用户名: 密码: 验证码:
微装配机器人关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微装配机器人是协助人类在微纳米空间进行精密作业的有效工具。显微视觉伺服是目前微装配机器人的主要控制手段,对提高装配效率、保证装配精度、实现全自动微装配有重要意义。本文以基于微装配机器人的微靶自动装配为研究对象,在实验室原有成果的基础上,对微装配机器人微夹持器系统,微夹持器和微小零件的多目标快速识别与分类,视觉跟踪及显微视觉伺服等若干关键技术进行了深入研究。
     微夹持器是微装配机器人系统的末端执行机构,研究结构合理、功能完善的微夹持器是实现微装配的基础。本文针对微装配系统对末端执行器的要求,研究了两种不同类型的微夹持器:压电双晶片微夹持器和真空吸附微夹持器。为了实现微力检测,分别采用基于电阻应变计和基于聚偏二氟乙烯的两种传感器对微夹持器进行受力检测。实验结果表明,在显微视觉下,微夹持器可以安全可靠工作,为后续的微装配提供了保障。
     多目标的识别是实现微装配机器人显微视觉伺服的基础。本文提出了一种改进的Zernike不变矩特征提取方法,将传统的笛卡尔坐标系下的Zernike不变矩映射到极坐标系下运算,从而大大提高了Zernike不变矩的计算准确性和旋转不变性。针对Zernike不变矩计算效率低下的问题,本文提出了Zernike不变矩的快速算法,将Zernike不变矩映射到十六分之一圆中进行计算,使所需计算像素点为原有极坐标Zernike矩方法的6.25%,新算法大大减少了Zernike不变矩的计算时间。同时,基于支持向量机的微装配机器人多目标识别实验结果表明,基于极坐标Zernike不变矩的分类正确率比基于笛卡尔坐标Zernike不变矩的分类正确率有明显提高。
     对于微装配机器人显微视觉伺服系统,实时性一直是一个难以解决的重要问题。当前时刻的控制信号实际上是在上一时刻采集到的图像的图像特征信息,这样的控制信号会使机器人在开始运动时就产生偏差。提高位置预测精度和对目标运动变化的自适应性是解决上述问题的重要途径,本文基于当前统计模型,运用改进的模糊自适应卡尔曼滤波器来估计协方差矩阵Q(k)和R(k),通过去除历史数据对系统的影响,从而准确预测出运动物体下一时刻的运动状态。实验数据表明改进的模糊自适应卡尔曼滤波器可以减少预测误差,同时可以快速检测出运动物体运动状态的改变。
     为了建立基于微装配机器人显微视觉系统的精确预测模型,本文建立了精确的视觉伺服分时模型,从而得到了精确的视觉伺服延迟时间,从而利用改进的模糊自适应卡尔曼滤波算法对机械手和目标运动轨迹进行预测。同时,本文分析了微装配机器人显微视觉伺服运动路径,建立了基于模糊自适应卡尔曼滤波的控制结构,根据模糊自适应卡尔曼滤波的预测结果设计微装配机器人变结构视觉控制器,最终实现了微装配机器人显微视觉伺服下的精确轨迹跟踪。
     最后,本文对微装配机器人的硬件结构以及各个组成部分的主要功能做了简要介绍,同时对微装配机器人系统的软件结构和软件控制流程进行了阐述。通过一系列实验验证了微夹持器系统,多目标识别系统和基于模糊自适应卡尔曼滤波的视觉伺服系统的可靠性。最终给出了微零件装配实验结果。
The microscope visual servoing approach and its key technology of micro-assembly robot are very important to improve the efficiency of assembly and ensure the accuracy of assembly. The dissertation mainly aims to develop a robotic system for sub-millimeter size microassembly. Some key technologies of microassembly robot system have been investigated, including micro-assembly system platforms, the microgrippers, the multi-target classification and identification, target tracking with micro vision, visual delay analysis and microscopic vision control et al.
     Many kinds of microgrippers have been developed for handling and manipulating micro-sized objects in the fields of various applications. However, the micro-force sensing is still one of the most troublesome problems to improve the reliability of manipulation. To circumvent the problem, in this paper, two kinds of microgrippers, which are driven by two PZT bimorphs and the vacuum generator, are designed for the requirement of microassembly. In order to obtain the micro force, two kinds of sensors are introduced sensing the signal because of the strain of the cantilever, which are resistance strain gauge sensor and polyvinylidene difluoride (PVDF) sensor. The microgrippers can automatically pick and release the object by means of the PC monitoring system.
     Multi micro parts recognition is one of the important tasks for the assembly of multi micro objects in microassembly. We propose a polar coordinate based algorithm for the computation of Zernike moments, which improves the invariance properties dramatically. Due to the symmetry property of the Zernike basis functions, Zernike moments can be obtained by computing only one sixteenth of the Zernike basis functions, which means that the number of pixels involved in the computation of Zernike moments is only6.75%of previous method. This leads to significant reduction in the computational complexity requirements. To achieve multi micro parts recognition with higher performance, we present a support vector machine algorithm, which employs polar Zernike moments based on edge extraction to obtain feature attribute to identify and classify the targets. The obtained results show the superiority of the proposed method.
     Visual servoing has been around for decades, but the time delay is still one of the most troublesome problems to achieve target tracking. To circumvent the problem, in this paper, the Kalman filter is employed to estimate future position of the object. We present a current statistical model for moving target. An improved fuzzy adaptive Kalman filter, which is evolved from the Kalman filter, is put forward based on the current statistical model. The results show that the modified adaptive filter can improve the ability of maneuvering target tracking.
     In order to introduce the improved fuzzy adaptive Kalman filter, the accurate time delays, which include the processing lag and the motion lag, need to be obtained. Thus, the delays of the visual control servoing system are discussed, and a generic timing model for the system is provided. Based on the timing model, the improved fuzzy adaptive Kalman filter is employed to predict manipulator and target motion. We build the visual servoing system construction based on fuzzy adaptive Kalman filter. According to the characteristics of micro visual servoing, design the servoing path of XY-plane and YZ-plane and establish the control structure of three-dimensional visual servoing. Finally, a variable structure control law for micromanipulation is presented. The results show that the proposed adaptive Kalman filter can improve the ability of moving target tracking based on visual servoing.
