用户名: 密码: 验证码:
新型贵金属配合物的电致化学发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属有机配合物的ECL性能是目前研究的热点领域,尤其是联吡啶钌的ECL机理及应用已经得到了广泛而深入的研究。金属铱配合物由于与联吡啶钌配合物具有相似的基态和激发态氧化还原电位,所以关于它们的ECL性能的理论及应用研究也很多。然而,这些昂贵试剂在分析应用中不断消耗会带来分析成本高、环境污染和实验装置复杂等问题,使它的应用受到限制。因此,此类ECL试剂的固定化研究引起人们的极大关注。在这个背景下,本文开展了如下工作:
     1.依照文献合成了一种多联吡啶钌配合物(bpy)2Ru(phenNH2)(PF6)2,bpy为2,2′-联吡啶, phenNH2为5-氨基-1,10-邻菲罗啉,并用紫外光谱、荧光光谱对其进行了表征。在0.1mol/L TBAPF6,5mmol/L的(bpy)2Ru(phenNH2)(PF6)2乙腈溶液中,使用循环伏安法将该配合物氧化电聚合到了玻碳电极表面。以三丙胺为共反应物,发现在乙腈或水溶液中,其ECL性能均较为稳定。
     2.研究了一种不溶于水的配合物(pq)2Ir(N-phMA)的固相ECL性能,pq为2-苯基喹啉,N-phMA为N-苯基丙烯酰胺。在玻碳电极表面制备了MWNTs/(pq)2Ir(N-phMA)膜,MWNTs/ Ru(bpy)32+膜和(pq)2Ir(N-phMA)膜。在水溶液中,以三丙胺为共反应物,只有MWNTs/(pq)2Ir(N-phMA)膜可以得到稳定的ECL信号。
     3.合成了一种多联吡啶钌配合物(bpy)2Ru(phenCl4)(PF6)2,bpy为2,2′-联吡啶, phenCl4为3,4,7,8-四氯-1,10-邻菲罗啉,并用元素分析、红外光谱、核磁共振谱对其结构进行了表征。此化合物在紫外和可见光区都有吸收,在可见光区的最大吸收波长是440nm,这是典型的金属到配体(MLCT)的跃迁。其光致发光性能也显示出MLCT迁移特征,并且随溶剂不同,其最大发射波长从630nm变化到649nm。值得注意的是,此配合物的电致化学发光性能受pH影响不大,这与传统的随pH增大电致化学发光强度增大的联吡啶钌不同,尤其在强碱条件下,其背景电致化学发光很小。
At present, the ECL of organic transition metal complexes is an active research area, especially the Ru(bpy)32+ ECL has been used extensively immunoassays and DNA analyses. Ortho-metalated complexes of Ir(III) display strong visible absorptions and ground and excited-state redox potentials that, like their Ru(II) counterparts, make them of interest in fundamental and applied ECL. But these techniques have a major drawback is the need to constantly supply the reagent to the site of reaction, increasing both analysis costs and waste generated. Obviously, the immobilization of these reagents on a solid electrode surface can overcome the disadvantage. So this paper investigated the immobilization of some ECL reagent. The main results were given as follows:
     1. A ruthenium complex (bpy)2Ru(phenNH2)(PF6)2 was synthesized according to a method described in the literature, in which bpy is 2,2′-bipyridine, phenNH2 is 5-amino-1,10-phenan throline, then characterized by UV/vis spectroscopic and fluorescence spectroscopic. In 0.1mol/L TBAPF6,5mmol/L (bpy)2Ru(phenNH2)(PF6)2 acetonitrile solution, the complex was oxidative electropolymerized on to the surface of the glass carbon electrode. Then using TPA as coreactant, the steady ECL signals were obtained in both acetonitrile solution and aqueous solution.
     2. The solid-state ECL behavior of a water insoluble bis-cyclometalated (pq)2Ir (N-phMA) complex is presented, in which pq is a 2-phenylquinoline anion and N-phMA is N-phenyl methacrylamide, a monoanionic bidentate ligand. The MWNTs/ (pq)2Ir(N-phMA) film, MWNTs/ Ru(bpy)32+ film and (pq)2Ir(N-phMA) directly modi fied glassy carbon electrode were fabricated, only the MWNTs/(pq)2Ir(N-phMA) film can produce steady ECL in the presence of tri-n-propylamine as a coreactant.
