用户名: 密码: 验证码:
碗状钒酸盐和Lindqvist型钼钨酸盐衍生物氧化还原及非线性光学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多酸(即多金属氧酸盐,简写成POMs或金属氧簇,Metal-Oxogen Cluster)是一类由d0构型的前过渡金属离子通过氧连接而成的多核配合物,主要的结构单元{MO4}四面体和{MO6}八面体通过共边、共角或共面构筑不同功能和结构多酸阴离子。由于它们的稳定性以及优异的化学、物理和生物特性,被广泛应用于光、电、磁、催化、生物和医药等各个领域。多酸已经进入分子剪裁和组装阶段,对分子材料在分子水平上进行设计,期望合成具有光、电、磁等多种物理性质的多酸复合物,并开始对亚稳态和变价化合物以及超分子化合物进行研究。由于现有的表征手段尚无法满足研究的进一步要求,人们开始借助于量子化学手段在微观水平上探讨其结构和性质之间的关系。计算机技术的发展促使量子化学计算作为一种理论研究方法进入多酸化学领域。早期人们尝试用ab initio Hartree–Fock (HF)方法在研究多金属氧酸盐的结构及电子性质方面取得了一些成果。随着研究的不断深入,多酸及其衍生物的电子性质、氧化还原、催化、光学等性质可以指导和预测实验合成及材料制备,因此备受关注。
     本论文采用量子化学计算方法探讨了一系列有机取代四核钒酸盐和Linqvist型多酸衍生物的氧化还原性质及非线性光学性质。研究工作主要包括以下四个方面: 1.采用密度泛函理论对四核内嵌钒氧酸盐体系的极化作用和氧化还原客体开关性质进行研究。结果表明钒酸盐碗状结构可以束缚不同的客体阴离子。主体具有大的极化率,可以将束缚在碗内的客体阴离子极化,并使电子从客体转移到主体碗状结构。不同客体离子的引入可以产生不同的氧化还原电位,这种特性使这种四核钒酸盐的主客体化合物有望成为基于不同客体离子的氧化还原开关。
     2.采用DFT方法对不同有机胺取代的Lindqvist型钼酸盐的氧化还原性质和二阶非线性光学响应进行研究。研究发现有机共轭基团的引入较非共轭基团来讲对体系的氧化还原性质和β值影响更大。共轭电子供体基团的数目,也就是有机片段与无机多酸阴离子之间的净供电荷的能力对体系的氧化还原电位影响很大,能够使电位大幅度负移,而相比之下,有机共轭链长的增加可以明显提高体系的二阶非线性光学响应。
     3.理论表征了基于多酸片段的可逆氧化还原过渡金属中心的2-D偶极的NLO活性的邻二氮杂菲-多酸化合物。这类化合物沿着y轴的非对角张量βzyy很大,较大的各向异性值证实了它们具有较好的2-D特性。值得注意的是,电子添加到多酸受体的高价金属Mo上使还原态体系的NLO响应得到巨大提高,由于Ni原子的引入使还原态化合物的二阶NLO响应比氧化态化合物的NLO值提高近1019倍。因此,这些化合物的NLO活性可以通过氧化还原活性的杂化邻二氮杂菲-多酸化合物中过渡金属MoVI/V氧化还原电对来进行有效的可逆调控,并且有望成为非线性光学响应的可逆氧化还原开关材料,可以广泛应用在光电子领域上。
     4.通过比较含Ti的芳醇取代的杂化单-和双-TiW_5O_(18)衍生物与纯无机多酸化合物的氧化还原性质和电子光谱性质,发现有机共轭芳醇基团的引入削弱了体系的Ti-Oc键,并修饰了HOMO轨道布局,较纯无机的多酸化合物有更活性的氧化还原性质,且Ti原子更趋向于作为活性的氧化还原中心。双-TiW_5O_(18)衍生物比单-TiW_5O_(18)衍生物的能隙更小,氧化还原性质更活泼。有机共轭基团的引入使体系的低能电子跃迁发生明显红移,电子从有机π共轭供体转移到多酸框架中的d-Ti轨道和部分Oc轨道。含Ti的芳醇取代的杂化化合物通过Ti-O-C键提供一种简便的连接方式将多酸化合物嫁接到二氧化硅表面,从而显示比纯无机多酸化合物更好的催化性能。
Polyoxometalates (POMs or metal-oxygen clusters) are a rich family of polynuclear compounds which are made up of early transitional metals with d0 electron configuration linked by oxygen atoms, and their significant units {MO4} and {MO6} can build kinds of polyanions with different function and structure by edge-shared, angle-shared or face-shared approach. POMs has promised dramatic applications in many areas including optics, electrics, magnetics, catalysis, biology and medicine due to their thermostability and novel chemical, physical and biological properties. Recently, the synthesis of POMs has come into the molecular assembling which can be designed at the molecular level to synthesize POM complexes with optical, electrical and magnetical properties. Moreover, the investigation tends to focus on the compounds with metastability and variable valence with supermolecules instead of oxidated species. The futher research has been prohibited due to the present deficient characterization appoarch, so the quantumn chemistry calculation as a theoretical method has been introduced into the field of POMs and investigated the structure-property relationship at the micro-level. In early time, the ab initio Hartree–Fock (HF) approximation presented reasonable achievment for studying the structural and electronic properties of POMs. Moreover, the electronic, redox, catalytic and optical properties of the POM derivatives which can guide synthesis and material preparation have attracted more attention. In this thesis, quantum chemistry calculations have been performed to investigate redox properties and second-order nonlinear optical (NLO) response for a series of organic-inorganic hybrid tetranuclear endohedral vanadate and Lindqvist-type POM derivatives. The present work has been focused on the following four aspects:
     1. Density Functional Theory (DFT) calculations were carried out to investigate the polarization and redox-switching properties of tetranuclear endohedral vanadate. It indicated that the bowl-shaped vanadate with large polarizability can attach different guest anions, and polarize them to evoke electron transition originated from the guest to the host bowl. The introduction of different guest anions can generate distinct redox potentials, which enables the host-guest vanadate to be promisng redox-swicthing materials based on various guest anoins.
     2. The redox property and second-order NLO response for organoimido derivatives of Lindqvist-type molybdate has been investigated by DFT method. It was indicated that organic conjugated groups were much more sensitive to the redox property and nonlinear optical response than non–conjugated ones. The increment of organic conjugated group, that is the greater net charge donation between organic segment and inorganic polyanion cluster, drove the first reduction potential dramatically negative. In contrast, the lengthening of conjugated chain resulted in remarkable improvement on second-order nonlinear optical response than in reduction potentials.
     3. DFT method has been performed to character the family of 2-D dipolar NLO phenanthroline-POMs based on redox-switchable transition metal centers in POM segment. It is therefore apparent that the electron transition in phenanthroline-POMs exhibits largeβzyy tensor along y-axis to confirm better 2-D character with sizable anisotropy values. Interestingly, the addition of electrons into high-valence metal Mo in POM acceptor evokes dramatic enhancement in NLO response for reduction state by contrast with that for corresponding oxidation state, and compound IIared exhibits nearly 1019 times in second-order NLO response as much as compound IIa owing to the addition of the Ni atom. Therefore, the NLO activity of such compounds can be reversibly and effectively switched via the transition metal MoVI/V redox couple in hybrid redox-active phenanthroline-POMs, and these compounds have turned out to be very promising candidates for redox-switching NLO application and novel optoelectronic applications.
引文
[1] Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines[J]. Angew Chem Int Ed Engl, 1991, 30(1): 34-48.
    [2] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry[M]. Beijing: Chemical Industrial Publishing Company, 1998: 4-20.
    [3] Pope M T. Heteropoly and Isopoly Oxometalates[M]. Berlin: Springer-Verlag, 1983: 1-10.
    [4] Berzelius J. The preparation of the phosphomolybdate ion [PMo12O40]3-[J]. Pogg Ann, 1826, 6: 369-380.
    [5] Struve H. Ueber verschiedene Doppelsalze der Molybd?ns?ure und Wolframs?ure[J]. J Prakt Chem, 1854, 61(1): 449-470.
    [6] Marignac C. Ann Chim Phys, 1864, 3: 1.