     Finally, we analyze a typical structure of micromanipulation firstly, and describe the hardware system and software system of the microassembly system we have built. A series of experimental results show the reliability of the microgrippers, the polar Zernike moments based multi micro parts recognition system and the improved fuzzy adaptive Kalman filter based visual servoing system, which are mentioned above.
引文
[1]Fukunaga Alex,Hiruma Hideru,Komiya Kazuki and Iba Hitoshi, Evolving controllers for high-level applications on a service robot:a case study with exhibition visitor flow control. Genetic Programming and Evolvabale Machines,2012,13(2):239-263
    [2]Cai Yao, Zhan Qiang, Xi Xi, Path tracking control of a spherical mobile robot. Mechanism and Machine Theory,2012,51:58-73
    [3]Stelzer Annett, Hirschmueler Heiko, Goerner Martin, Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. International Journal of Robotics Research,2012,31(4):381-402
    [4]Dunbabin Matthew, Marques Lino, Robots for Environmental Monitoring Significant Advancements and Applications. IEEE Robotics and Automation Magazine,2012,19(1):24-39
    [5]Eberhardt Michael, Roth Siegfried, Koenig Andreas, Industrial application of machine-in-the-loop-learning for a medical robot vision system-Concept and comprehensive field study. Computers and Electrical Engineering,2008,34(2):111-126
    [6]Iocchi Luca, Ruiz-del-Solar Javier, van der Zant Tijn, Domestic Service Robots in the Real World. Journal of Intelligent and Robotics Systems,2012,66(1-2):183-186
    [7]Tamadazte B., Marchand E., Dembele S., CAD Model-based Tracking and3D Visual-based Control for MEMS Microassembly. International Journal of Robotics Research,2010,29(11):1416-1434
    [8]Bruzzone Luca, Bozzini Giorgio, A flexible joints microassembly robot with metamorphic gripper. Assembly Automation,2010,30(3):240-247
    [9]Rodrigo Peter John, Kelemen Lorand, Palima Darwin, Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. Optics Express,2009,17(8):6578-6583
    [10]Yang G, Gaines J.A., Nelson B.J., Optomechatronic design of microassembly systems for manufacturing hybrid Microsystems. IEEE Transactions on Industrial Electronics,2005,52(4):1013-1023
    [11]蔡建华,黄心汉,吕遐东,王敏,一种集成微力检测的压电式微夹钳.机器人,2006, 28(1):59-64
    [12]Feynman R P., There is plenty of room at the bottom. Micro-mechanics and EMS-classic and Seminal Papers,1959
    [13]Reiner Wechsung, Ayman El Fatatry, Friedrich GOtz, Microsystems world market analysis2000-2005, Nexus Task Force, Berlin DE,2002.
    [14]Yang G., Scale-based integrated microscopic computer vision techniques for micromanipulation and microassembly. Ph.D thesis, University of Minnesota,2003
    [15]Yang G., Gaines J.A., Nelson B.J., A Supervisory Wafer-Level3D Microassembly System for Hybrid MEMS Fabrication. Journal of Intelligent and Robotic Systems,2003,37:43-68
    [16]Yang G., Nelson B.J., Micromanipulation Contact Transition Control by Selective Focusing and Microforce Control. IEEE International conference on Robotics and Automation, Taipei Taiwan,2003:3200-3206
    [17]Dechev Nikolai, Cleghorn William L., Mills James K., Microassembly of3-d MEMS structures utilizing a MEMS microgripper with a robotic manipulator. Proceeding of the2003IEEE International Conference on Robotics and Automation, Taipei Taiwan,2003:3193-3199
    [18]Dechev Nikolai, Cleghorn William L., Mills James K., Construction of a3D MEMS Microcoil Using Sequential Robotic Microassembly Operations. American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS),2003,5:125-131
    [19]Y. Hatamura, H. Morishita, Direct coupling system between nanometer world and human world. Proceeding of IEEE Micro Electro Mechanical System. Napa Vallay, USA,1990:203-208
    [20]H. Morishita, Y. Hatamura, Development of ultra micro manipulator system under stereo SEM observation. Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan,1993:1717-1721
    [21]T. Sato, K. Koyano, M. Nakao, Y. Hatamura. Novel manipulator for micro object handling as interface between micro and human worlds. Proc. of IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Yokohama, Japan:IEEE,1993.1674-1681
    [22]K. Koyano, T. Sato. Micro object handling system with concentrated visual fields and new handling skills. Proc. of IEEE Int. Conf. Robotics and Automation, Minnesota, USA:IEEE,1996.2541-2548
    [23]Mamoru Mitsubish, Shin Tomisaki et al, Tele-micro-surgery system with intelligent user interface. Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA,2000:1607-1614
    [24]B. E. Kratochvil, L. X. Dong, B. J. Nelson. Real-time Rigid-Body Visual Tracking in a Scanning Electron Microscope. International Journal of Robotics Research,2009,28(4):498-511
    [25]M. A. Greminger, B. J. Nelson, A Deformable Object Tracking Algorithm Based on the Boundary Element Method that is Robust to Occlusions and Spurious Edges. International Journal of Computer Vision,2008,(78):29-45.
