt: comparison with the database. International Journal of Heat andMass Transfer,2004,47,3387–3401.
    [90] Z.G. Qi, J.P. Chen, Radermacher, R. Investigating performance of new mini-channelevaporators. Applied Thermal Engineering,2009,29,3561–3567.
    [91] Z.G. Qi, Y. Zhao, J.P. Chen, Performance Enhancement Study of Mobile AirConditioning System Using Microchannel Heat Exchangers. International Journal ofRefrigeration,2009, doi:10.1016/j.ijrefrig.2009.08.014.
    [92] A.M. Jacobi and V.W. Goldschmidt, The effect of surface tension variation onfilmwise condensation and heat transfer on a cylinder in cross flow. International Journal ofHeat and Mass Transfer,1989.32(8):1483-1490.
    [93] A.M. Jacobi and V.W. Goldschmidt, Low Reynolds number heat and mass transfermeasurements of an overall counterflow, baffled, finned-tube, condensing heat exchanger.International Journal of Heat and Mass Transfer,1990.33(4):755-765.
    [94] X. Hu and A.M. Jacobi, Vapor shear and pressure gradient effects during filmwisecondensation from a flowing vapor onto a sphere. Experimental Thermal and Fluid Science,1992.5(4):548-555.
    [95] C. Korte and A.M. Jacobi, Condensate Retention Effects on the Performance ofPlain-Fin-and-Tube Heat Exchangers: Retention Data and Modeling. Journal of HeatTransfer,2001.123(5):926-936.
    [96] A.I. Elsherbini and A.M. Jacobi, Liquid drops on vertical and inclined surfaces: I. Anexperimental study of drop geometry. Journal of Colloid and Interface Science,2004.273(2):556-565.
    [97] A.I. Elsherbini and A.M. Jacobi, Liquid drops on vertical and inclined surfaces: II. Amethod for approximating drop shapes. Journal of Colloid and Interface Science,2004.273(2):566-575.
    [98] Y. Xia and A.M. Jacobi, Air-side data interpretation and performance analysis for heatexchangers with simultaneous heat and mass transfer: Wet and frosted surfaces.International Journal of Heat and Mass Transfer,2005.48(25-26):5089-5102.
    [99] A.D. Sommers and A.M. Jacobi, Wetting phenomena on micro-grooved aluminumsurfaces and modeling of the critical droplet size. Journal of Colloid and Interface Science,2008.328(2):402-411.
    [100] W.J. McLaughlin and R.L. Webb, Condensate Drainage and Retention in Louver FinAutomotive Evaporators. SAE Paper,2000.2000-01-0576.
    [101] Y. Zhong, et al., Dynamic dip testing as a method to assess the condensate drainagebehavior from the air-side surface of compact heat exchangers. Experimental Thermal andFluid Science,2005.29(8):957-970.
    [102] L. Liu and A.M. Jacobi, Issues affecting the reliability of dynamic dip testing as amethod to assess the condensate drainage behavior from the air-side surface ofdehumidifying heat exchangers. Experimental Thermal and Fluid Science,2008.32(8):1512-1522.
    [103] H. Osada, et al., Research on corrugated multi-louvered fins under dehumidification.Heat Transfer-Asian Research,2001.30(5):383-393.
    [104] A.Z. Chao, H. Hu, Condensate Retention and "Wet" Fin Performance in AutomotiveEvaporators. SAE papers,2001.2001-01-1252.
    [105] D.B. zkan, E. zil. Experimental study on the effect of frost parameters ondomestic refrigerator finned tube evaporator coils. Applied Thermal Engineering,2006,26(17-18),2490-2493.
    [106] L.L. Shao, L. Yang, C.L. Zhang. Comparison of heat pump performance usingfin-and-tube and microchannel heat exchangers under frost conditions. Applied Energy,2009, doi:10.1016/j.apenergy.2009.08.021.
    [107] C.Q. Tian, X.T. Li, X.J. Yang. Numerical analysis of evaporator frosting inautomotive air-conditioning system with a variable-displacement compressor. AppliedEnergy,2005,82(1),1-22.
    [108] J.M.W. Lawrence, J.A. Evans. Refrigerant flow instability as a means to predict theneed for defrosting the evaporator in a retail display freezer cabinet. International Journalof Refrigeration,2008,31(1),107-112.
    [109] W.J. Donnellan, J. Lohan, K. Gleeson. Development and Assessment of DefrostingStrategies for Transport Refrigeration Systems. In ASME8th Biennial Conference onEngineering Systems Design and Analysis, Volume1: Advanced Energy Systems,Advanced Materials, Aerospace, Automation and Robotics, Noise Control and Acoustics,and Systems Engineering. July4–7,2006, Torino, Italy. Paper no. ESDA2006-95567pp.165-173.