    [7] Rosenheim A, Jaenicke H. Zur kenntnis der iso-und heteropolys?uren. XV. Mitteilun. kritische untersuchungenüber die konstitution der heteropolys?uren[J]. Z Anorg Chem, 1917, 100(1): 304-354.
    [8] Keggin J F. The structure and formula of 12-Phosphotungstic acid[J]. Proc R Soc, 1934, 144A: 75-79.
    [9] Himeno S, Murata S, Eda K. A route to a Keggin-Typeα-[(XIIIO4)Mo12O35(OH)]4- anion through an Anderson-type [XIII(OH)6Mo6O_(18)]3- anion: X = Ga[J]. Dalton Trans, 2009, (31): 6114–6119.
    [10] Hall R D. Combinations of the sesquioxides with the acid molybdates[J]. J Am Chem Soc, 1907, 29(5): 692-714.
    [11] Lindqvist I. Arkiv Kemi, 1952, 5: 247.
    [12] Xu Y, Zhu D R, Cai H, et al. [MoV2MoVI6VIV8O40(PO4)]5–: the first polyanion with a tetra-capped Keggin structure[J]. Chem Commum, 1999, (9): 787-788.
    [13] Yang W B, Lu C Z, Zhan X P, et al. Hydrothermal Synthesis of the First Vanadomolybdenum Polyoxocation with a“Metal-Bonded”Spherical Framework[J]. Inorg Chem, 2002, 41(18): 4621-4623.
    [14] Yuan M, Li Y G, Wang E B, et al. Modified polyoxometalates: hydrothermal syntheses and crystal structures of three novel reduced and capped Keggin derivatives decorated by transition metal complexes[J]. Inorg Chem, 2003, 42(11): 3670-3676.
    [15]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社, 1998, 4.
    [16] (a) Kwen H, Tomlinson S, Maatta E A, et al. Functionalized heteropolyanions: high-valent metal nitrido fragments incorporated into a Keggin polyoxometalate structure[J]. Chem Commun, 2002, (24): 2970-2971. (b) Dablemont C, Hamaker C G, Thouvenot R, et al. Functionalization of Heteropolyanions-Osmium and Rhenium Nitrido Derivatives of Keggin- and Dawson-Type Polyoxotungstates: Synthesis, Characterization and Multinuclear (183W, 15N) NMR, EPR, IR, andUV/Vis Fingerprints[J]. Chem Eur J, 2006, 12(36): 9150-9160. (c) Izzet G, Ishow E, Delaire J, et al. Photochemical Activation of an Azido Manganese-Monosubstituted Keggin Polyoxometalate: On the Road to a Mn(V)?Nitrido Derivative[J]. Inorg Chem, 2009, 48(24): 11865–11870.
    [17] Pohlmann H, Lettmann B, Krebs B. Z Kristallogr, 1989, 186: 233.
    [18] (a) Mayer C R, Fournier I, Thouvenot R. Bis- and Tetrakis(organosilyl) Decatungstosilicate, [γ-SiW_(10)O_(36)(RSi)2O]4- and [γ-SiW_(10)O_(36)(RSiO)4]4-: Synthesis and Structural Determination by Multinuclear NMR Spectroscopy and Matrix-Assisted Laser Desorption/Desorption Time-of-Flight Mass Spectrometry[J]. Chem Eur J, 2000, 6(1): 105-110. (b) Mayer C R, Neveu S, Cabuil V. A Nanoscale Hybrid System Based on Gold Nanoparticles and Heteropolyanions[J]. Angew Chem Int Ed, 2002, 41(3): 501-503. (c) Agustin D, Dallery J, Coelho C, et al. Synthesis, characterization and study of the chromogenic properties of the hybrid polyoxometalates [PW_(11)O_(39)(SiR)2O]3? (R = Et, (CH_2)nCH=CH_2 (n = 0, 1, 4), CH_2CH_2SiEt3, CH_2CH_2SiMe_2Ph)[J]. J Organomet Chem, 2007, 692(4): 746-754. (d) Duffort V, Thouvenot R, Afonso C, et al. Straightforward synthesis of new polyoxometalate-based hybrids exemplified by the covalent bonding of a polypyridyl ligand[J]. Chem Commun, 2009, (40): 6062–6064.
    [19] Li J, Huth I, Chamoreau L-M, et al. Insertion of Amides into a Polyoxometalate[J]. Angew Chem, 2009, 121(11): 2069-2072.
    [20] Bareyt S, Piligkos S, Hasenknopf B, et al. Efficient Preparation of Functionalized Hybrid Organic-Inorganic Wells-Dawson-type Polyoxotungstates[J]. J Am Chem Soc, 2005, 127(18): 6788-6794.
    [21] Bar-Nahum I, Ettedgui J, Konstantinovski L, et al. A New Method for the Synthesis of Organopolyoxometalate Hybrid Compounds[J]. Inorg Chem, 2007, 46(14): 5798-5804.
    [22] (a)Reinoso S, Fernando Piedra-Garza L, Dickman M H, et al. Trilacunary A-β-Keggin tungstogermanates and -silicates functionalized with phenyltin(IV) electrophiles[J]. Dalton Trans, 2010, 39(1): 248–255. (b) Bi L H, Kortz U, Dickman M H, et al. Trilacunary Heteropolytungstates Functionalized by Organometallic Ruthenium(II), [(RuC6H6)2XW9O34]6- (X = Si, Ge)[J]. Inorg Chem, 2005, 44(21): 7485-7493.
    [23] Bi L H, Hou G F, Li B, et al. Synthesis and crystal structure of pseudo-sandwich-type heteropolytungstates functionalized by organometallic ruthenium(II)[J]. Dalton Trans, 2009, (32): 6345–6353.
    [24] Kang H, Zubieta J. Co-ordination complexes of polyoxomolybdates with a hexanuclear core: synthesis and structural characterization of (NBun4)2[Mo6O_(18)(NNMePh)][J]. J Chem Soc Chem Commun, 1988, (17): 1192-1193.
    [25] Du Y, Rheingold A L, Maatta E A. A polyoxometalate incorporating an organoimido ligand: preparation and structure of [Mo5O_(18)(MoNC6H4CH3)]2-[J]. J Am Chem Soc, 1992, 114(1): 345-346.
    [26] Stark J L, Young V G, Maatta E A. A functionalized polyoxometalate bearing a ferrocenylimido ligand: preparation and structure of [(FcN)Mo6O_(18)]2-[J]. Angew Chem Int Ed Engl, 1995, 34(22):2547-2548.
    [27] Clegg W, Errington R J, Fraser K A, et al. Diastereoselective reductions ofβ-substituted-γ-keto sulfoximines and a novel palladium(0)-catalysed allylic sulfoximine to allylic sulfinamide rearrangement[J]. J Chem Soc Chem Commun, 1995, (4): 455-456.
    [28] Strong J B, Ostrander R, Rheingold A L, et al. Ensheathing a polyoxometalate: convenient systematic introduction of organoimido ligands at terminal oxo sites in [Mo6O19]2-[J]. J Am Chem Soc, 1994, 116(8): 3601-3602.
    [29] Wei Y G, Xu B B, Barnes C L, et al. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates[J]. J Am Chem Soc, 2001, 123(17): 4083-4084.
    [30] (a) Lu M, Wei Y G, Xu B B, et al. Hybrid molecular dumbbells: Bridging polyoxometalate clusters with an organic-π-conjugated rod[J]. Angew Chem Int Ed, 2002, 41(9): 1566-1568. (b) Zhu Y, Wang L S, Hao J, et al. Synthetic, Structural, Spectroscopic, Electrochemical Studies and Self-assembly of Nanoscale Polyoxometalate-Organic Hybrid Molecular Dumbbells[J]. Cryst Growth Des, 2009, 9(8): 3509–3518.
    [31] Xia Y, Wu P F, Wei Y G, et al. Synthesis, Crystal Structure, and Optical Properties of a Polyoxometalate-Based Inorganic?Organic Hybrid Solid, (n-Bu4N)2[Mo6O17(≡NAr)2] (Ar=o-CH3OC6H4)[J]. Cryst Growth Des, 2006, 6(1): 253-257.
    [32] Hao J, Xia Y, Wang L S, et al. Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands[J]. Angew Chem Int Ed, 2008, 47(14): 2626-2630.