    [26]卢桂章,张建勋,赵新,面向生物工程实验的微操作机器人.南开大学学报(自然科学),1999,32(3):42-46
    [27]刘冲,梁勇,李经民,刘军山,王晓东,微流控芯片操作机器人碰撞保护装置的设计.光学精密工程,2009,17(1):138-144
    [28]王晓东,宋洪侠,刘超,罗怡,基于机器视觉的微小型零件测量与装配控制.哈尔滨工程大学学报,2011,32(9):1117-1122
    [29]张江波,朱涛,王越超,谈大龙,一种具有纳米定位精度的四自由度微动平台的研制.机器人,2003,25(3):213-216
    [30]田孝军,王越超,席宁,董再励,李文荣,机器人化纳米操作系统驱动器驱动与探针定位研究.仪器仪表学报,2007,128(7):1223-1228
    [31]M. Goldfarb, N. Celanovic, Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control System Magazine,1997,17(3):69-79
    [32]S. Fatikow, K. Santa, J. Zollner et al, Flexible piezoelectric micromanipulation robots for a microassembly desktop system. Proceeding of IEEE International Conference on Robotics and Automation, Monterey, USA,1997:242-246
    [33]F. Arai, D. Andou, Y. Nonnoda, T. Fukuda et al, Integrated microendeffector for micromanipulation. IEEE Transaction on Mechatronics,1998,3(1):17-23
    [34]李海军,杨拥军,大位移低电压驱动MEMS静电梳齿驱动器的设计与研究.微纳米电子技术,2002,39(7):27-30
    [35]H. Guckel, T.R. Christenson, K.J. Skrobis et al, A first functional current excited planar rotational magnetic micromotor. Proceeding of IEEE MEMS Workshop, Fort Lauderdale, USA,1993:7-11
    [36]X.Y. Ye, Y. Huang, Z.Y. Zhou, Q.C. Li et al, A magnetic levitation actuator for micro-assembly. Proceeding of International Conference on Solid-State Sensors and Actuators, Chicago, USA,1997:797-799
    [37]K. Ikuta, Micro/miniature shape memory alloy actuator. Proceeding of IEEE International Conference on Robotics and Automation, Los Alamitos, USA,1990:2156-2161
    [38]李明东,马培荪,储金荻.适用于有限空间的微型形状记忆合金丝驱动器.上海交通大学学报,2000,34(3):366-369
    [39]H. Zhang, Y. Bellouard, E. Burdet et al, Shaper memory alloy microgripper for robotic microassembly of tissue engineering scaffolds. Proceeding of IEEE International Conference on Robotics and Automation, New Orieans, USA,2004:4918-4924
    [40]Menciassi, B. Hannaford, M.C. Carrozza et al,4-axis electromagnetic microgripper. Proceeding of IEEE International Conference on Robotics and Automation, Detroit, USA,1999:2899-2904
    [41]W. Zesch, M. Brunner, A. Weber, Vacuum tool for handling microobjects with a nanorobot. Proceeding of IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico,1997:1761-1766
    [42]毕树生,宗光华,张体娟,并联微操作机构的研究与应用.高技术通讯,2001,11(2):107-110
    [43]毕树生,宗光华,柔性铰链微操作机构的误差源分析.机械科学与技术,2003,22(4):591-594
    [44]M.K. Hu, Visual pattern recognition by moment invariants. IRE Transactions on Information Theory,1962,8(1):179-187
    [45]M.R. Teague, Image analysis via the general theory of moments. Journal of the Optical Society of America,1980,70(8):920-930
    [46]Ribeiro Bernardete, Silva Catarina, Chen Ning et al, Enhanced default risk models with SVM. Expert Systems with Applications,2012,39(11):10140-10152
    [47]Cumani Sandro, Laface Pietro, Analysis of Large-Scale SVM Training Algorithms for Language and Speaker Recognition. IEEE Transactions on Audio Speech and Language Processing,2012,20(5):1585-1596
    [48]Patra Swarnajyoti, Bruzzone Lorenzo, A Batch-Mode Active Learning Technique Based on Multiple Uncertainty for SVM Classifier. IEEE Geoscience and Remote Sensing Letters,2012,9(3):497-501
    [49]孙立宁,陈立国,刘品宽,荣伟斌,微操作机器人显微视觉系统若干问题.光学精密工程,2002,10(2):171-175
    [50]罗翔,沈洁,颜景平,微装配的若干关键技术.电子机械工程,2002,18(1):35-37
    [51]郭小勤,徐刚,机器人视觉伺服及路径规划的研究现状与发展趋势分析.机床与液压,2005,10:1-4
    [52]Vincze M., Dynamics and system performance of visual servoing. Proceeding of IEEE International Conference on Robotics and Automation, San Francisco, USA,2000:644-649.
    [53]Liu Y., Hoover A. W., Walker I. D., A timing model for vision-based control of industrial robot manipulators. IEEE Transaction on Robotics,2004,20(5):891-898
    [54]Salisbury K., Eberman B., Levin M., Townsend W., The design and control of an experimental whole-arm manipulator. Robotics Research Fifth International Symposium,1990:233-241
    [55]P. Allen, A. Timcenko, B. Yoshimi and P. Michelman, Automated Tracking and Grasping of a Moving Object with a Robotics Hand-Eye System. IEEE Transactions on Robotics and Automation,1993,9(2):152-165
    [56]N. Papanikolopoulos, P. K. Khosla and T. Kanade, Visual Tracking of a Moving Target by a Camera Mounted on a Robot:A Combination of Control and Vision. IEEE Transactions on Robotics and Automationg,1993,9(1):14-33
    [57]Mitsuda T, Maru N, Fujikawa K, Visual servoing based on the use of binocular visual space. Proceeding of IEEE Interational Conference on Intelligent Robot and Systems,1996,3(1):104-111
    [58]Gortcheva E, Garrido R, Gonzalez R, Predicting a moving objectposition for visual servoing:theory and experiments. International Journal of Adaptive Control and Signal Processing,2001,15(4):377-392
    [59]蒋平,沈世锦,陈辉堂,基于图像误差的机器人运动目标自适应跟踪.机器人,1997,19(6):431-436
    [60]B.J. Nelson, Y. Zhou, B. Vikramaditya, Sensor-based microassembly of hybrid MEMS devices. IEEE Control Systems,1998,18(6):35-45
    [61]孙立宁,孙绍云,荣伟彬,蔡鹤皋,微操作机器人的发展现状,机器人,2002,24(2):184-187
    [62]T. Sato, T. Kameya, H. Miyazaki et al, Hand-eye system in nano manipulation world. Proceeding of IEEE International Conference on Robotics and Automation, Nagoya, Japan,1995:59-66
    [63]薛定宇,项龙江,司秉玉,徐心和,视觉伺服分类及其动态过程.东北大学学报(自然科学版),2003,124(6):543-547
    [64]谢晖,孙立宁,荣伟彬,基于改Smith预估器的显微视觉伺服.光学精密工程,2006,14(2):285-290
    [65]贺贤土,惯性约束聚变研究进展与展望.核科学与工程,2000,20(3):248-251
    [66]王淦昌,激光惯性约束核聚变(ICF)最新进展简述.核科学与工程,1997,17(3):266-269
    [67]王淦昌,惯性约束核聚变.科学中国人,1995:4-6
    [68]王淦昌,21世纪主要能源展望.核科学与工程,1998:18(2):97-108
    [69]乔战峰,赵东峰,戴亚平,李朝东,蒋敏华,华能,顾震,“神光-Ⅱ"第九路终端光学系统稳定性分析.强激光与粒子束,2006:18(3):419-422
    [70]王传珂,激光聚变四十年颂——诗贺神光Ⅲ原型激光装置打靶试运行.激光与光电子学进展,2008,45(1):64