     3. An o-phenanthroline-substituted ruthenium complex, [Rubis(bipyridyl)(3,4,7,8-tetrachr olo-1,10-phenanthroline)](PF6)2, has been synthesized and the structure of the complex was characterized by element analysis, IR spectroscopy and proton NMR spectroscopy. The complex displays absorptions in the UV and visible regions, with visible maximum absorption at 440 nm, a typical metal-to-ligand charge transfer (MLCT) transitions. Photoluminescence emission also has the characteristics of the MLCT transitions with the maxima wavelengths ranged from 630 to 649 nm depending on the different solvents. The ECL of the complex was found to be less dependant on the pH, which was distinctly different from that of the well known ruthenium tris(bipyridine) complex. Furthermore the background ECL signal of the complex did not increase even in a strong alkaline condition.
引文
1. Tokel N. E., Bard A. J., Electrogenerated chemiluminescence.Ⅸ. Electrochemistry and emission from systems containing tris(2,2′-bipyridine)ruthenium(Ⅱ) dichloride [J]. J. Am. Chem. Soc., 1972, 94(8): 2862-2863.
    2. Bard A. J.. Electrogenerated Chemiluminescence; A. J. Bard , Ed.; Marcel Dekker, Inc.: New York, 2005 pp 10.
    3. Richter M. M., Electrochemiluminescence (ECL) [J]. Chem. Rev. 2004, 104: 3003-3036
    4. Pyati R. and Richter M. M., ECL—Electrochemical luminescence [J]. Annu. Rep. Prog. Chem., Sect. C, 2007, 103, 12-78.
    5. Gorman B. A., Francis P. S. and Barnett N. W., Tris(2, 2′-bipyridine)ruthenium chemilumi nescence [J]. Analyst, 2006, 131, 616-639.
    6.易长青,陈曦. Ru(bpy)32+固相电致化学发光研究进展[J].世界科技研究与进展,2004, 26(4): 56-65.
    7.陶颖,林志杰,陈晓梅等.联吡啶钌修饰电极固相电致化学发光[J].化学进展,2008,20(2-3): 362-367.
    8. Wei H., Wang E. K., Solid-state electrochemiluminescence of tris(2, 2′-bipyridine) ruthenium [J] Trends Anal. Chem., in press.
    9. Duford R. T., Nightingale D., Gaddum L. W., Luminescence of Grignard compounds in electric and magnetic fields, and related electrical phenomena [J] J. Am. Chem. Soc., 1972, 49(8): 1858-1864.
    10. Havery N. Luminescence during electrolysis [J]. J. Phys. Chem., 1929, 33(10): 1456-1459
    11. Kuwana T., Epstein B., Seo E., Electrochemical generation of solution luminescence [J]. J. Phys. Chem., 1963, 67(10): 2243-2244.
    12. Zweig A., Metzler G., Maurer A. H., et al., Electrochemiluminescence of ary-substituted isobenzofurans, isoindoles, and related substances [J]. J. Am. Chem. Soc., 1967, 89(16): 4091-4098.
    13. Rubinstein I., Bard A. J., Electrogenerated chemiluminescence. 35. Aqueous ecl systems based on tris(2, 2′-bipyridine)ruthenium(2+) oxalate or organic acids [J]. J. Am. Chem. Soc., 1981, 103(3): 512-516.
    14. Noffsinger J. B., Danielson N. D., Generation of chemiluminescence upon reaction of aliphatic amines with tris(2, 2′-bipyridine)ruthenium(Ⅲ) [J]. Anal. Chem., 1987, 59(6): 865-868.
    15.赵藻藩,周性尧,张悟铭.仪器分析[M].北京:高等教育出版社,1990:170-173.
    16. Xu X. H.,Bard A. J., Immobilization and hybridization of DNA on an aluminum alkanebisphosphonate thin film with electrogenerated chemiluminescent detection [J]. J. Am. Chem. Soc., 1995, 117(9): 2627-2631.
    17. Burstall F. H., Optical activity dependent on co-ordinated bivalent ruthenium [J]. J. Chem. Soc., 1936: 173-175.
    18. Hercules D. M.,Lytle F. E., Chemiluminescence from reduction reactions [J]. J. Am. Chem. Soc., 1966, 88(20): 4745-4746.
    19. Lee W. Y., Tris(2, 2′-bipyridine)ruthenium electrogenerated chemiluminescence in analytical science [J]. Mikrochim. Acta., 1997, 127(1-2): 19-39.
    20. Nonidez W. K., Leyden D. E., Effect of reducing agents of pharmacological importance on chemiluminescence of tris(2, 2′-bipyridine)ruthenium [J]. Anal. Chim. Acta., 1978, 96(2): 401-404.
