用户名: 密码: 验证码:
大环草酰胺配体配合物的合成、结构及其弱相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大环配位化学是跨越物理、化学、材料科学和生命科学等诸多学科的最为活跃的前沿研究领域之一,引起了人们的广泛关注。
     (1)本论文得到一个大环草酰胺单核配合物的同质多晶体,解析了这个晶体的结构,并对其进行了溶液紫外、固体紫外、IR谱表征。
     (2)设计、合成了两个少见的、含八配位锰(II)和镍(II)的异五核配合物,解析了其单晶结构,并对其进行溶液紫外、固体紫外、热分析、IR谱表征。这两个八配位配合物中均只形成半配位键,金属离子处于很弱的配位环境中,多种超分子作用共同稳定了反常高的配位数和特别长的配位键。
     (3)合成出一个新的大环配合物配体及其一个三核配合物,解析了三核配合物的晶体结构,并进行了IR谱表征。X-射线单晶衍射分析表明,产物中结合上的环己二胺都是顺式构型的。
Macrocyclic coordination chemistry is an active fields of research at the cross point of chemistry, physics, biology and material sciences and has attracted considerable attention.
     (1)A new polymorph of a reported mononuclear macrocyclic oxamido complex was synthesized and characterized by X-ray single crystal diffraction, UV spectra and IR spectra.
     (2)Two novel eight-semi-coordinate Ni(II) and Mn(II) complexes were synthesized and characterized by X-ray single crystal diffraction, UV spectra, TG methods and IR spectra. The abnormally long coordination bonds and high coordination numbers were rationalized as being stabilized by intermorlecular interactions.
     (3) One new mononuclear Ni(II) complex ligand and a trinuclear complex of this complex ligand were synthesized. The trinuclear complex was characterized by X-ray single crystal diffraction.
引文
[1] Aspinall H. C., Chiral Lanthanide Complexes: Coordination Chemistry and Applications, Chem. Rev.,2002,102,1807~1850
    [2] Miller J. S., Epstein A. J., Organic and organometallic molecular magnetic materials-designer magnets, Angew. Chem. Int. Ed., 1994, 33: 385~415
    [3] Ciardelli F., Tsuchida E., Wohrle D., Macromoleculae-Metal Complexes, Springer-Verlag, Berlin, 1996
    [4] Bruce D. W., O’Hare D. (eds.).,Inorganic Materials, 2nd ed. John Wiley&Sons, NewYork, 1996
    [5] Day P.,Coordination complexes in two dimensional magnets and superconduc -tors,Coord. Chem. Rev, 1999, 190-192: 827~839
    [6] Chen C. T., Suslick K. S., One-dimensional coordination polymers-applications to material science, Coord. Chem. Rev., 1993, 128(1-2): 293~322
    [7] Zhao X. G., Richardson W. H., Chen J. L., et al, Density functional calculations of electronic structure, charge distribution, and spin coupling in manganese-oxo dimer complexes, Inorg. Chem., 1997, 36(6): 1198~1217
    [8] Lehn J. M., Supramolecular chemistry-scope and perspectives molecules, suparmolecular, and molecular devices, Angew., Chem, Int. Ed. Engl, 1988, 27: 89~112
    [9] Lehn J. M., Sixteenth International Symposiumon Macroyclic Chemistry Abstracts, 1991
    [10] Lippard S. J., Berg J. M., Principles of bioinorganic chemistry, University Science Books, California, 1994, 1~30
    [11] Melson G. A. (ed.),Coordination Chemistry of Macrocyclic Compounds, Plenum, NewYork
    [12] Chen C. T., Suslick K. S., One-dimensional coordination polymers: Applicati -ons to material science, Coord. Chem. Rev, 1993, 128: 293~322
    [13] Lippard S. J., Berg J. M., Principles of Bioinorganic Chemistry, University Science Books, California, 1994
    [14] Lippard S. J., Berg J. M., Principles of Bioinorganic Chemistry, University Science Books, California, 1994. T. G Spiro(ed.), Copper Proteins, Wiley, New York, Chspter 2(1981)