    [71]Krishnan Sandeep, Saggere Laxman, Design and development of a novel micro-clasp gripper for micromanipulation of complex-shaped objects. Sensors and Actuators A-Physical,2012,176:110-123
    [72]Kim Bong-Seok, Park Joon-Shik, Kang Byoung Hun et al, Fabrication and property analysis of a MEMS micro-gripper for robotic micro-manipulation. Robotics and Computer-integrated Manufacturing,2012,28(1):50-56
    [73]Jain R. K., Datta S., Majumder S. et al, Two IPMC Fingers Based Micro Gripper For Handling. International Journal of Advanced Robotic Systems,2011,8(1):1-9
    [74]Jain R. K., Patkar U. S., Majumdar S., Micro gripper for micromanipulation using IPMCs (ionic polymer metal composites). Journal of Scientific and Industrial Research,2009,68(1):23-28
    [75]Jain R.K., Datta S., Majumder S., Dutta A., Two IPMC fingers based micro gripper for handling. International Journal of Advanced Robotic Systems,2011,8(1):1-9
    [76]陈国良,黄心汉,周祖德.微装配机器人系统.机械工程学报,2009,45(2):288-293
    [77]Mackay R.E., Le H.R., Keatch R.P., Design optimisation and fabrication of SU-8based electro-thermal micro-grippers. Journal of Micro-Nano Mechatronics,2011,6(1-2):13-22
    [78]Bazaz Shafaat Ahmed, Khan Fahimullah, Shakoor Rana Iqtidar, Design, simulation and testing of electrostatic SOI MUMPs based microgripper integrated with capacitive contact sensor. Sensors and Actuators, A:Physical,2011,167(1):44-53
    [79]Deok-Ho Kim, Moon Gu Lee, Byungkyu Kim, Yu Sun, A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors:a numerical and experimental study. Smart Materials and Structures,2005,14(6):1265-1272
    [80]Rakotondrabe Micky, Ivan loan Alexandru, Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. IEEE Transactions on Automation Science and Engineering,2011,8(4):824-834
    [81]Shaoze Yan, Xiajie Liu, Feng Xu, Jinhui Wang, A gripper actuated by a pair of differential SMA springs. Journal of Intelligent Material Systems and Structures,2007,18(5):459-466
    [82]Amin Abdullah Al, Jagtiani Ashish, Vasudev Abhay, Hu Jun, Zhe Jiang, Soft microgripping using ionic liquids for high temperature and vacuum applications. Journal of Micromechanics and Microengineering,2011,21(12):125025-125033
    [83]Chen Tao, Chen Liguo, Pan Mingqiang, Sun Lining, Study on MEMS microgripper integrated vacuum tool. Applied Mechanics and Materials,2011,43:471-475
    [84]Echavez Gabriel, Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research,2012,50(2):249-250
    [85]SMC(中国)有限公司,SMC气动元件.SMC株式会社,2009
    [86]刘敏,彭刚,黄心汉.适用于微粒操作的真空吸附式作业工具研究.兵工自动化,2002,21(4):9-12
    [87]张斌,陈西平,浮红霞,杜习波,压电双晶片作为驱动的精密定位机构研究.机械与电子,2009,6:39-41
    [88]Diann E B, Blechschmidt J, Design and static modeling of a semicircular polymeric piezoelectric microactuator. Journal of Microelectromechanical Systems,1992,1(3):106-115
    [89]Bazaz S.A., Khan F., Shakoor R.I., Design, simulation and testing of electrostatic SOI MUMPs based microgripper integrated with capacitive contact sensor. Sensors and Actuators:A Physical,2011,167(1):44-53
    [90]Chen Tao, Sun Lining, Chen Liguo, Rong Weibin, Li Xinxin, A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sensors and Actuators, A:Physical,2010,158(2):320-327
    [91]Sun Li-ning, Chen Tao, Shang Bing, Li Xin-xin, Design of four-arm MEMS microgripper integrated with force sensor. Design of four-arm MEMS microgripper integrated with force sensor,2009,17(8):1878-1883
    [92]B.J. Nelson, Y. Zhou, B. Vikramaditya, Sensor based microassembly of hybrid MEMS devices. IEEE Control systems,1998,18(6):35-45
    [93]李群智,王树新,刘丹,具有交互夹持力感觉的主从触感装置.天津大学学报,2006,39(6):644-670
    [94]Grinspan A.S., Gnanamoorthy R., Impact force of low velocity liquid droplets measured using piezoelectric PVDF film. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,356(1-3):162-168
    [95]Shupeng Liu, Lin Chen, Xiangming Zhu, Lili Dai, Yanfei Xin, Digital Piano Keyboard Based on PVDF Piezoelectric Film.2010International Conference on Audio,2010:378-382
    [96]Yuan Ren-shu, Sui Shi-qun, Dynamic response of PVDF thin film under pulse pressure. Instrument Techniques and Sensor,2011,8:4-6
    [97]Han Hiro, Nakagawa Yuusaku, Takai Yasuyuki, Kikuchi Kunitomo, Tsuchitani Shigeki, PVDF film micro fabrication for the robotics skin sensor having flexibility and high sensitivity. Proceedings of the International Conference on Sensing Technology,2011:603-606
    [98]Han H., Nakagawa Y., Takai Y., Kikuchi K., Tsuchitani S., PVDF film micro fabrication for the robotics skin sensor having flexibility and high sensitivity. PVDF film micro fabrication for the robotics skin sensor having flexibility and high sensitivity,2011: 603-606
    [99]Wan Zhou, Ji Tao, Shang Yuanyuan, PVDF piezoelectric film accelerometer for low frequency and ultra-low frequency. Applied Mechanics and Materials,2011,63-64:465-469
    [100]Wang Yong Rong, Zhang Pei Hua, Xu Chun Ye, Develop flexible piezoelectric PVDF nano-fibrous membrane. Materials Science Forum,2011,675-677:465-468
    [101]具典淑,PVDF压电薄膜的应变传感特性研究.功能材料,2004,4(35):450-456
    [102]金观昌,于淼,压电薄膜压力分布计算机测试系统研究.清华大学学报(自然科学版),1998,38(2):21-24
    [103]V. Shirinov, W. K. Schomburg, Pressure sensor from a PVDF film. Sensors and Actuators,2008,142:48-55
    [104]Zheng Chen, Ki-Yong Kwon, Xiaobo Tan, Integrate IPMC/PVDF sensory actuator and its validation in feedback control. Sensors and Actuators,2008,144:231-241
    [105]Yantao Shen, Ning Xi, Wen J. Li., A High Sensitivity2-D Force Sensor for Microassembly:Design and Experiments. Proceeding of the2003IEEE/ASME International conference on Advanced Intelligent Mechatronics,2004:3363~3368