    21. Karavaev A. D., Kazakov D. V., Tolstikov G. A., et al., Zh. Anal. Khim., 1986, 41(1): 42
    22. Fanhnrich K. A., Pravda M., G. Guilbault G., Recent application of electrogenerated chemiluminescence in chemical analysis [J], Talanta, 2001, 54(4): 531-539.
    23. Leland J. K., Powell M. J., Electrogenerated chemiluminescence: an oxidative reduction type ECL reaction sequence using tripropyl amine [J]. J. Electrochem. Soc. 1990, 137(10): 3127-3131.
    24. Miao, W., Choi, J.-P., Bard, A. J. Electrogenerated chemiluminescence 69: The tris(2, 2′-bipyridine)ruthenium(II), Ru(bpy)32+/Tri-n-propylamine(TPrA) System revisited-A new route involving TPA+. cation radicals [J].J. Am. Chem. Soc. 2002, 124. 14478-14485.
    25. Zu Y., Bard A. J., Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2, 2′-bipyridyl)/tripropylamine system and the effect of halide ions on the emission intensity [J]. Anal. Chem., 2000, 72(14): 3223-3232.
    26. Ala-Kleme T., Kulmala S., Vare L, et al., Hot electron-induced electrogenerated chemiluminescence of chelate at oxide-covered aluminum electrodes [J]. Anal. Chem., 1999, 71(24): 5538-5543.
    27. Blodgett K. B., Langmuir I., Built-up films of barium stearate and their optical properties [J]. Phys. Rev., 1937, 51(11): 964-982.
    28. Zhang X., Bard A. J., Electrogenerated chemiluminescence emission from an organized (L-B) monolayer of a tris(2, 2′-bipyridine)ruthenium based surfactant on semiconductor and metal electrodes [J]. J. Phys. Chem., 1988, 92(20): 5566-5569.
    29. Whitesides G. M., Mathias J. P., Seto C. T.,Molecular self-assembly and nanochemistry. 2. A chemical strategy for the synthesis of nanostructures [J]. Science, 1991, 254(5036):1312-1319.
    30. Obeng Y. S., Bard A. J., Electrogenerated chemiluminescence. 53. Electrochemistry and emission from adsorbed monolayers of a tris(2, 2′-bipyridine) ruthenium based surfactant on gold and thin oxide electrodes [J]. Langmuir, 1991, 7(1): 195-201.
    31. Sherwood T. K., The drying of solids-Ⅲmechanism of the drying of pulp and paper [J]. Ind. Eng. Chem., 1930, 22(2): 132-136.
    32. Dvorak O., DeArmond M. K., Electrode modification by the sol-gel method [J]. J. Phys. Chem., 1993, 97(11): 2646-2648.
    33.董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,1995:310.
    34. Rubinstein I., Bard A. J., Polymer-film on electrodes. 4. Nafion-coated electrodes and electrogenerated chemiluminescence of surface-attached tris(2, 2′-bipyridine) ruthenium [J]. J. Am. Chem. Soc., 1980, 102(21): 6641-6642.
    35. Tudos A. J., Ozinga J. J., Poppe H., et al.,Transport of catechols through perfluorinated cationn-exchange films on electrodes [J]. Anal. Chem., 1990, 62(4): 367-374.
    36. Wang H. Y., Xu G. B., Dong S. J., Electrochemiluminescence sensor using tris(2,
    2′-bipyridine) ruthenium immobilized in Eastman-AQ55d-silica composite thin-films [J], Anal. Chim. Acta., 2003, 480(2): 285-290.
    37. Ding S. N., Xu J. J., Chen H. Y., Tris(2, 2′-bipyridine) ruthenium-zirconia-Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis [J]. Electrophoresis, 2005, 26(9): 1737-1744.
    38. Khramov A. N., Collinson M. M., Electrogenerated chemiluminescence of tris(2, 2′-bipyridine)ruthenium ion-exchanged in nafion-silica composite films [J]. Anal. Chem., 2000, 72(13): 2943-2948.
    39. Xu Z. A., Guo Z. H., Dong S. J., Electrogenerated chemiluminescence bisensor with alcohol dehydrogenase and tris(2, 2′-bipyridine)ruthenium immobilized in sol-gel hybrid material [J]. Biosens. Bioelectron., 2005, 21(3); 455-461.
    40. Guo Z. H., Dong S. J., Electrogenerated chemiluminescence from Ru(bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films [J]. Anal. Chem., 2004, 76(10): 2683-2688.