    [15] Wallar B. J., Lipscomb J. D., Dioxygen activation by enzymes containing binuclear Non-Heme iron clusters, Chem. Rev., 1996, 96: 2625~2657
    [16] Feig A. L., Lippard S. J., Reactions of Non-Heme iron(II) centers with dioxygen in biology and chemistry, Chem. Rev., 1994, 94: 759~805
    [17] Solomon E. I., Brunold T. C., Davis M. Z., et al, Geometric and electronic structure/function correlations in Non-Heme iron enzymes, Chem. Rev., 2000, 100: 235~349
    [18] Kurtz D. M., Structural similarity and functional diversity in diironoxo proteins, Jr. J. Biol. Inorg. Chem., 1997, 2: 159~167
    [19] Kahn O., Molecular Magnetism, New York: VCH Publishers, 1993
    [20] 沈昊宇,廖代正,超级材料高维分子基铁磁体的设计与合成, 化学进展,1999, 11(2): 109~118
    [21] Law N. A., Kampf J. W., Pecoraro V. L., A magneto-structural correlation between the Heisenberg constant, J, and the Mn-O-Mn angle in [Mn-IV(mu-O)](2) dimers, Inorg. Chim. Acta, 2000, 297(1-2): 252~264
    [22] Caneschi A., Gatteschi D., et al., Toward molecular magnets: the metal-radical approach, Acc. Chem. Res., 1989, 22: 392~398
    [23] 阎世平, 程鹏, 廖代正等, 稀土异硫氰酸盐同苯酚西佛碱大环双核配合物的合成和表征,中国科学(B), 1991, 1254~1258
    [24] 郝松琪,姜宗慧 廖代正等,氯冉酸阴离子桥联双核铜(II)配合物的合成和磁性,化学学报,1991,49: 376~381
    [25] 廖代正,赵倩华,王耕霖,含水杨酰胺合铜(II)酸根的双核铜(II)配合物的合成合磁性,中国科学(B), 1989,1239~1243
    [26] 张志勇,廖代正,姜宗慧等, μ-草酰二胺双核铜配合物的合成、结构和磁性,中国科学(B), 1990, 580~586
    [27] Choi H. J., Suh M. P., Self-assembly of molecular brick wall and molecular honeycomb from nickel(II) macrocycle and 1,3,5-benzenetricarboxylate: guest-dependent host structures, J. Am. Chem. Soc., 1998, 120: 10622~10628
    [28] Chui S. S., Lo S. M., Charmant J. P. H., et al, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science, 1999, 283: 1148~1150
    [29] Yaghi O. M., Li G., Li H., Selective binding and removal of guests in a microporous metal-organic framework, Nature, 1995, 378: 703~706
    [30] Yaghi O. M., Li H., Groy T. L., Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid, J. Am. Chem. Soc., 1996, 118: 9096~9101
    [31] Yaghi O. M., Davis C. E., Li G., et al, Selective guest binding by tailored channels in a 3-Dporouszinc(II)-benzenetricarboxylate network, J. Am. Chem. Soc., 1997, 119: 2861~2868
    [32] Liang Y. C., Cao R., Su W. P., et al, Syntheses, structures, and magnetic properties of two gadolinium(iii)-copper(ii) coordination polymers by a hydrothermal reaction, Angew. Chem. Int. Ed. Engl., 2000, 39: 3304~3307
    [33] Pan L., Huang X. Y., Li J., et al, Novel single- and double-layer and three-dimensional structures of rare-earth metal coordination polymers: the effect of lanthanide contraction and acidity control in crystal structure formation, Angew. Chem. Int. En. Engl., 2000, 39: 527~531
    [34] Ohkoshi S., Fujishima A., Hashimoto K., Transparent and colored magnetic thin films: (Fe IIx Cr II1-x) 1.5 [Cr III( CN) 6 ], J. Am. Chem. Soc., 1998, 120: 5349~5350
    [35] Sato O., Lyoda T., Fujishima K., et al, Electrochemically tunable magnetic phase transition in a high-Tc chromium cyanide thin film, Science, 1996, 271: 49~51
    [36] Sra A. K., Andruh M., Kahn O., et al, A mixed-valence and mixed-spin molecular magnetic material: [MnI IL ]6 [Mo III( CN) 7 ][MoI V( CN) 8 ]2 19.5 H2 O, Angew. Chem. Int. Ed. Engl., 1999, 38: 2606~2609