    [106]Yantao Shen, Ning Xi, Wen J. Li., Infinite Dimension System Approach for Hybrid Force/Position Control in Micromanipulation. Proceeding of the2004IEEE International conference on Robotics and Automation, April,2004:2912~2917
    [107]赵东升,PVDF压电传感器的设计及其试验研究[硕士学位论文].江苏大学,2005
    [108]Kumar V.D. Ambeth, Ramakrishnan M., Enhancement in footprint image using diverse filtering technique. Procedia Engineering,2012,30:1072-1080
    [109]Sundarrajan Kalavathy, Suresh Ramalingam M., An efficient neighbourhood pixel filtering algorithm for wavelet-based image denoising. International Journal of Computers and Applications,2012,34(2):90-97
    [110]Zhou Zehua, Huang Hui, An Adaptive Layered Median Filter Algorithm. Proceedings of the International Conference on Computer Science and Electronics Engineering,2012:428-431
    [111]Lin Tzu-Chao, A novel decision-based median-type filter using SVM for image denoising. International Journal of Innovative Computing, Information and Control,2012,8(5):3188-3202
    [112]He Renwang, Yang Yibo, A novel transient directional unit based on adaptive median filtering. Advanced Materials Research,2012,433-440:4500-4505
    [113]Wang Xiao-peng, Hu Jian-lin, Sun Cai-xin, Du Lin, On-line Monitoring of Icing-thickness on Transmission Line with Image Edge Detecting Method. High Voltage Apparatus,2009,45(6):69-73
    [114]Li Jian-feng, Xin Guo-jiang, PCNN-based medical image edge extraction. Application Research of Computers,2010,27(11):4389-4393
    [115]Zhao Ziming, Hao Xiangyang, Liu Songlin, Zhao Song, Fragmentary area repairing on the edge of3D laser point cloud based on edge extracting of images and LS-SVM. Proceedings of the International Society for Optical Engineering,2011,8192:81922-81930
    [116]Umamaheswari J., Radhamani G., A fusion technique for medical image segmentation.2012International Conference on Devices, Circuits and Systems,2012:653-657
    [117]Parmar H.J., Ramakrishnan S., An Approach to CT Stomach Image Segmentation Using Modified Level Set Method. Proceedings4th Asian Conference on Intelligent Information and Database Systems,2012:227-233
    [118]Nasri N., Mokrani K., Mekhmoukh A., MRI Images Segmentation by FCM and Neighbor's Statistical Characteristics. International Journal of Research and Reviews in Soft and Intelligent Computing,2012,2(1):127-130
    [119]Zhao Dewei, Yang Lei, Wu Xiaoyu, Wang Nanxi, Li Hui, An improved Roberts edge detection algorithm based on mean filter and wavelet denoising. Lecture Notes in Electrical Engineering,2012,136:299-305
    [120]Du Fei, Ma Tian-Bing, Extracting of weak periodic impact feature based on mean filtering and wavelet transform. Advanced Materials Research,2012,383-390:408-413
    [121]Vijayarajan R., Muttan S., Influence of Iterative relaxed median filter over FCM clustering in MR images.2011Annual IEEE India Conference,2011:4
    [122]Hovhannisyan A., Chilingarian A., Median filtering algorithms for multichannel detectors. Median filtering algorithms for multichannel detectors,2011,47(9):1544-1557
    [123]Sun Zengguo, Han Chongzhao, Linear Optimal Filter with Minimum Mean Square Error for Synthetic Aperture Radar Images. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University,2009,43(12):6-10
    [124]Pei Soo-Chang, Guo Jing-Ming, High-capacity data hiding in halftone images using minimal-error bit searching and least-mean square filter. IEEE Transactions on Image Processing,2006,15(6):1665-1679
    [125]Luo Min, Wang Yan, Subpixel edge measurement method based on Roberts-Zernike moments operator. Computer Engineering and Applications,2011,47(5):169-171
    [126]张建成,洪留荣,基于多尺度小波的Roberts边缘检测法.计算机应用与软件,2010,5:133-135,147
    [127]康牧,王宝树,自适应Kirsch边缘检测算法.华中科技大学学报(自然科学版),2009,37(4):47-50
    [128]Yu Wei-bo, Du Zun-sheng, An improved Kirsch human face image edge-detection method based on Canny algorithm.2011International Conference on Consumer Electronics, Communications and Networks,2011:4740-4743
    [129]桂预风,吴建平,基于Laplacian算子和灰色关联度的图像边缘检测方法.汕头大学学报(自然科学版),2011,26(2):69-73
    [130]刘若辰,邹海双,张莉,张萍,焦李成,一种改进的Laplacian SVM的SAR图像分割算法.红外与毫米波学报,2011,30(3):250-259
    [131]张辉,马明建,基于改进Sobel算法的叶片图像边缘检测.农机化研究,2012,5:46-48
    [132]Cheng Fangxiao, Lin Xiaomei, Dong Nana, Vascular contour extraction of MRS regional morphology algorithm based on Sobel Operator. Advanced Materials Research,2012,424-425:676-679
    [133]Chaorong Li, Jianping Li, Mingqing Huang, Alumina ceramic surface defect detection: Combining canny edge detector and contourlet transformation. International Journal of Advancements in Computing Technology,2012,4(5):131-140
    [134]Xi Jing, Zhang Ji-Zhong, Edge detection from remote sensing images based on Canny operator and Hough transform. Advances in Intelligent and Soft Computing,2012,141:807-814
    [135]Li Chaorong, Li Jianping, Fu Bo, Yang Xingchun, Fingerprint verification based on DFB and Hu invariant moments. Journal of Computational Information Systems, 2012,8(4):1407-1414
    [136]Silva L.A., Del-Moral-Hernandez E., Moreno R.A., Furuie S.S., Combining wavelets transform and Hu moments with self-organizing maps for medical image categorization. Journal of Electronic Imaging,2011,20(4):043002-043010
    [137]Zunic Jovisa, Hirota Kaoru, Rosin Paul L, A Hu moment invariant as a shape circularity measure. Pattern Recognition,2010,43(1):47-57
    [138]Hwang Chih-Lyang, Lee Hai-Wu, The command control by hand gesture with Hu and contour sequence moments and probability neural network. Proceeding of the IEEE International Conference on Systems, Man, and Cybernetics,2011:2056-2061