    [33] Kortz U, Savelieff M G, Ghali F Y A, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV functionalized by amino acids[J]. Angew Chem Int Ed, 2002, 41(21): 4070-4073.
    [34] Shivaiah V, Nagaraju M, Das S K. Formation of a Spiral-Shaped Inorganic-Organic Hybrid Chain, [CuII(2,2-bipy)(H_2O)2Al(OH)6Mo6O_(18)]nn-: Influence of Intra- and Interchain Supramolecular Interactions[J]. Inorg Chem, 2003, 42(21): 6604-6606.
    [35] Wang X L, Qin C, Wang E B, et al. Self-Assembly of Nanometer-Scale [Cu24I10L12]14+ Cages and Ball-Shaped Keggin Clusters into a(4,12)-Connected 3D Framework with Photoluminescent and Electrochemical Properties[J]. Angew Chem Int Ed, 2006, 45(44): 7411-7414.
    [36] Liu C M, Zhang D Q, Xiong M, et al. A novel two-dimensional mixed molybdenum–vanadium polyoxometalate with two types of cobalt(II) complex fragments as bridges[J]. Chem Commun, 2002, (13): 1416–1417.
    [37] Liu H, Qin C, Wei Y G, et al. Copper-Complex-Linked Polytungsto-Bismuthate (-Antimonite) Chain Containing Sandwich Cu(II) Ions Partially Modified with Imidazole Ligand[J]. Inorg Chem, 2008, 47(10): 4166-4172.
    [38] An H Y, Xiao D R, Wang E B, et al. A series of new polyoxoanion-based inorganic-organic hybrids: (C6NO2H5)[(H_2O)4(C6NO2H5)Ln(CrMo6H6O24)]·4H_2O (Ln = Ce, Pr, La and Nd) with a chiral layer structure[J]. New J Chem, 2005, 29(5): 667–672.
    [39] Galán-Mascarós J R, Giménez-Saiz C, Triki S, et al. A Novel Chainlike Heteropolyanion Formed byKeggin Units: Synthesis and Structure of (ET)8n[PMnW_(11)O_(39)]n·2nH_2O[J]. Angew Chem Int Ed, 1995, 34(13): 1460-1462.
    [40] Evans Jun H T, Weakley T J R, Jameson G B. Crystal structures of [NEt3H]5[XCoIIW_(11)O_(39)]·3H_2O (X = P or As)[J]. J Chem Soc Dalton Trans, 1996, (12): 2537–2540.
    [41] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew Chem Int Ed, 2004, 43(18): 2334–2375.
    [42] Jiang C. J, Lesbani A, Kawamoto Ryosuke, et al. Channel-Selective Independent Sorption and Collection of Hydrophilic and Hydrophobic Molecules by Cs2[Cr3O(OOCC2H5)6(H_2O)3]2[α-SiW12O40] Ionic Crystal[J]. J Am Chem Soc, 2006, 128(44): 14240-14241.
    [43] Wang X L, Guo Y Q, Li Y G, et al. Novel Polyoxometalate-Templated, 3-D Supramolecular Networks Based on Lanthanide Dimers: Synthesis, Structure, and Fluorescent Properties of [Ln2(DNBA)4(DMF)8][Mo6O19] (DNBA) 3,5-Dinitrobenzoate[J]. Inorg Chem, 2003, 42(13): 4135-4140.
    [44] Fan L L, Xiao D R, Wang E B, et al. An Unprecedented Fivefold Interpenetrating Network Based on Polyoxometalate Building Blocks[J]. Cryst Growth Des, 2007, 7(4): 592-594.
    [45] Wang X L, Qin C, Wang E B, et al. An unusual polyoxometalate-encapsulating 3D polyrotaxane framework formed by molecular squares threading on a twofold interpenetrated diamondoid skeleton[J]. Chem Commun, 2007, (41): 4245– 4247.
    [46] Zheng S T, Yang G Y. The first polyoxometalate-templated four-fold interpenetrated coordination polymer with new topology and ferroelectricity[J]. Dalton Trans, 2010, 39(3): 700–703.
    [47] Kortz U, Savelieff M G., Bassil B S, et al. A Large, Novel Polyoxotungstate: [AsW65O217(H_2O)7]26-[J]. Angew Chem Int Ed, 2001, 40(8): 3384-3386.
    [48] Müller A, Polarz S, Das S K, et al.“Open and Shut”for guests in molybdenum-oxide-based giant spheres, baskets, and rings containing the pentagon as a common structural element[J]. Angew Chem Int Ed, 1999, 38(21): 3241-3245.
    [49] Müller A, Krickemeyer E, Meyer J, et al. [Mo154(NO)14O420(OH)28(H_2O)70](25±5)-: a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000[J]. Angew Chem Int Ed Engl, 1995, 34(19): 2122-2124.
    [50] Müller A, Shah S Q N, B?gge H, et al. Molecular growth from a Mo176 to a Mo248 cluster[J]. Nature, 1999, 397(6714): 48-50.
    [51] Müller A, Beckmann E, B?gge H, et al. Inorganic chemistry goes protein size: a MO_(36)8 nano-hedgehog initiating nanochemistry by symmetry breaking[J]. Angew Chem Int Ed, 2002, 41(7): 1162-1167.
    [52] Wilson E F, Abbas H, Duncombe B J, et al. Probing the Self-Assembly of Inorganic Cluster Architectures in Solution with Cryospray Mass Spectrometry: Growth of Polyoxomolybdate Clusters and Polymers Mediated by Silver(I) Ions[J]. J Am Chem Soc, 2008, 130(42): 13876–13884.
    [53] Müller A, Rohlfing R, D?ring J, et al. Formation of a cluster sheath around a central cluster by a self-organization process: the mixed valence polyoxovanadate [V34O82]10-[J]. Angew Chem Int EdEngl, 1991, 30(5): 588-590.
    [54] Kurata T, Uehara A, Hayashi Y, et al. Cyclic Polyvanadates Incorporating Template Transition Metal Cationic Species: Synthesis and Structures of Hexavanadate [PdV6O_(18)]4-, Octavanadate [Cu2V8O24]4-, and Decavanadate [Ni4V10O30(OH)2(H_2O)6]4-[J]. Inorg Chem, 2005, 44(7): 2524-2530.
    [55] Inoue M, Yamase T. Synthesis and Crystal Structures ofγ-Type Octamolybdates Coordinated by Chiral Lysines[J]. Bull Chem Soc Jpn, 1995, 68(11): 3055-3063.
    [56] Inoue M, Yamase T. Crystal Structure of the Pentamolybdate Complex Coordinated by Adenosine-5′-monophosphoric Acid[J]. Bull Chem Soc Jpn, 1996, 69(10): 2863-2868.
    [57] Kortz U, Sacelieff M G, Abou Ghali F Y, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV Functionalized by Amino Acids [J]. Angew Chem Int Ed, 2002, 41(21): 4070-4073.
    [58] Lu M, Kang J, Wang D, et al. Enantiopure 1,1-Binaphthyl-Based Polyoxometalate-Containing Molecular Hybrids[J]. Inorg Chem, 2005, 44(22): 7711-7713.
    [59] Fang X K, Anderson T M, Hill C L. Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters[J]. Angew Chem Int Ed, 2005, 44(23): 3540-3544.
    [60] Fang X K, Anderson T M, Hou Y, et al. Stereoisomerism in polyoxometalates: structural and spectroscopic studies of bis(malate)-functionalized cluster systems[J]. Chem Commun, 2005, (40): 5044-5047.
    [61] An H Y, Wang E B, Xiao D R, et al. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper-Amino Acid Complexes[J]. Angew Chem Int Ed, 2006, 45(6): 904-908.
    [62] Builtin chirality. Nature Materials, 2006, 5: 165-165.
    [63] Soghomonian V, Chen Q, Haushalter R C, et al. An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)2NH_2]K4[V10O10(H_2O)2(OH)4(PO4)7]·4H_2O[J]. Science, 1993, 259: 1596-1599.
    [64] Shi Z, Feng S H, Gao S, et al. Inorganic-Organic Hybrid Materials Constructed from [(VO2)(HPO4)]∞Helical Chains and [M(4,4′-bpy)2]2+ (M=Co, Ni) Fragments[J]. Angew Chem Int Ed, 2000, 39(13): 2325-2327.