    [37] Ohba M., Okawa H., Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies, Coord. Chem. Rev., 2000, 198: 313~328
    [38] Zhong Z. J., Seino H., Mizobe Y., et al, A high-spin cyanide-bridged Mn W cluster (S = / ) with a full-capped cubane structure,9 6392 J. Am. Chem. Soc., 2000, 122: 2952~2953
    [39] Turnbull M. M., Sugimoto T., Thompson L. K. (eds.), Molecular-based Magnetic Materials: Theory, Technique and Applications, ACS Symposium Series 644, Washington DC, 1996
    [40] Ribas J., Escuer A., Monfort M., et al, Polynuclear NiII and MnII azido bridging complexes. Structural trends and magnetic behavior, Coord. Chem. Rev., 1999, 193-195: 1027~1068
    [41] Hong C. S., Do Y., Canted ferromagnetism in a Ni chain with a single end-to-end azido bridgeII, Angew. Chem. Int. Ed. Engl., 1999, 38: 193~197
    [42] Shen Z., Zuo J. -L., Gao S., et al, Ferromagnetic ordering in a two-dimensional copper complex with dual end-to-end and end-on azide bridges, Angew. Chem., Int. Ed. Engl., 2000, 39: 3633~3635
    [43] Mukherjee P. S., Maji T. K., Mostafa G., et al, The first structurally alternating copper(II) chain with alternate single end-on and end-to-end azido bridging: A synthesis, crystal structure, and low-temperature magnetic study, Inorg. Chem., 2000, 39: 5147~5150
    [44] Shen H. -Y., Bu W. -M., Gao E. -Q., et al, New alternating ferro- and antiferromagnetic one-dimensional complexes. Synthesis, characterization, crystal structure, and magnetic properties of [M(4,4'-dimethylbipyridine)(N ) ] [M = Cu(II), Mn(II), Ni(II), Fe(II)],3 2 nInorg. Chem., 2000, 39: 396~400
    [45] Sinn E., Harrisc M., Schiff base metal complexes as ligands1, Coord. Chem. Rev., 1969, 4: 391~422
    [46] Black D. St. C., Vanderzalm C. H. B., Hartshom A. J., Metal themplate synthesis of macroycllc amide complesis, Inorg. Nucl. Chem. Lett., 1976, 12: 657~659
    [47] Black D. St. C., Vanderzalm C. H. B., Wong C. H., Metal template reactions. XIV. Synthesis of macrocyclic metal complexes from 2,2'-(oxalyldiimino) bisbenzaldehyde and related oxamido aldehydes and ketones, Aust. J. Chem., 1982, 35: 2435~2443
    [48] Black D. St., Moss G. I., Metal template reactions.23.synthesis of macrocyclic amide and ester complexes via 1,1'-Oxaylbisisatin, Aust. J. Chem., 1987, 40: 129 ~143
    [49] Christodoulou D., Kanatzidis M. G., Coucouvanis D., Binucleating, macrocyclic
    [14]N4 ligands and their complexes. Synthesis of the free ligand 2,3-dioxo-5,6:13,14-dibenzo-9,10-(4',5'-dimethylbenzo)-1,4,8,11-tetraazacyclotetradeca-7,11-diene (L) and of the 7,12-Me -L metal complexes and derivatives. Crystal structures and properties of the [M'][M(7,12-Me -L)] complexes (M = Ni(II); M = Co(II); M' = ZnCl , M = Ni(II); M' = [Na(5-crown-15)]+, M = Ni(II); M' = [(C H ) N]+, M = Ni(II)),2222 5 4 Inorg. Chem., 1990, 29: 191~201
    [50] Li X.-Z., Yu L.-H., Si S.-F., et al, C-H···O, O-H···O and π···π interactions in the crystalstructure of a new heterotrinuclear macrocycliccomplex, [MnII(NiIIL)2(C2H5OH)2](ClO4)2, Inorg. Chem. Comm., 2002, 5(7): 478~481