    [139]Qi Li, Yun-Da Li, Sheng-Hui Ding, Qi Wang, Calculation and analysis of Hu moment of Continuous-Wave Terahertz reflecting image. Academic International Symposium on Optoelectronics and Microelectronics Technology,2011:204-207
    [140]Singh Chandan, Upneja Rahul, Fast and accurate method for high order Zernike moments computation. Applied Mathematics and Computation,2012,218(15):7759-7773
    [141]Xiang Shijun, On invariance analysis of Zernike moments in the presence of rotation with crop and loose modes. Multimedia Tools and Applications,2012,57(1):29-48
    [142]Singh Chandan, Pooja, Improving image retrieval using combined features of Hough transform and Zernike moments. Optics and Lasers in Engineering,2011,49(12):1384-1396
    [143]Gao Xinbo, Wang Qian, Li Xuelong et al, Zernike-Moment-Based Image Super Resolution. IEEE Transactions on Image processing,2011,20(10):2738-2747
    [144]Lim Chern-Loon, Honarvar Barmak, Thung Kim-Han, Fast computation of exact Zernike moments using cascaded digital filters. Information Sciences,2011,181(17):3638-3651
    [145]Li Ju, Liu Xiaoping, Du Hui, Research of image recognition based on rough set. International Journal of Digital Content Technology and its Applications,2012,6(9):141-146
    [146]Akamine M., Ajmera J., Decision Tree-based Acoustic Models for speech recognition with improved smoothness. IEICE Transactions on Information and Systems,2011, E94-D(11):2250-2258
    [147]Ribeiro Bernardete, Silva Catarina, Chen Ning et al, Enhanced default risk models with SVM. Expert Systems with Applications,2012,39(11):10140-10152
    [148]Cumani Sandro, Laface Pietro, Analysis of Large-Scale SVM Training Algorithms for Language and Speaker Recognition. IEEE Transactions on Audio Speech and Language Processing,2012,20(5):1585-1596
    [149]Song Xiaodong, Han Liyan, Dual membership SVM method based on spectral clustering. Journal of Systems Engineering and Electronics,2012,23(2):225-232
    [150]Niu Xiao-Xiao, Suen Ching Y, A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recognition,2012,45(4):1318-1325
    [151]Kadri Ouahab, Mouss Leila Hayet, Mouss Mohamed Djamel, Fault diagnosis of rotary kiln using SVM and binary ACO. Journal of Mechanical Science and Technology,2012,26(2):601-608
    [152]Miguel A., Ortega A., Buera L., Lleida E., Bayesian networks for discrete observation distributions in speech recognition. IEEE Transactions on Audio, Speech and Language Processing,2011,19(6):1476-1489
    [153]Reddy K. Rama Linga, Babu G. R., Kishore Lal, Face recognition based on eigen features of multi scaled face components and artificial neural network. International Journal of Security and its Applications,2011,5(3):23-44
    [154]王军,一种改进的小波阂值高斯噪声图像降噪方法.计算机仿真,2011,28(2):295-299
    [155]郭业才,俊渭,瑞利噪声环境中水下目标辐射信号增强算法.系统仿真学报,2003,15(5):700-702
    [156]单建华,种子像素滤波法去除随机脉冲噪声.中国图象图形学报,2012,17(1):49-53
    [157]Qatawneh Mohammad, Massad Yacoub, Musaddaq Mohammed, A Uniform Noise Median Filter Based on a New Type of Filtering Window. Information-an International Interdisciplinary Journal,2012,15(2):699-705
    [158]Rong Zhu, Yong Wang, Application of improved median filter on image processing. Journal of Computers,2012,7(4):838-841
    [159]Kai Xie, Fen Zhang, Ying Zhou, A novel image denoising method based on adaptive median filter algorithm. Advanced Materials Research,2012:433-440:2486-2490
    [160]Jiang Jie, Jiao Bin-liang, New median filtering method based on statistic analysis. Laser Technology,2011,35(1):29-30,69
    [161]Krishnamoorthi R., Annapoorani G., A simple boundary extraction technique for irregular pupil localization with orthogonal polynomials. Computer Vision and Image Understanding,2012,116(2):262-273
    [162]Ahmadi Salman, Zoej M. J. Valadan, Ebadi Hamid, Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours. International Journal of Applied Earth Observation and Geoinformation,2010,12(3):150-157
    [163]许豪,孔建益,汤勃,王兴东,刘源泂,基于数学形态学的带钢表面缺陷边缘提取.机械设计与制造,2012,6:206-208
    [164]Miao Qiguang, Liu Juan, Li Weisheng, Shi Junjie, Wang Yiding, Three novel invariant moments based on radon and polar harmonic transforms. Optics Communications,2012,285(6):0144-1048
    [165]Gao Fei, Wang Kehong, Zhan Lanlan, Zhang Yan, Classification of MAG weld pool image based on moment invariants and fisher. China Welding (English Edition),2011,20(4):51-56
    [166]Ruliang Zhang, Lin Wang, An image matching evolutionary algorithm based on Hu invariant moments. Proceeding of the International Conference on Image Analysis and Signal Processing,2011:113-117
    [167]Ghani Nor Azura Md, Liong Choong-Yeun, Jemain Abdul Aziz, Analysis of geometric moments as features for firearm identification. Forensic Science International,2010,198(1-3):143-149
    [168]Munoz-Rodriguez JA, Asundi A, Rodriguez-Vera R, Recognition of a light line pattern by Hu moments for3-D reconstruction of a rotated object. Optics and Laser Technology,2005,37(2):131-138
    [169]Zhihu Huang, Jinsong Leng, Analysis of Hu's moment invariants on image scaling and rotation. Proceeding of2nd International Conference on Computer Engineering and Technology,2010:476-480
    [170]Yao Jun, Jiang Xiao-yu, Huang Ying-qing, Comparison between Hu moment, Zernike moment and wavelet moment in target recognition. Journal of Academy of Armored Force Engineering,2006,20(3):34-36
    [171]Shijun Xiang, On invariance analysis of Zernike moments in the presence of rotation with crop and loose modes. Multimedia Tools and Applications,2012,57(1):29-48