    [65] Lan Y Q, Li S L, Wang X L, et al. Spontaneous Resolution of Chiral Polyoxometalate-Based Compounds Consisting of 3D Chiral Inorganic Skeletons Assembled from Different Helical Units[J]. Chem Eur J, 2008, 14(32): 9999–10006.
    [66] Lan Y, Mao B D, Wang E B, et al. In-situ fabrication of hybrid polyoxometalate nanoparticles composite films[J]. Thin Solid Films, 2007, 515(7-8): 3397-3401.
    [67] Caruso F, Caruso R A, M?hwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998, 282: 1111-1114.
    [68] Green M, Harries J, Wakefield, G, et al. The Synthesis of Silica Nanospheres Doped with Polyoxometalates[J]. J Am Chem Soc, 2005, 127(37): 12812-12813.
    [69] Liu T B, Diemann E, Li H L, et al. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles[J]. Nature, 2003, 426: 59-62.
    [70] Kang Z H, Wang E B, Mao B D, et al. Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process[J]. J Am Chem Soc, 2005, 127(18): 6534-6535.
    [71] (a) Geletii Y V, Botar B, K?gerler P, et al. An All-Inorganic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation[J]. Angew Chem Int Ed, 2008, 47(21): 3896-3899. (b) Süss-Fink G. Water Oxidation: A Robust All-Inorganic Catalyst[J]. Angew Chem Int Ed, 2008, 47(32): 5888-5890.
    [72] Li G X, Gu Y L, Ding Y, et al. Wells–Dawson type molybdovanadophosphoric heteropolyacids catalyzed Prins cyclization of alkenes with paraformaldehyde under mild conditions-a facile and efficient method to 1,3-dioxane derivatives[J]. J Mol Catal A Chem, 2004, 218(2): 147-152.
    [73] Li G X, Wang B, Wang J M, et al. Efficient and highly-selective cycloaddition of epoxides with carbonyl compound over Wells–Dawson type heteropolyacids[J]. J Mol Catal A Chem, 2005, 236(1-2): 72-76.
    [74] Inumaru K, Ishihara T, Kamiya Y, et al. Water-Tolerant, Highly Active Solid Acid Catalysts Composed of the Keggin-Type Polyoxometalate H3PW12O40 Immobilized in Hydrophobic Nanospaces of Organomodified Mesoporous Silica[J]. Angew Chem Int Ed, 2007, 46(40): 7625-7627.
    [75] Raynaud M, Chermann J C, Plata F, et al. Viral inhibitors of murine leukemia-sarcoma group. Tungstosilicate[J]. C R Acad Sci Ser D, 1971, 272: 347-348.
    [76] Jasmin C, Raybaud N, Chermann J C, et al. Biomed, 1973, 18: 319-327.
    [77]王恩波,李泽琳,韩正波等.稀土杂多酸盐(蓝)类抗艾滋病药物以及制备方法:中国,CN1502339.2004.
    [78]李娟.新型多金属氧酸盐的合成、表征及抗病毒药物研究.长春:东北师范大学,博士学位论文,2004.
    [79]浦昀.新型多金属氧酸盐抗甲型流感病毒药理学研究.长春:吉林大学,硕士学位论文,2005.
    [80] Moffat J B. A comparison of the catalytic and structural properties of heteropoly componds: semi-empirical calculations[J]. J Mol Catal, 1984, 26(3): 385-398.
    [81] López X, Bo C, Poblet J M. DFT study on the five isomers of PW12O403-: Relative stabilization upon reduction[J]. Inorg Chem, 2004, 43(22): 6863-6865.
    [82] Hirao H, Kumar D, Chen H, et al. The electronic structure of reduced phosphovanadomolybdates and the implications on their use in catalytic oxidation initiated by electron transfer[J]. J Phys Chem C, 2007, 111(21): 7711-7719.
    [83] Baffert C, Boas J F, Bond A M, et al. Experimental and theoretical investigations of the sulfite-based polyoxometalate cluster redox series:α- andβ-[MO_(18)O54(SO3)2]4-/5-/6-[J]. Chem Eur J, 2006, 12(33): 8472-8483.
    [84] Yan L K, Su Z M, Guan W et al. Why does disubstituted hexamolybdate with arylimido prefer to form an orthogonal derivative? Analysis of stability, bonding character, and electronic properties onmolybdate derivatives by density functional theory (DFT) study[J]. J Phys Chem B, 2004, 108(45): 17337-17343.
    [85] Romo S, Fernández J A, Maestre J M, et al. Density functional theory and ab initio study of electronic and electrochemistry properties of the tetranuclear sandwich complex [FeIII4(H_2O)2(PW9O34)2]6–[J]. Inorg Chem, 2007, 46(10): 4022-4027.
    [86] Yan L K, Dou Z, Guan W, et al. A DFT study on the electronic and redox properties of [PW_(11)O_(39)(ReN)]n– (n = 3, 4, 5) and [PW_(11)O_(39)(OsN)]2–[J]. Eur J Inorg Chem, 2006, 2006(24): 5126-5129.
    [87] Guan W, Yang G C, Liu C G, et al. Reversible redox-switchable second-order optical nonlinearity in polyoxometalate: A quantum chemical study of [PW_(11)O_(39)(ReN)]n- (n = 3-7)[J]. Inorg Chem, 2008, 47(12): 5245-5252.、
    [88] Romo S, Antonova N S, CarbóJ J, et al. Influence of polyoxometalate ligands on the nature of high-valent transition metal nitrido species. A theoretical analysis of experimentally known and unprecedented compounds[J]. Dalton Trans, 2008, (38): 5166-5172.
    [89] Suaud N, Clemente-Juan J M, Coronado E, et al. Electron delocalization and electrostatic repulsion at the origin of the strong spin coupling in mixed-valence Keggin polyoxometalates: Ab initio calculations of the one- and two-electron processes[J]. Chem Eur J, 2004, 10(16): 4041-4053.
    [90] Fang L, Guan W, Yan L K, et al. Density functional study of magnetic exchange of dinuclear manganese complexes with the heteropolymolyanion:[MnII2(Xn+Mo9O33)2]2(n?10)? (X = PV, AsV, SeVI)[J]. Sci China Ser B, 2008, 51(12): 1174-1181.
    [91] Gracia J, Poblet J M, Autschbach J, et al. Density-functional calculation of the 183W and 17O NMR chemical shifts for large polyoxotungstates[J]. Eur J Inorg Chem, 2006, 2006(6): 1139-1148.
    [92] Kempf J Y, Rohmer M M, Poblet J M, et al. Relative basicities of the oxygen sites in [V10O28]6-. An analysis of the ab initio determined distributions of the electrostatic potential and of the Laplacian of charge density[J]. J Am Chem Soc, 1992, 114(4): 1136-1146.
    [93] Guan W, Yan L K, Su Z M, et al. Electronic properties and stability of dititaniumIV substitutedα-Keggin polyoxotungstate with heteroatom phosphorus by DFT[J]. Inorg Chem, 2005, 44(1): 100-107.
    [94] Guan W, Yan L K, Su Z M, et al. Density functional study of protonation sites ofα-Keggin isopolyanions[J]. Int J Quantum Chem, 2006, 106(8): 1860-1864.
    [95] Sartorel A, Carraro M, Bagno A, et al. H_2O2 activation by heteropolyacids with defect structures: The case ofγ-[(XO4)W_(10)O32]n- (X = Si, Ge, n = 8; X = P, n = 7)[J]. J Phys Org Chem, 2008, 21(7-8): 596-602.
    [96] Khenkin A M, Kumar D, Shaik S, et al. Characterization of manganese(V)-oxo polyoxometalate intermediates and their properties in oxygen-transfer reactions[J]. J Am Chem Soc, 2006, 128(48): 15451-15460.
    [97] Lahootun V, Besson C, Villanneau R, et al. Synthesis and characterization of the Keggin-typeruthenium-nitrido derivative [PW_(11)O_(39){RuN}]4- and evidence of its electrophilic reactivity[J]. J Am Chem Soc, 2007, 129(22): 7127-7135.