    41. Ellis C. D., Margerum L. D., Murray R. W., et al. Oxidative Electropolymerization of polypyridyl Complexes of Ruthenium[J]. Inorg.Chem.1983, 22: 1283-1291.
    42.吴宇雄,周尽花,赵鸿斌. 5-硝基-1, 10-邻菲罗啉的合成工艺改进[J].云南化工,2004,31(2):12-13.
    43.周尽花,吴宇雄. 5-硝基-1, 10-邻菲罗啉还原合成5-氨基-1, 10-邻菲罗啉的研究[J].化工技术与开发,2005,34(4): 15-16.
    44. Sullivan B. P., Salmon D. J., Meyer T. J., Mixed phosphine 2, 2′-bipyridine complexes of ruthenium [J]. Inorg.Chem.1978,17(12): 3334-3341.
    45. Bruce D., McCall J. and Richter M. M., Effects of electron withdrawing and donating groups on the efficiency of tris(2,2′-bipyridyl)ruthenium(II)/tri-n-propylamine electro chemiluminescence[J]. Analyst, 2002, 127: 125-128.
    46. Martin J. E., Hart E. J., Adamson A. W., et al., Chemiluminescence from the Reaction of the Hydrated Electron with Tris(bipyridyl)ruthenium(III) [J]. J. Am. Chem. Soc. 1972, 94: 9238-9240.
    47. Kapturkiewicz A., Chen T. M., Laskar I. R., et al. Electrochemiluminescence studies of the cyclometalated iridium(III) complexes with substituted 2-phenylbenzothiazole ligands [J]. Electrochem. Commun., 2004, 6(8): 827-831.
    48.王微洁,符浩,丁玉强等,金属配合物(pq)2Ir(N-phMA)发光材料的合成及光谱性质[J].光谱实验室,已录用.
    49. A. Kapturkiewicz, T. M. Chen, I. R. Laskar, et al. Electrochem. Commun. 2004 (6):827
    50. Shin I. S., Kim J. I., Kwon T. H., et al. Efficient electrogenerated chemiluminescence from bis-cyclometalated iridium(III) complexes with substituted 2-phenylquinoline ligands [J]. J. Phys. Chem. C, 2007, 111(5): 2280-2286.
    51. Guo Z. H., Shen Y., Zhao F., et al., Electrochemical and electrogenerated chemilumin escence of clay nanoparticles/Ru(bpy)32+ multilayer films on ITO electrodes [J]. Analyst, 2004, 129: 657-663.
    52. Guo Z. H., Shen Y.,Wang M. K., et al., Electrochemical and electrogenerated chemilumin escence of SiO2 nanoparticles/tris(bipyridyl)ruthenium multilayer films on indium tin oxide electrodes [J]. Anal. Chem., 2004, 76: 184-191.
    53. Iijima S., Helical microtubules of graphitic carbon [J]. Nature, 1991, 314: 56-58.
    54. Iijima S., T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363: 603-605.
    55. Barnett N. W., Gerardi R. D., Hampson D. L., et al., Some observations on the chemilumi nescent reactions of tris(2,2-bipyridyl)ruthenium(III) with certain papaver somniferum alkaloids and their derivatives [J]. Anal. Commun. 1996, 33, 255-260.
    56. Song Q., Greenway G. M. and McCreedy T., Tris(2,2′-bipyridyl)ruthenium(II) of electro generated chemiluminescence alkaloid type drugs with solid phase extraction sample preparation [J]. Analyst 2001, 126, 37-40.
    57. Kozlov D. V., Tyson D. S., Goze C., et al.,Room temperature phosphore scence from ruthenium(II) complexes bearing conjugated pyrenylethynylene subunits [J]. Inorg. Chem. 2004, 43, 6083-6092.
    58. Rau S, , Fischer R., J?ger M., et al., Regioselective functionalization of tetrabromo phenanthroline-ruthenium complexes [J]. Eur. J. Inorg. Chem. 2004, 2001-2003.
    59. Yamada M., Nakamura Y., Hasegawa T., et al., Oxidative chlorination of 1,10-phenan throline and its derivatives y phosphorus pentachloride in phosphoryl chloride [J]. Bull. Chem. Soc. Jpn. 1992, 65, 2007-2009.
    60. Carleton J. Howard, Kinetic study of the equilibrium HO2 + NO .dblarw. OH + NO2 and the thermochemistry of HO2 [J]. J. Am. Chem. Soc. 1980, 102(23): 6937-6941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700