    [172]李春生,简丽琼,基于Zernike矩的图像不变性识别研究.科技信息,2012,9:57-58
    [173]C.W. Chong, P. Raveendran, R. Mukundan, A comparative analysis of algorithms for fast computation of Zernike moments, Pattern Recognition,2003,6:731-742
    [174]E.C. Kintner, On the mathematical properties of the Zernike polynomials, Optica Acta,1976,23(8):679-680
    [175]C.Y. Wee, R. Paramesran, F. Takeda, New computational methods for full and subset Zernike moments, Information Sciences,2004,159:203-220
    [176]Liao, S.X., Pawlak, M., On the accuracy of Zernike moments for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(12):1358-1364
    [177]Pawlak, M., Liao, S.X., On the recovery of a function on a circular domain. IEEE Transactions on Information Theory,2002,48(10):2736-2753
    [178]Xin, Y.Q., Pawlak, M., Liao, S.X., Accurate computation of Zernike moments in polar coordinates. IEEE Transactions on Image Processing,2007,16(2):581-587
    [179]Khalid M. Hosny, A systematic method for efficient computation of full and subsets Zernike moments. Information Sciences,2010,180:2299-2313
    [180]Keys, R.G., Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech and Signal Processing,1981,29(6):1153-1160
    [181]Hosny, K.M., Fast computation of accurate Zernike moments. Journal of Real-Time Image Processing,2008,3(1-2):97-107
    [182]Haddadnia, J., Ahmadi, M., Faez, K., An efficient feature extraction method with pseudo-Zernike moment in RBF neural network-based human face recognition system. EURASIP Journal on Applied Signal Processing,2003,2003(10):890-901
    [183]Reference software of LIBSVM, version3.12. downloadable at http://www.csie.ntu.edu.tw/-cjlin/libsvm/,2012
    [184]Garcia-Aracil Nicolas, Perez-Vidal Carlos, Maria Sabater Jose, Robust and Cooperative Image-Based Visual Servoing System Using a Redundant Architecture. Sensors,2011,11(12):11885-11900
    [185]Janabi-Sharifi Farrokh, Deng Lingfeng, Wilson William J, Comparison of Basic Visual Servoing Methods. IEEE-ASME Transactions on Mechatronics,2011,16(5):967-983
    [186]Mahony Robert, von Brasch Arved, Corke Peter, Adaptive depth estimation in image based visual servo control of dynamic systems. Proceeding of44th IEEE Conference on Decision and Control,2005:5372-5378
    [187]Zhang Jie, Liu Ding, Online Estimation of Image Jacobian Matrix Based on Robust Information Filter. Journal of Xi'an University of Technology,2011,27(2):133-138
    [188]Kosmopoulos D.I., Robust Jacobian matrix estimation for image-based visual servoing. Robotics and Computer-Integrated Manufacturing,2011,27(1):82-87
    [189]席文明,罗翔,朱剑英,基于约束卡尔曼滤波器预测的视觉跟踪研究.南京航空航天大学学报,2002,34(6):540-543
    [190]Bai Qiuchan, Jin Chunxia, Yang Dingli, Wang Mahua, The target motion detection algorithm based on gauss mixture model. Advanced Materials Research,2012,468-471:1421-1425
    [191]Li X.R., Jilkov V.P., Survey of maneuvering target tracking. Part II:motion models of ballistic and space targets. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):96-119
    [192]Li Huifeng, Li Chao, Missile-borne radar data filtering algorithm based on the "current" statistical model. Advanced Materials Research,2012,433-440:6965-6973
    [193]Vasuhi S., Vaidehi V., Rincy T., IMM estimator for maneuvering target tracking with improved current statistical model. Proceeding of International Conference on Recent Trends in Information Technology,2011:286-290
    [194]Kong Bo, Xiu Jianjuan, Xiu Jianhua, Passive Locating of Maneuvering Target Based on Singer Tracking Model. Electronics Optics and Control,2011,18(5):14-18
    [195]Zhou Fei, He Wei-jun, Fan Xin-yue, Tracking application about singer model based on marginalized particle filter. Journal of China Universities of Posts and Telecommunications,2010,17(4):47-51
    [196]Jianfeng Wu, Gang Li, Fuzhou Ma, Research on Target Tracking Algorithm Using Improved Current Statistical Model. Proceeding of International Conference on Electrical and Control Engineering,2011:2515-2517
    [197]Liu Ya-lei, Gu Xiao-hui, Current statistical model tracking algorithm based on improved auxiliary particle filter. Systems Engineering and Electronics,2010,32(6):1206-1209
    [198]Wu Jie, Wang Dong, Sheng Huan-Ye, Object tracking and tracing:Hidden semi-markov model based probabilistic location determination. Journal of Shanghai Jiaotong University(Science),2011,16(4):466-473
    [199]Yu Shun-Zheng, Kobayashi Hisashi, A hidden semi-Markov model with missing data and multiple observation sequences for mobility tracking. Signal Processing,2003,83(2):235-250
    [200]黄鹤,王小旭,潘泉,孙强,闫学斌,基于参数辨识α-β-γ滤波的自适应调整跟踪窗算法.中国惯性技术学报,2011,19(6):733-738
    [201]黄鹤,张会生,黄莺,惠晓滨,许家栋,基于新息正交性抗野值的自适应的α-β-γ滤波跟踪器.系统仿真学报,2010,22(4):971-973,999
    [202]Gao Wei-Guang, Yang Yuan-Xi, Zhang Shuang-Cheng, Adaptive robust Kalman filtering based on the current statistical model. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica,2006,35(1):15-18,29
    [203]Mongoue-Tchokote Solange, Kim Jong-Sung, New statistical software for the proportional hazards model with current status data. Computational Statistics and Data Analysis,2008,52(9):4272-4286
    [204]Binbin L., Wang Zhaoying, An improved target tracking algorithm based on the "current" statistical model. Journal of Projectiles, Rockets, Missiles and Guidance,2008,28(2):81-83
    [205]周宏仁,敬忠良,王培德.机动目标跟踪.北京:国防工业出版社,1991
    [206]Jianfeng Wu, Gang Li, Fuzhou Ma, An Improved Interacting Current Statistical Model Algorithm. Electronics Optics and Control,2011,18(4):21-25