    [98] Kuznetsov A E, Geletii Y V, Hill C L, et al. Dioxygen and Water Activation Processes on Multi-Ru-Substituted Polyoxometalates: Comparison with the“Blue-Dimer”Water Oxidation Catalyst[J]. J Am Chem Soc, 2009, 131(19): 6844–6854.
    [99] Qui?onero D, Kaledin A L, Kuznetsov A E, et al. Computational Studies of the Geometry and Electronic Structure of an All-Inorganic and Homogeneous Tetra-Ru-Polyoxotungstate Catalyst for Water Oxidation and Its Four Subsequent One-Electron Oxidized Forms[J]. J Phys Chem A, 2010, 114(1): 535-542.
    [100] (a) Yan L K, Yang G C, Guan W, et al. Density Functional Theory Study on the First Hyperpolarizabilities of Organoimido Derivatives of Hexamolybdates[J]. J Phys Chem B, 2005, 109(47): 22332-22336. (b) Yan L K, Jin M S, Zhuang J, et al. Theoretical Study on the Considerable Second-Order Nonlinear Optical Properties of Naphthylimido-Substituted Hexamolybdates[J]. J Phys Chem A, 2008, 112(40): 9919–9923. (c) Janjua M R S A, Liu C G, Guan W, et al. Prediction of Remarkably Large Second-Order Nonlinear Optical Properties of Organoimido-Substituted Hexamolybdates[J]. J Phys Chem A, 2009, 113(15): 3576–3587.
    [101] Guan W, Yang G C, Yan L K, et al. Prediction of Second-Order Optical Nonlinearity of Trisorganotin-Substitutedβ-Keggin Polyoxotungstate[J]. Inorg Chem, 2006, 45(19): 7864-7868.
    [102] Liu C G, Guan W, Yan L K, et al. Second-Order Nonlinear Optical Properties of Transition-Metal-Trisubstituted Polyoxometalate-Diphosphate Complexes: A Donor-Conjugated Bridge-Acceptor Paradigm for Totally Inorganic Nonlinear Optical Materials[J]. J Phys Chem C, 2009, 113(45): 19672–19676.
    [1] Born M, Oppenheimer J R. Zur quantentheorie der molekeln[J]. Ann Physik, 1927, 84(20): 457-484.
    [2] Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. New York: Oxford University Press, 1954.
    [3] Hartree D R. Calculations of Atomic Structure[M]. Wiley, 1957.
    [4] Schr?dinger E. An introductory theory of the mechanics of atoms and molecules[J]. Phys Rev, 1926, 28(6): 1049-1070.
    [5] Roothaan C C J. New developments in molecular orbital theory[J]. Rev Mod Phy, 1951, 23(2): 69-89.
    [6] Hoffmann R. An extended Hückel theory I. Hydrocarbons[J]. J Chem Phys, 1963, 39: 1397-1412.
    [7] Pople J A, Santry D P, Segal G A. Approximate self-consistent molecular orbital theory. i. invariant procedures[J]. J Chem Phys, 1965, 43(10): S129-S135.
    [8] Pope J A, Segal G A. Approximate self-consistent molecular orbital theory. I. Calculations with complete neglect of differential overlap approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap[J]. J Chem Phys, 1965, 43(10): S136-S151.
    [9] Pople J A, Beveridge D L.近似分子轨道理论方法[M].江元生译.北京:科学出版社, 1976.
    [10] Ridley J E, Zerner M C. Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines[J]. Theoret Chim Acta, 1976, 42: 223-236.
    [11] Dewar M J S, Zoebisch E G, Healy E F, et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model [J]. J Am Chem Soc, 1985, 107(13): 3902-3909.
    [12] Stewart J J P. Optimization of parameters for semiempirical methods I. Method[J]. J Comput Chem, 1989, 10(2): 209-220.
    [13] Dewar M J S, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters[J]. J Am Chem Soc, 1977, 99(15): 4899-4907.
    [14] Hong G Y, Lin X J, Li L M, et al. Linkage isomerism and the relativistic effect in interaction of lanthanoid and carbon monoxide[J]. J Phys Chem A, 1997, 101(49): 9314-9317.
    [15] Lu H G, Li L M. Density functional study on zerovalent lanthanide bis(arene)-sandwich complexes[J]. Theor Chem Acc, 1999, 102(1-6): 121-126.
    [16] Roy A K, Singh R, Deb B M. Density functional calculations on triply excited states of lithium isoelectronic sequence[J]. Int J Quantum Chem, 1997, 65(4): 317-332.
    [17] Raghavachari K, Pople J A, Replogle E S, et al. Fifth-Order moller-plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth-order[J]. J Phys Chem, 1990, 94(14): 5579-5586.
    [18] Deng L, Branchadell V, Ziegler T. Potential energy surfaces of the gas-phase SN2 reactions X- + CH3X =XCH3 + X-(X=F, Cl, Br, I): A comparative study by density functional theory and ab initio methods[J]. J Am Chem Soc, 1994, 116(23): 10645-10656.
    [19] Foresman J B, Head-Gordon M, Pople J A, et al. Toward a systematic molecular orbital theory for excited states[J]. J Phys Chem, 1992, 96(1): 135-149.
    [20] Thomas L S. The Calculation of Atomic Fields[J]. Proc Camb Phil Soc, 1927, 23: 542-548.
    [21] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev, 1965, 140(4A): A1133-A1138.
    [22] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, 136(3B): B864-B871.
    [23] Slater J C. Simplification of the Hartree-Fock method[J]. Phys Rev, 1951, 81(3): 385-390.
    [24] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys Rev A, 1988, 38(6): 3098-3100.
    [25] Burke K, Perdew J P, Wang Y. Electronic density functional theory: Recent progress and new directions[M]. Ed. Dobson J F, Vignale G, Das M P, Plenum, 1998.
    [26] Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The MPW and MPW1PW models[J]. J Chem Phys, 1998, 108(2): 664-675.
    [27] Perdew P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
    [28] Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys Rev B, 1986, 33(12): 8822-8824.
    [29] Lee C T, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37(2): 785-789.
    [30] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652.
    [31] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett, 1997, 78(7): 1396-1396.
    [32] Koch W, Holthausen M C. A chemist’s guide to density functional theory[M]. Second Edition, Wiley-VCH, 2001.
    [33] Deb B M, Chosh S K. Schr?dinger fluid dynamics of many-electron systems in a time-dependent density-functional framework[J]. J Chem Phys, 1982, 77(1): 342-348.
    [34] Bartolotti L. Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional[J]. J Phys Rev, 1981, A24: 1661-1667.
    [1] Day V W, Klemperer W G. Metal Oxide Chemistry in Solution: The Early Transition Metal Polyoxoanions[J]. Science, 1985, 228, 533-542.
    [2] Pope M T. Heteropoly and Isopoly Oxometalates[M]. Springer?Verlag: New York, 1983, 1.
    [3] Campbell I M. Catalysis at Surfaces[M]. Chapman and Hall: New York, 1988.
    [4] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines[J]. Angew Chem Int Ed Engl, 1991, 30(1): 34-48.
    [5] Day V W, Klemperer W G, Yaghi O M. Synthesis and Characterization of a Soluble Oxide Inclusion Complex, [CH3CN?(VI2O32)4-][J]. J Am Chem Soc, 1989, 111(15): 5959-5961.
    [6] Day V W, Klemperer W G, Yaghi O M. A new structure type in polyoxoanion chemistry: synthesis and structure of the V5O143- anion[J]. J Am Chem Soc, 1989, 111(12): 4518-4519.
    [7] Day V W, Klemperer W G, Yagasaki A. Synthesis and Structure of the New Organometallic Polyoxovanadates, {[(η-C8H12)Ir]2(V4O12)}2? and [(η-C8H12)Ir(V4O12)]3?[J]. Chem Lett, 1990, 19(8): 1267-1270.
    [8] Evans, Jr H T. The Molecular Structure of the Isopoly Complex Ion, Decavanadate (V10O286-)[J]. Inorg Chem, 1966, 5(6): 967-977.
    [9] Hou D, Hagen K S, Hill C L. Tridecavanadate, [V13O34]3-, a new high-potential isopolyvanadate[J]. J Am Chem Soc, 1992, 114(14): 5864-5866.