    [110] J. Iragorry, Y. X. Tao. Frost Density Measurement for Evaporator Defrosting Control.In ASME2004International Mechanical Engineering Congress and Exposition, November13–19,2004, Anaheim, California, USA. Heat Transfer, Volume1. Paper no.IMECE2004-62218pp.435-441.
    [111] J. Iragorry, Y.X. Tao. Frost Temperature Relations for Defrosting Sensing System.Journal of Heat Transfer,2005,127,344-351.
    [112] S. Perry. Evaporator Icing Protection Test Method. SAE technical paper2005-01-1506,2005.
    [113] L. Bennett, C. W. S. Dixon and S. Watkins, Modeling and Testing of Air Flow in aHVAC Module, SAE paper01-0506, Detroit, MI, USA,2002.
    [114] Y. Chen, P. Stephenson and K. Elankumaran, Optimization of HVAC TemperatureControl Curves with modeFrontier and Fluent, SAE paper01-1397, Detroit, MI, USA,2007.
    [115] Y. Chen, P. Stephenson, F. Guilbaud, M.Y. Jia and S. Scherer, IntegratedDevelopment and Validation of HVAC Modules Using a Combined Simulation and TestingApproach, SAE paper01-0832, Detroit, MI, USA,2008
    [116] J. Link, K. Helberg, K. Nasr, Design and Development of a Cylindrical HVAC Case,SAE paper01-1385, Detroit, MI, USA,2004.
    [117] X.H. Tian, F.Y. Yu, M.W. Tong, Study on flow field of an automobile airconditioning system evaporator assembly by CFD, JOURNAL OF TIANJ IN UNIVERSITYOF TECHNOLOGY,2007,23(1):77-79(in Chinese)
    [118] F.Y. Yu, Z.M. Ling, Numerical Simulation of HVAC in Vehicle Air ConditioningSystem, Journal of Chongqing University (Natural Science Edition),2005,28(3):40-43(inChinese).
    [119] P. Kullen and Y. Chen,“CFD Analysis of Duct Flow with Different TurbulenceModels and Experimental Validation, Troy, MI, USA,2006
    [120] F. J. Kelecy, Numerical Prediction of Flow Through a Backward-InclinedCentrifugal Fan, Technical notes, TN130, Fluent Inc., Sept.14,2000
    [121] X.H. Qu, J.Y. Shi, Numerical Model of the Automotive Heat Coil, Automobileengineering,2009.
    [122] X.D. He, S. Liu, H. Asada. Multivariable Feedback Design for Regulating VaporCompression Cycles. Proceedings of the American Control Conference.1995:4331-4335.Seattle: AACC,1995.
    [123] X.D. He, S. Liu, H. Asada. Modeling of Vapor Compression Cycles for MultivariableFeedback Control of HVAC Systems. Journal of Dynamic Systems, Measurement, andControl.1997(119):183-191.
    [124] O. Kaynakli, E. Pulat, M. Kilic. Thermal comfort during heating and cooling periodsin an automobile. Heat and Mass Transfer.2005,41(5):449–458.
    [125] M. Ueda, Y. Taniguchi, A. Asano, M. Mochizuki. Prediction of AutomobilePassenger’s Skin Temperature Using a Neural Network. JSME International Journal, SeriesB.1997,40(2):328-336.
    [126]陈芝久,袁晓梅.汽车空调压缩机变排量控制阀的研究现状.上海交通大学学报.2001,35(8):1264-1267.
    [127] X.M. Yuan, Z.J. Chen. Displacement control and kinetic analysis of a novel variabledisplacement compressor for automotive air conditioner. Chinese Journal of MechanicalEngineering (English Edition).2001,14(4):325-329.
    [128]白梓运,陈芝久.电子膨胀阀及其在蒸发器过热度自适应控制中的应用.暖通空调.1996,26(2):21-24.
    [129] C.Q. Tian, X.T. Li. Transient behavior evaluation of an automotive air conditioningsystem with a variable displacement compressor. Applied Thermal Engineering,2005,(25):1922-1948.
    [130] C.Q. Tian, X.T. Li. Numerical simulation on performance band of automotive airconditioning system with a variable displacement compressor. Energy Conversion andManagement,2005,(46):2718–2738.
    [131]魏文学.日本的暖通空调及制冷工业.家用电器科技,2004年第3期30-31页.