    [51] Desiraju G. R., Chemistry beyond the molecule, Nature, 2001, 412: 397~400
    [52] 黄幼青,胡盛志,管用类质同晶与同质多晶判断的札记,结构化学,1998,17: 205~208
    [53] Lehn M., Atwood J. L., Davied J. E. D., et al, (eds.) Comprehensive Supramilecular Chemistry, Pergamon, Oxford, 1996, Vol.6 is devoted to crystal engineering
    [54] Lehn J. M., Perspectives in supramolecular chemistry. From molecular recognition towards molecular information processing and self-organization, Angew. Chem. Int. Ed. Engl., 1990, 29: 1304~1319
    [55] Kahn O., Garcia Y., Letard J. F., et al, in Suptamolecular Engineering of Synthetic Materials, J. Veciana et al(eds.), Kluwer, theNetherlands, 1999, p.1277
    [56] Cantrill S. J., Fyfe M. C. T., Raymo F. M., et al, in Current Challenges on Large Supramolecular assenblies, Tsoucaros G. (ed.), Kluwer, the Netherlands, 1999, p.17
    [57] Desiraju G. R., Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989
    [58] MscDonald J. C., Whitesides G. M., Solid-state structures of hydrogen -bonded tapes based on cyclic secondary diamides, Chem. Rev., 1994, 94: 2383~2420
    [59] Ward M. D., Russell V. A., in Molecular Chemistry, Michl J. (ed.) Kluwer, the Netherlands, 1997, p.397
    [60] Holy P., Zavada J., Cisarova I., et al, Self-assembly of 1,1 -biphenyl-2,2 ,6,6-tetracarboxylic scid: Formation of an achiral grid with chiral compartments, Angew. Chem. Int. Ed., 1999, 38: 381~383
    [61] Munakata M., Wu L. P., Kuroda-sowa T., Crystal engineering of multidimensional copper(I) and silver(I) coordination supermolecules and polymers with functions, Bull. Chem. Soc. Jpn., 1997, 70: 1727~1743
    [62] Kawata S., Breeze S. R., Wang S., et al, Structural interconversion facilitated by a bifunctional ligand: a covalently linked 2D Cu sheet [Cu(3-pyOH) (O CCF ) ] and a hydrogen-bond linked 2D Cu sheet [Cu(3-pyOH )(O CCF ) (thf) ] ,II2 2 3 2n II 2 2 3 2 2 n Chem. Commun, 1997, 717~718
    [63] Subramanian S., Zaworotko M. J., Exploitation of the hydrogen bond: recent developments in the context of crystal engineering, Coord. Chem. Rev., 1994, 137: 357~401
    [64] Burrrows A. D., Chan C. -W., Chowdhry M. M., et al, Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds, Chem. Soc. Rev., 1995, 329~339
    [65] Choi H. J., Lee T. S., Suh M. P., Self-assembly of a molecular floral lace with one-dimensional channels and inclusion of glucose, Angew. Chem. Int. Ed., 1993, 38: 1405~1409
    [66] Tadokoro M., Isobe K., Uekusa H., et al, Cation-dependent formation of superstructures by one-pot self-organization of hydrogen-bonded nickel complexes, Angew. Chem. Int. Ed., 1999, 38: 95~98
    [67] Burrows A. D., Mingos D. M. P., White A. J. P., et al, Hydrogen bond directed crystal engineering of nickel complexes: the effect of ligand methyl substituents on supramolecular structure, J. Chem. Soc., Dalton Trans., 1999, 215~221
    [68] Groeneman R. H., MacGilllivray L. R., Atwood J. L., One-dimensional coordination polymers based upon bridging terephthalate ions, Inorg. Chem., 1999, 38: 208~209
    [69] Braga D., Grepioni F., Desiraju G. R., Crystal engineering and organometallic architecture, Chem. Rev., 1998, 98: 1375~1405