    [10] Müller A, Penk M, Rohlfing R, et al. Topologically Interesting Cages for Negative Ions with Extremely High“Coordination Number”: An Unusual Property of V-O Clusters[J]. Angew Chem Int Ed Engl, 1990, 29(8): 926-927.
    [11] Hou D, Hagen K S, Hill C L. Pentadecavanadate, V15O429–, a new highly condensed fully oxidized isopolyvanadate with kinetic stability in water[J]. J Chem Soc Chem Commun, 1993, (4): 426-428.
    [12] Chen Y, Gu X, Peng J, et al. The first discrete mixed-valence hexadecavanadate host shell cluster anions: hydrothermal synthesis, structure and characterization of [V16O38(Cl)]8-[J]. Inorg Chem Commun, 2004, 7(5): 705-707.
    [13] Hayashi Y, Fukuyama K, Takatera T, et al. Synthesis and Structure of a New Reduced Isopolyvanadate, [V17O42]4?[J]. Chem Lett, 2000, 29(7): 770-771.
    [14] Johnson G K, Schlemper E O. Existence and Structure of the Molecular Ion 18-Vanadate(IV)[J]. J Am Chem Soc, 1978, 100(11): 3645-3646.
    [15] Müller A, Penk M, Krickemeyer E, et al. [V19O41(OH)9]8-, An Ellipsoid-Shaped Cluster Anion Belonging to the Unusual Family of VIV/VV Oxygen Clusters[J]. Angew Chem Int Ed Engl, 1988, 27(12): 1719-1721.
    [16] Müller A, Rohlfing R, D?ring J, et al. Formation of a Cluster Sheath around a Central Cluster by a "Self-Organization Process": the Mixed Valence Polyoxovanadate [V34O82]10-[J]. Angew Chem Int Ed Engl, 1991, 30(5): 588-590.
    [17] (a) Martínez-Haya B, Hurtado P, Hortal A R, et al. Spectroscopic Investigation of the Gas-Phase Conformations of 15-Crown-5 Ether Complexes with K+[J]. J Phys Chem A, 2009, 113(27): 7748-7752. (b) Hu Y H, Ruckenstein E. Endohedral complexes of C58 cage with H_2 and CO[J]. Chem Phys Lett, 2004, 390(4-6): 472-474. (c) Shimotani H, Ito T, Iwasa Y, et al. Quantum Chemical Study on the Configurations of Encapsulated Metal Ions and the Molecular Vibration Modes in Endohedral Dimetallofullerene La2@C80[J]. J Am Chem Soc, 2004, 126(1): 364-369. (d) Yang S, Chen C, Popov A A, et al. An endohedral titanium(III) in a clusterfullerene: putting a non-group-III metal nitride into the C80-Ih fullerene cage[J]. Chem Commum, 2009, (42): 6391-6393.
    [18] (a) Wang X, Guo Y, Li Y, et al. Novel Polyoxometalate-Templated, 3-D Supramolecular Networks Based on Lanthanide Dimers: Synthesis, Structure, and Fluorescent Properties of [Ln2(DNBA)4(DMF)8][Mo6O19](DNBA)3,5-Dinitrobenzoate)[J]. Inorg Chem, 2003, 42(13): 4135-4140. (b) Knaust J M, Inman C, Keller S W. A host–guest complex between a metal–organic cyclotriveratrylene analog and a polyoxometalate: [Cu6(4,7-phenanthroline)8(MeCN)4]2PM12O40 (M = Mo or W)[J]. Chem Commun, 2004, (5): 492-493. (c) Ishii Y, Takenaka Y, Konishi K. Porous Organic–Inorganic Assemblies Constructed from Keggin Polyoxometalate Anions and Calix[4]arene–Na+ Complexes: Structures and Guest-Sorption Profiles[J]. Angew Chem Int Ed, 2004, 43(20): 2702-2705. (d) Gao S Y, Cao R, Bi W H, et al. Porous structures constructed from [SiMo12O40] and [SiW12O40] Keggin units[J]. Micropor Mesopor Mater, 2005, 80(1-3): 139-145. (e) Jiang C J, Lesbani A, Kawamoto R, et al. Channel-Selective Independent Sorption and Collection of Hydrophilic and Hydrophobic Molecules by Cs2[Cr3O(OOCC2H5)6(H_2O)3]2[γ-SiW12O40] Ionic Crystal[J]. J Am Chem Soc, 2006, 128(44): 14240-14241.
    [19] (a) Fischer J, Ricard L, Weiss R. The Structure of the Heteropolytungstate (NH4)17Na[NaW21Sb9O86]·14H_2O. An Inorganic Cryptate[J]. J Am Chem Soc, 1976, 98(10): 3050-3052. (b) Robert F, Leyrie M, HervéG, et al. Crystal Structure of Ammonium Dicobalto(II)-40-tungstotetraarsenate(III). Allosteric Effects in the Ligand[J]. Inorg Chem, 1980, 19(6): 1746-1752. (c) Alizadeh M H, Harmalker S P, Jeannin Y, et al. A Heteropolyanion with Fivefold Molecular Symmetry That Contains a Nonlabile Encapsulated Sodium Ion. The Structure and Chemistry of [ NaP5W30O110]14-[J]. J Am Chem Soc, 1985, 107(9): 2662-2669. (d) Klemperer W G, Westwood G. Inorganic chemistry: Traps for cations[J]. Nat Mater, 2003, 2, 780-781. (e) Artero V, Proust A, Herson P, et al. Synthesis and Characterization of the First Carbene Derivative of a Polyoxometalate[J]. J Am Chem Soc, 2003, 125(37): 11156-11157. (f) Müller A, Toma L, B?gge H, et al. Porous Capsules Allow Pore Opening and Closing That Results in Cation Uptake[J]. Angew Chem Int Ed, 2005, 44 (47): 7757-7761. (g) Zimmermann M, Belai N, Butcher R J, et al. New Lanthanide-Containing Polytungstates Derived from the Cyclic P8W48 Anion:Ln4(H_2O)28[K?P8W48O_(18)4(H4W4O12)2Ln2(H_2O)10]x13-, Ln=La, Ce, Pr, Nd+[J]. Inorg Chem, 2007, 46(5): 1737-1740. (h) Duval S, Pilette M, Marrot J, et al. Selective Inclusion of Cu+ and Ag+ Electron-Rich Metallic Cations within Supramolecular Polyoxometalates Based on {AsW9O33} {Mo3S4} Combinations[J]. Chem Eur J, 2008, 14(11): 3457-3466. (i) Yoshida A, Nakagawa Y, Uehara K, et al. Inorganic Cryptand: Size-Selective Strong Metallic Cation Encapsulation by a Disilicoicosatungstate (Si2W20) Polyoxometalate[J]. Angew Chem Int Ed, 2009, 48(38): 7055-7058.
    [20] Müller A, Reuter H, Dillinger S. Supramolecular Inorganic Chemistry: Small Guests in Small and Large Hosts[J]. Angew Chem Int Ed Engl, 1995, 34(21): 2328-2361.
    [21] (a) A. Müller and J. D?ring, Topologisch und elektronisch bemerkenswerte "reduzierte" Cluster des Typs [V18O42(X)]n- (X=SO4, VO4) mit Td-Symmetrie und davon abgeleitete Cluster [V(18-p)As2pO42(X)]m- (X=SO3, SO4, H_2O; p= 3, 4)[J]. Z Anorg Allg Chem, 1991, 595(1): 251-274. (b) Müller A. Induced molecule self-organization[J]. Nature, 1991, 352, 115-115. (c) Pope M T. Anion guests in heteropolyanions?[J]. Nature, 1992, 355, 27-27. (d) Müller A. Supramolecular inorganic species: An expedition into a fascinating, rather unknown land mesoscopia with interdisciplinary expectations and discoveries[J]. J Mol Struct, 1994, 325(8): 13-35. (e) Müller A, Hovemeier K, Krickemeyer E, et al. Modeling the Remote-Controlled Organization of Particles in a Nanodimensional Cavity: Synthesis and Properties of (Et3NH)3(tBuNH3)2-Na2[(H_2O)2,N-3?V14O22(OH)4(PhPO3)8]·6H_2O·2DMF[J]. Angew Chem Int Ed Engl, 1995, 34(7): 779-781. (f) Khan M I, Müller A, Dillinger S, et al. Cation Inclusion within the Mixed-Valence Polyanion Cluster [(MoVIO3)4Mo12VO28(OH)12]8-: Syntheses and Structures of (NH4)7[NaMo16(OH)12O40]·4H_2O and (Me_2NH_2)6[H_2Mo16(OH)12O40][J]. Angew Chem Int Ed Engl, 1993, 32(12): 1780-1782.