    [132]王书青,杨桦.模糊PID复合控制在变频空调中应用研究.制冷学报,2006年第8期19页.
    [133]郑宗和,梁江等.变频空调系统应用神经元PID控制的仿真研究.暖通空调,2006年第12期93页.
    [134]贾少青,陈平,李爱华.基于神经网络的变频空调控制系统.计算机测量与控制,2006年第14期56页.
    [135]朱如春.基于模糊神经网络算法智能变频空调控制系统的研究.硕士论文,苏州大学,2007.
    [136]江志斌,吴宝志,何斌,江兵.汽车空调模糊控制的研究.制冷学报,1995.4,25-29.
    [137]周翼翔.汽车空调温度的模糊控制与实现.四川职业技术学院学报,2005.8,96-98.
    [138]江志斌,江斌.汽车空调制冷系统自组织模糊控制的研究.合肥工业大学学报(自然科学版),1998.4,118-123.
    [139]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.5-25.
    [140] H.K. Sun, H. Yu, The Application of AHP in Appraisal an Decision-making ofProduct-Designing Program, December101-106,2006, Journal of Hebei Institute ofArchitecture Engineering, China.
    [141]王亚茹,陆亚俊,李瑞先.多目标模糊决策技术在冷热源方案选择中的应用[J].建筑科学,1999,15(1):25-29.
    [142]白炜,王志伟,赵宝珠等,基于灰色关联和层次分析的家用热水器方案优化[J].可再生能源,2008,26(4):73-77.
    [143]陈雪龙,面向复杂决策问题的模型构造与管理方法研究,2008,博士论文,大连理工大学。
    [144]张利,张建国,李传斌等,汽车底盘模块化设计中客户需求层次分析模型研究,2005.9,28(9),合肥工业大学学报,994-997.
    [145] FLUENT6.3Documentation.2006. Fluent Inc.
    [146] S.A. Tassau, D. Datta, Influence of supermarket environmental parameters on thefrosting and defrosting of vertical multideck display cabinets, ASHRAE TransactionsSymposia105,1999:491–496.
    [147] CFD study of flow in natural rubber smoking-room: I. Validation with the presentsmoking-room:Applied Thermal Engineering27,2007,2113–2121
    [148] C. Cuevas, et al., Automotive electric scroll compressor: Testing and modeling,International Journal of Refrigeration,2012, doi:10.1016/j.ijrefrig.2011.11.019
    [149] Y. Yoshii, Y. Tamura. Air Conditioning Electric Vehicles with an ElectronicallyDriven Variable Speed Scroll Type Compressor SAE paper901738,1990.
    [150] Y. Yoshii, M. Tsuboi. Development of Hybrid Compressor SAE paper2004-01-0912,2004.
    [151] S. Takuo, U. Motohiko, I. Masao,2-Way Driven Compressor for Hybrid VehicleClimate Control System. SAE paper2004-01-0906
    [152] K.Y. Hwang, G.B. Park, H.S. Cho. Design of IPMSM for electrical compressor in EV.SAE paper2011-28-0063.
    [153] S. Saito, M. Shibuya. Development of Inverter Integrated Electric Compressor. SAEPaper2002-01-0230.
    [154] I. Nobuyasu, O. Yasuyuki, O. Shinichi. Inverter-Integrated Electric Compressors forHybrid Vehicles. SAE Paper2006-01-0166.
    [155]杨军.新能源车用电动压缩机开发.制冷年会报告,2011.
    [156] R. J. Moffat. Describing the Uncertainties in Experimental Results. ExperimentalThermal and Fluid Science.1998,1(1):3-17.
    [157]陈全世、朱家琏、田光宇,先进电动汽车技术,化学工业出版社,2007.7
    [158] A.P. Ahmad, K. Matthew. Thermal Characterization of Selected EV and HEVBatteries. Annual Battery Conference, Long Beach, CA, January9-12,2001, NationalRenewable Energy Laboratory, Golden, Colorado
    [159] Y.Y. Yan, T.F. Lin. Evaporation heat transfer and pressure drop of refrigerant R134ain a small pipe. International Journal of Heat and Mass Transfer,1998,41,4183–4194.
    [160] J. Pettersen, A. Hafner, G. Skaugen. Development of compact heat exchangers forCO2air-conditioning system. International Journal of Refrigeration,1998,21(3),180-193.
    [161] S. Abdullah, Alwadie. Analysis, Design and Tuning of the Two-Input Two-Outputfuzzy Control Systems Using the Simplified Fuzzy Rules [J]. Doctor of Philosophy ofWayne State University, Detroit, Michigan.2003:8~19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700