    [70] Braga D., Grepioni F., Complementary hydrogen bonds and ionic interactions give access to the engineering of organometallic crystals, J. Chem. Soc., Dalton Trans., 1999, 1~7
    [71] Ngunyen T. L., Fowler F. W., Lauher J. W., Commensurate and incommensurate hydrogen bonds. An exercise in crystal engineering, J. Am. Chem. Soc., 2001, 123: 11057~11064
    [72] Matsumoto A., Tanaka T., Tsubouchi T., et al, Crystal engineering for topochemical polymerization of muconic esters using halogen-halogen and CH/ interactions as weak intermolecular interactions, J. Am. Chem. Soc., 2002, 124: 8891~8920
    [73] Lehn J. -M., Toward self-organization and complex matter, Science, 2002, 295: 2400~2403
    [74] Reinhoudt D. N., Crego-Calama M., Synthesis beyond the molecule, Science, 2002, 295: 2403~2407
    [75] Schmidt G. J. M., Photodinerization in the solid state, Pure Appl. Chem., 1971, 27: 647~678
    [76] Etter M. C., Encoding and decoding hydrogen-bond patterns of organic compounds, Acc. Chem. Res., 1990, 23: 120~126
    [77] Zaworotko M. J., Crystal engineering of diamondoid networks, Chem. Soc. Rev., 1994, 23: 283~288
    [78] Copp S. B., Holman K. T., Sangster J. O. S., et al, Supramolecular chemistry of [{M(CO) (μ -OH)} ](M = Mn or Re): a modular approach to crystal engineering of superdiamondoid networks3 3 4, J. Chem. Soc., Dalton Trans., 1995, 2233~2243
    [79] Li X.-Z., He J. H., Liao D.-Z., Apppreciable Ni···O interations at distances almost equal to the sum of the van der Waals radii of the two atoms, Inorg. Chem. Comm., 2005, 8: 939~942
    [80] 吴鼎铭,卢灿忠,卢绍芳等,若干配合物和簇合物中的超分子作用,全国第十届大环化学暨第二届超分子化学学术讨论会论文摘要集,2000,成都,p341
    [81] Braga D., Grepioni F., Intermolecular interactions in nonorganic crystal engineering, Acc. Chem. Res., 2000, 33(9): 601~608
    [82] Beer P. D., Gale P. A., Anion recognition and sensing: The state of the art and future perspectives, Angew. Chem. Int. Ed., 2001, 40: 486~516
    [83] Leininger S., Olenyuk B., Stang P. J., Self-assembly of discrete cyclic nanostructures mediated by transition matals, Chem. Rev., 2000, 100(3): 853~908
    [84] 刘祁涛,配体间的弱相互作用,辽宁大学学报(自然科学版),2000,27(1): 1
    [85] 麦松威,周公度,李伟基,高等无机结构化学,北京大学出版社,2001 年第 1 版,120
    [86] 周公度,晶体结构测定[M], 北京:科学出版社,1981,24
    [87] 任国宾,王静康,徐昭, 同质多晶现象, 中国抗生素杂志,2005,30(1):32~37
    [88] McCroneW C., Physics and chemistry of the organic solid state[M], New York: Interscience Press, 1965, II: 725
    [89] Li X.-Z., Liao D.-Z., Jiang Z.-H., et al, Molecular and supramolecular structures of a nickel(II) complex with a macrocyclic ligand, Chinese J. Struct. Chem., 2003, 22(3): 293~296
    [90] Steiner T, The Hydrogen Bond in the Solid State, Angew. Chem. Int. Ed., 2002, 41: 48~76
    [91] Steiner T., Saenger W., Role of C-H.cntdot..cntdot..cntdot.O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data, J. Am. Chem. Soc., 1993, 115: 4540~4547
    [92] Janiak C., A critical account on π···π stacking in metal complexes with aromatic nitrogen-containing ligands, J. Chem. Soc., Dalton Trans., 2000, 3885~3896
    [93] Nakamoto K., Infrared and Raman spectra of inorganic and coordination compounds, 5th Ed. Part B, John Wiley, New York, 1997
    [94] Silverstein R. M., Bassler G. C., Morril T. C., Spectrometric identification of organic compounds [M], New York: John Wiley, 1981