    [22] (a) Chang Y D, Salta J, Zubieta J. Synthesis and Structure of an Oxovanadium(V)- Organophosphonate Cluster Encapsulating a Chloride Ion: [ClV7O12(O3PC6H5)6]2-[J]. Angew Chem Int Ed Engl, 1994, 33(3): 325-327. (b) Yamase T, Ohtaka K. Photochemistry of polyoxovanadates. Part 1. Formation of the anion-encapsulated polyoxovanadate [V15O_(36)(CO3)]7– and electron-spin polarization ofα-hydroxyalkyl radicals in the presence of alcohols[J]. J Chem Soc Dalton Trans, 1994, (18): 2599-2608.
    [23] (a) Chen L, Jiang F L, Lin Z Z, et al. A Basket Tetradecavanadate Cluster with Blue Luminescence[J]. J Am Chem Soc, 2005, 127(24): 8588-8589. (b) Wagner G W, Two-Dimensional 17O-51V Heteronuclear Shift Correlation NMR Spectroscopy of the 17O-Enriched Inclusion Complex [CH3CN?(VI2O32)]. Relationship of Cross-Peak Intensity to Bond Order[J]. Inorg Chem, 1991, 30(8): 1960-1962. (c) Rohmer M M, Bénard M. An Interpretation of the Structure of the Inclusion Complexes [RCN?(V12O32)4-] R=CH3, C6H5) from Electrostatic Potentials[J]. J Am Chem Soc, 1994, 116(15): 6959-6960.
    [24] (a) Mak T C W, Li P J, Zheng C M, et al. A hexanuclear oxovanadium (IV) anionic aggregate containingμ2- andμ6-carbonato groups: synthesis and structural characterization of(NH4)5[(VO)6(CO)4(OH)9]·10H_2O[J]. J Chem Soc Chem Commun, 1986, (21): 1597-1598. (b) Heinrich D D, Folting K, Streib W E, et al. Synthesis of tetranuclear and pentanuclear vanadium-oxide-carboxylate aggregates[J]. J Chem Soc Chem Commun, 1989, (19): 1411-1413. (c) Rehder D, Priebsch W, von Oeynhausen. [VO(O2CtBu)3] and [V6O6(μ-O)4(μ-O2CPh)9]. Structural Characterization of a Mononuclear Vv and a (2 + 4)-Nuclear VIVV5V Carboxylato Complex. Models for Vanadate-Dependent Peroxidases[J]. Angew Chem Int Ed Engl, 1989, 28(9): 1221-1222. (d) Arrowsmith S, Dove M F A, Logana N, et al. Synthesis ofα-hydroxy ketones using a HOF·MeCN complex[J]. J Chem Soc Chem Commun, 1995, (5): 627-628. (e) Karet G B, Sun Z, Heinrich D D, et al. Tetranuclear and Pentanuclear Vanadium(IV/V) Carboxylate Complexes: [V4O8(NO3)(O2CR)4]2- and [V5O9X(O2CR)4]2- (X=Cl-, Br-) Salts[J]. Inorg Chem, 1996, 35(22): 6450-6460. (f) Karet G B, Sun Z, Streib W E, et al. Stepwise assembly of a polyoxovanadate from mononuclear units in an organic solvent: carboxylate-stabilised fragments in the conversion of [VOCl4]2– to [V15O_(36)]5–[J]. Chem Commun, 1999, (22): 2249-2250. (g) Ng C H, Lim C W, Teoh S G, et al. New Crown-Shaped Polyoxovanadium(V) Cluster Cation with aμ6-Sulfato Anion and Zwitterionic μ-(β-Alanine): Crystal Structure of [V6O12(OH)3(O2CCH_2CH_2NH3)3(SO4)][Na][SO4]·13H_2O[J]. Inorg Chem, 2002, 41(1): 2-3. (h) Mukherjee R, Dougan B A, Fry F H, et al. Structural and Spectroscopic Evidence for the Formation of Trinuclear and Tetranuclear Vanadium(III)/Carboxylate Complexes of Acetate and Related Derivatives in Aqueous Solution[J]. Inorg Chem, 2007, 46(5): 1575-1585.
    [25] Lemonnier J-F, Floquet S, Kachmar A, et al. Host–guest adaptability within oxothiomolybdenum wheels: structures, studies in solution and DFT calculations[J]. Dalton Trans, 2007, (28): 3043-3054.
    [26] Rohmer M-M, Devémy J, Wiest R, et al. Ab Initio Modeling of the Endohedral Reactivity of Polyoxometallates: 1. Host-Guest Interactions in [RCN?(V12O32)4-] (R=H, CH3, C6H5)[J]. J Am Chem Soc, 1996, 118(51): 13007-13014.
    [27] Rohmer M-M, Bénard M, Blaudeau J-P, et al. From Lindqvist and Keggin ions to electronically inverse hosts: Ab initio modelling of the structure and reactivity of polyoxometalates[J]. Coord Chem Rev, 1998, 178-180(2): 1019-1049.
    [28] Rosa A, Baerends E J. Metal-Macrocycle Interaction in Phthalocyanines: Density Functional Calculations of Ground and Excited States[J]. Inorg Chem, 1994, 33(3): 584-595.
    [29] Ziegler T. Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics[J]. Chem Rev, 1991, 91(5): 651-667.
    [30] Liang F P, Jacobsen H, Schmalle H W, et al. Carbonylhydridonitrosyltris(trimethylphosphine)molybdenum(0):An Activated Hydride Complex[J]. Organometallics, 2000, 19(10): 1950-1962.
    [31] Bagatur’yants A A, Ya Freidzon A, Alfimov M V, et al. DFT calculations on the electronic and geometrical structure of 18-crown-6 complexes with Ag+, Hg2+, Ag0, Hg+, Hg0, AgNO3, and HgX2 (X=Cl, Br, and I)[J]. J Mol Struct, 2002, 588(1-3): 55-69.
    [32] Hu Y H, Ruckenstein E. Endohedral Chemistry of C60-Based Fullerene Cages[J]. J Am Chem Soc, 2005, 127(32): 11277-11282.
    [33] Lee T B, McKee M L. Endohedral Hydrogen Exchange Reactions in C60 (nH_2@C60, n=1-5): Comparison of Recent Methods in a High-Pressure Cooker[J]. J Am Chem Soc, 2008, 130(51): 17610-17619.
    [34] Korchowiec J, Korchowiec B, Priebe W, et al. DFT Study on the Selectivity of Complexation of Metal Cations with a Dioxadithia Crown Ether Ligand[J]. J Phys Chem A, 2008, 112(51): 13633-13640.
    [35] Datta A. Role of Metal Ions (M = Li+, Na+, and K+) and Pore Sizes (Crown-4, Crown-5, and Crown-6) on Linear and Nonlinear Optical Properties: New Materials for Optical Birefringence[J]. J Phys Chem C, 2009, 113(8): 3339-3344.
    [36] Fonseca Guerra C, Snijders J G, te Velde G, et al. Towards an order-N DFT method[J]. Theor Chem Acc, 1998, 99(6): 391-403.
    [37] te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. J Comput Chem, 2001, 22(9): 931-967.
    [38] ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
    [39] Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J Chem Soc Perkin Trans, 1993, 2(5): 799-805.
    [40] Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena[J]. J Phys Chem, 1995, 99(7): 2224-2235.
    [41] Klamt A, Jones V. Treatment of the outlying charge in continuum solvation models[J]. J Chem Phys, 1996, 105(22): 9972-9981.
    [42] Pye C C, Ziegler T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package[J]. Theor Chem Acc, 1999, 101(6): 396-408.
    [43] Hu S Z, Zhou Z H, Tsai K R. Average van der Waals radii of atoms in crystals[J]. Acta Phys Chim Sin, 2003, 19(11): 1073-1077.