    [207]龙凤,薛冬林,陈桂明,杨庆,基于粒子滤波与线性自回归的故障预测算法.计算机技术与发展,2011,21(11):133-136,140
    [208]Yang Xu, Chang Yilin, Li Bingbing et al, Adaptive Wiener Filter based Chrominance Up-Sampling Enhancement Method for Video Coding. IEEE Transactions on Consumer Electronics,2011,57(4):1851-1856
    [209]Zhong Ke, Lei Xia, Li Shaoqian, Wiener Filter for Basis Expansion Model Based Channel Estimation. IEEE Communications Letters,2011,15(8):813-815
    [210]Wang Qiang, Wang Xiaowei, Pan Xiang, Adaptive sonar beamformer based on inverse QR decomposition and recursive least squares filter for underwater target detection. International Journal of Remote Sensing,2012,33(13):3987-3998
    [211]Hyungjoo Yoon, Bateman B.E., Agrawal B.N., Laser beam jitter control using recursive-least-squares adaptive filters. Journal of Dynamic Systems, Measurement and Control,2011,133(4):041001-041009
    [212]Podladchikova T., Van der Linden R., A Kalman Filter Technique for Improving Medium-Term Predictions of the Sunspot Number. Solar Physics,2012,277(2):397-416
    [213]Doraiswami R., Cheded L., Kalman filter for parametric fault detection:an internal model principle-based approach. IET Control Theory and Applications,2012,6(5):715-725
    [214]Roujol Sebastien, de Senneville Baudouin Denis, Hey Silke, Robust Adaptive Extended Kalman Filtering for Real Time MR-Thermometry Guided HIFU Interventions. IEEE Transactions on Medical Imaging,2012,31(3):533-542
    [215]Branicki M., Gershgorin B., Majda A. J., Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters. Journal of Computational Physics,2012,231(4):1462-1498
    [216]Cho Jeong A., Na Hanbyeul, Kim Sunwoo, Ahn Chunsoo, Moving-target tracking based on particle filter with TDOA/FDOA measurements. ETRI Journal,2012,34(2):260-263
    [217]Mehra R.K., On the Identification of Variances and Adaptive Kalman Filtering. IEEE Transactions on Automatic Control,1970, AC-15(2):175-183
    [218]Escamilla-Ambrosio P. J., and N. Mort, Adaptive Kalman filtering through fuzzy logic. Proceeding of the7th UK Workshop on Fuzzy System, Recent Advances and Practical Applications of Fuzzy, Nero-Fuzzy, and Genetic Algorithm-Based Fuzzy Systems,2000:67-73
    [219]Roujol S., de Senneville B.D., Hey S., Moonen C, Ries M., Robust Adaptive Extended Kalman Filtering for Real Time MR-Thermometry Guided HIFU Interventions. IEEE Transactions on Medical Imaging,2012,31(3):533-542
    [220]Shang Songtian, Gao Wenshao, Application of adaptive kalman filter technique in initial alignment of single-axial rotation strap-down inertial navigation system. Intelligent System and Applied Material,2012,466-467:617-621
    [221]Karasalo M., Xiaoming Hu, An optimization approach to adaptive Kalman filtering. Automatica,2011,47(8):1785-1793
    [222]李辉,沈莹,张安,机动目标跟踪中一种新的自适应滤波算法,西北工业大学学报,2006,24(3):354-357
    [223]M. Vincze, Dynamics and System Performance of Visual Servoing. Proceeding of2th IEEE International Conference on Robotics and Automation, San Francisco,2000:644-649.
    [224]Bai Linfeng, Chen Fugui, Zeng Xiangjin, Fuzzy adaptive proportional integral and differential with modified smith predictor for micro assembly visual servoing. Information Technology Journal,2009,8(2):195-201
    [225]Mahmood Khalid, Iqbal Naeem, Autotuned feature detection to improve position based visual servoing. IEICE Electronics Express,2010,7(14):969-975
    [226]Tian Shi-Xiang, Wang Sheng-Ze, An image-based visual servoing for manipulator. Advanced Materials Research,2011,186:277-280
    [227]Malis E, Chaumette F, Boudet S,2-1/2-D visual servoing. IEEE Transactions on Robotics and Automation,1999,15(2):238-250
    [228]Khan U., Jan I., Iqbal N., Jian Dai, Uncalibrated eye-in-hand visual servoing:an LMI approach. Industrial Robot,2011,38(2):130-138
    [229]Tatlicioglu E., Dawson D.M., Xian B., Adaptive visual servo regulation control for camera-in-hand configuration with a fixed camera extension. International Journal of Robotics and Automation,2009,24(4):346-355
    [230]Sha Sha, Ma Yao-jie, Research on servoing law of intelligent car with monocular vision. Computer Engineering,2011,37(2):145-147
    [231]Inoue Yukinari, Maru Noriaki, Full leg control of a quadruped robot using linear visual servoing with a stereo omnidirectional camera. International Journal of Automation Technology,2011,5(2):241-246
    [232]Piazzi Jacopo, Cowan Noah J., Multi-view visual servoing using epipoles. Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems,2004,1: 674-679
    [233]Vincze M, Dynamics and system performace of visual servoing. IEEE International Conference on Robotics and Automation,2000:644-649
    [234]Zhang Conglin, The wind speed prediction based on AR model and BP neural network. Advanced Materials Research,2012,450-451:1593-1596
    [235]Wen Mingming, Prediction of coal production based on BP neural network. Advanced Materials Research,2011,217-218:1647-1651
    [236]王麟昆,徐德,谭民,机器人视觉伺服研究进展,机器人,2004,26(3):277-282
    [237]Itkis Yu.F., Leibovitch A.V., Application of systems variable structure for centralized control of objects with variable parameters. Avtomatika i Telemekhanika,1970,8:67-74
    [238]Aysin K.G., Taran V.A., Stability of variable structure automatic control systems. Engineering Cybernetics,1971,9(1):163-169
    [239]Hung J. Y., Gao W. B., Hung J.C., Variable structure control:a survey. IEEE Transaction on Industrial Electronics,1993,40(1):2-22
    [240]吕遐东,黄心汉,王敏,基于散焦图像特征的微装配机器人深度运动显微视觉伺服.机器人,2007,29(4):357-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700