    [95] 江银枝,胡惟孝,2-乙酰吡啶吖嗪及其与Co2+、Ni2+、Fe3+、Zn2+配合物 的合成和生物活性,应用化学,2003,20(6):582~585
    [96] 刘冰,胡瑞祥,陈振锋,Schiff 碱水杨醛缩异烟肼和水杨醛缩 4-氨基安替吡啉的合成和晶体结构,结构化学,2002,21(4):414~419
    [97] 李晓丽,阮文娟,南晶等,手性不对称 Salen Ni 配合物的模板法合成及表征,无机化学学报,2005,21(11): 1655~1660
    [98] 李孝增,大环多核配合物的合成、结构及其弱相互作用研究:[博士学位论文],天津;南开大学,2003
    [99] Dieter F., Johannes H., Johannes O., Novel cobalt and nickel-clusters with S and PPh3 as ligands; Crystal structures of [Co7S6(PPh3)5Cl2], [Co6S8(PPh3)6]+[CoCl3(THF)] and [Ni8S5(PPh3)7], Angew. Chem. Int. Ed., 1985, 24: 706~709
    [100] Dieter F., Johannes O., Novel Ni-cluster with Se and PR3 (R=Ph, Et) as ligands, Angew. Chem. Int. Ed., 1987, 26: 148~151
    [101] Antony B. B., Ahmad Y., Willian E. H., et al, Magnetic and spectroscopic priperties of some heterotrinuclear basic acetates of chromium(III), iron(III), and divalent metal ions, J. Chem. Soc., Dalton Trans., 1985, 2509~2520
    [102] Wing R. M., Crystal and molecular structure of bis-(3)-1,7-dicarbollylnicke -late(II) dianion, J. Am. Chem. Soc., 1970, 98, 1187~1190
    [103] Yolanda R. M, Catalina R. P, Javier G. P, et al., A new eight-coordinate complex of manganese(II): synthesis, crystal structure, spectroscopy and magneticpreperties of [Mn(Hoxam)2(H2O)4](H2oxam=oxamic acid), Inorg. Chim. Acta, 2001, 315(1): 120~125
    [104] Maria L., Vassilios N., Sotiris G., et al., Eight-coordination in nitrato manganese(II) complexes with tetradentate di-Schiff bases derived from 2-pyridyl ketones: paeparation, characterization and catalytic activity for alkene epoxidation, Inorg. Chem. Comm., 1999, 2: 479~483
    [105] Gultneh Y., Faroog A., Karlin K. D., et al, Structure and reactions of an eight-coordinate manganese(II) complex: [Mn(TMPA)2](ClO4)2(TMPA=tris -[(2-pyridyl)methyl]amine), Inorg. Chim. Acta, 1993, 211(2): 171~175
    [106] Andrew J. E., Antony B. B., Louis R. F., Crystal structure of an eight-coordinate manganese complex Bis[3,4-di(2-pyridyl)pyridazine] -dinitratomanganese(II), J. Chem. Soc., Dalton Trans., 1975, 9: 800~805
    [107] Maddox J., Crystals from first principles, Nature, 1988, 335: 201~202
    [108] Braga D., Grepioni F., Intermolecular multicenter hetero- acceptor C-H…M H-bond, Chem. Rev., 1998, 98: 1375~1405
    [109] Losier P., Zaworotko M. J., A noninterpenetrated molecular ladder with hydrophobic cavities, Angew. Chem. Int. Ed. Engl, 1996, 35: 2779~2782
    [110] Desiraju G. R., Supramolecular synthons in crystal engineering: a new organic synthesis, Angew. Chem. Int. Ed. Engl, 1995, 34: 2311~2327
    [111] Huheey J. E., Inorganic Chemistry: Principles of Structure and Reactivity; Third Ed. Harper & Row, Publishers: New York, 1995
    [112] Steiner T., Saenger W. J., Geometry of CH-O hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data, J. Am. Chem. Soc., 1992, 114: 10146~10154
    [113] Taylor R., Kennard O., Hydrogen bond geometry in organic crystals, Acc. Chem. Res., 1984, 17: 320~326
    [114] Lehn J. M., Supramolecular Chemistry: Concepts and Perspectives,VCH: Weinheim,1995
    [115] 游效曾,我国配位化学进展,化学通报,1999,10:7~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700