    [44] van Leeuwen R, Baerends E J. Exchange-correlation potential with correct asymptotic-behavior[J]. Phys Rev A, 1994, 49(4): 2421-2431.
    [45] van Gisbergen S J A, Snijders J G, Baerends E J. Implementation of time-dependent density functional response equations[J]. Comput Phys Commun, 1999, 118(2-3): 119-138.
    [46] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, 2004.
    [47] Priebsch W, Rehder D, von Oeynhausen M. [K{V4O4(μ-O)4(μ-O2CCH_2tBu)4}][O2CCH_2tBu]·2tBuCH_2CO2H, ein Kaliumkomplex eines,,anorganischen Kronenethers[J]. Chem Ber, 1991, 124, 761-764.
    [48] Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the“different hybrids for different spins”natural bond orbital procedure[J]. J Mol Struct (THEOCHEM), 1988, 169: 41-62.
    [49] (a) Bagus P S, Hermann K, Bauschlicher Jr C W. A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3[J]. J Chem Phys, 1984, 80(9): 4378-4386. (b) Bagus P S, Hermann K, Bauschlicher Jr C W. On the nature of the bonding of lone pair ligands to a transition metal[J]. J Chem Phys, 1984, 81(4): 1966-1974.
    [50] Glendening E D, Feller D, Thompson M A. An Ab Initio Investigation of the Structure and Alkali Metal Cation Selectivity of 18-Crown-6[J]. J Am Chem Soc, 1994, 116(23): 10657-10669.
    [51] López X, Fernández J A, Poblet J M. Redox properties of polyoxometalates: new insights on the anion charge effect[J]. Dalton Trans, 2006, (9): 1162-1167.
    [52] Fernández J A, López X, Bo C, et al. Polyoxometalates with Internal Cavities: Redox Activity, Basicity, and Cation Encapsulation in [Xn+P5W30O110](15-n)- Preyssler Complexes, with X=Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+[J]. J Am Chem Soc, 2007, 129(40): 12244-12253.
    [53] Romo S, Fernández J A, Maestre J M, et al. Density Functional Theory and ab Initio Study of Electronic and Electrochemistry Properties of the Tetranuclear Sandwich Complex [FeIII4(H_2O)2(PW9O34)2]6-[J]. Inorg Chem, 2007, 46(10): 4022-4027.
    [54] Lewis A, Bumpus J A, Truhlar D G, et al. Molecular Modeling of Environmentally Important Processes: Reduction Potentials[J]. J Chem Educ, 2004, 81(4): 596-603.
    [1] Pope M T. Heteropoly and Isopoly Oxometalates[M]. Springer, Berlin, 1983, 1.
    [2] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters-Nanoscale Magnets[J]. Chem Rev, 1998, 98(1): 239-271.
    [3] Hill C L. Comp Coord Chem II, 2003, 4: 679.
    [4] Chen Y G, Gong J, Qu L Y. Tungsten-183 nuclear magnetic resonance spectroscopy in the study of polyoxometalates[J]. Coord Chem Rev, 2004, 248(1-2): 245-260.
    [5] Clegg W, Errington R J, Fraser K A, et al. Functionalization of [Mo6O19]2- with aromatic-amines: synthesis and structure of a hexamolybdate building-block with linear difunctionality[J]. Chem Commun, 1995, (4): 455-456.
    [6] Gouzerh P, Proust A. Main-group element, organic, and organometallic derivatives of polyoxometalates[J]. Chem Rev, 1998, 98(1): 77-111.
    [7] Strong J B, Yap G P A, Ostrander R, et al. A new class of functionalized polyoxometalates: synthetic, structural, spectroscopic, and electrochemical studies of organoimido derivatives of [Mo6O19]2-[J]. J Am Chem Soc, 2000, 122(4): 639-649.
    [8] Wei Y G, Xu B B, Barnes C L, et al. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates[J]. J Am Chem Soc, 2001, 123(17): 4083-4084.
    [9] Proust A, Thouvenot R, Gouzerh P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science[J]. Chem Commun, 2008, (16): 1837-1852.
    [10] Dablemont C, Proust A, Thouvenot R, et al. Functionalization of polyoxometalates: from lindqvist to Keggin derivatives. 1. Synthesis, solution studies, and spectroscopic and ESI mass spectrometry characterization of the rhenium phenylimido tungstophosphate [PW_(11)O_(39){ReNC6H5}]4-[J]. Inorg Chem, 2004, 43(11): 3514-3520.
    [11] Peng Z. Rationale Synthese kovalent gebundener organisch-anorganischer Hybdridverbindungen[J]. Angew Chem, 2004, 116(8): 948-953.
    [12] Kwen H, Tomlinson S, Maatta E A, et al. Functionalized heteropolyanions: high-valent metal nitrido fragments incorporated into a Keggin polyoxometalate structure[J]. Chem Commun, 2002, (24): 2970-2971.
    [13] Dablemont C, Hamaker C G, Thouvenot R, et al. Functionalization of heteropolyanions-osmium and rhenium nitrido derivatives of Keggin- and Dawson-type polyoxotungstates: synthesis, characterization and multinuclear (183W, 15N) NMR, EPR, IR, and UV/Vis fingerprints[J]. Chem Eur J, 2006, 12(36): 9150-9160.
    [14] Lahootun V, Besson C, Villanneau R, et al. Synthesis and Characterization of the Keggin-Type Ruthenium-Nitrido Derivative [PW_(11)O_(39)RuN]4- and Evidence of Its Electrophilic Reactivity[J]. J Am Chem Soc, 2007, 129(22): 7127-7135.
    [15] Romo S, Antonova N S, CarbóJ J, et al. Influence of polyoxometalate ligands on the nature of high-valent transition metal nitrido species. A theoretical analysis of experimentally known and unprecedented compounds[J]. Dalton Trans, 2008, (38): 5166-5172.
    [16] Knoth W H. Derivatives of heteropolyanions. 1. Organic derivatives of W12SiO404-, W12PO403-, and Mo12SiO404-[J]. J Am Chem Soc, 1979, 101(3): 759-760.
    [17] Kwak W, Pope M T, Scully T F. Stable organic derivatives of heteropoly anions, pentamolybdobisphosphonates[J]. J Am Chem Soc, 1975, 97(20): 5735-5738.
    [18] Kortz U, Marquer C, Thouvenot R, et al. Polyoxomolybdates Functionalized with Phosphonocarboxylates[J]. Inorg Chem, 2003, 42(4): 1158-1162.
    [19] Li Q, Wu P F, Xia Y, et al. Synthesis, spectroscopic studies and crystal structure of a polyoxoanion cluster incorporating para-bromophenylimido ligand, (Bu4N)2[Mo6O_(18)(NC6H4Br-p)][J]. J Organomet Chem, 2006, 691(6): 1223-1228.
    [20] Cortés M, Fuentealba M, Manzur C, et al. A New Lindqvist-type Hexamolybdate Cluster Functionalized With Theπ-Donor Ligand 4-Bromo-2,6-Dimethylphenylimido. Spectroscopic, Electrochemical And Structural Studies[J]. J Chil Chem Soc, 2008, 53(1): 1349-1352.
    [21] Li Q, Wei Y G, Guo H Y, et al. Syntheses, structural characterizations and electronic absorption spectra simulation of three phenylimido substituted hexamolybdates incorporating a remote chloro group[J]. Inorg Chim Acta, 2008, 361(8): 2305-2313.
    [22] Hao J, Xia Y, Wang L S, et al. Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands[J]. Angew Chem Int Ed, 2008, 47(14): 2626-2630.
    [23] Wang J P, Niu H Y, Niu J Y. A novel Lindqvist type polyoxoniobate coordinated to four copper complex moieties: {Nb6O19[Cu(2,2′-bipy)]2[Cu(2,2′-bipy)2]2}·19H_2O[J]. Inorg Chem Commun, 2008, 11(1): 63-65.
    [24] Aronica C, Chastanet G, Zueva E, et al. A Mixed-Valence Polyoxovanadate(III,IV) Cluster with a Calixarene Cap Exhibiting Ferromagnetic V(III)-V(IV) Interactions[J]. J Am Chem Soc, 2008, 130(7): 2365-2371.
    [25] Wang J P, Zhang G Q, Ma P T, et al. A novel disubstituted Lindqvist-type polyoxomolybdate [Te2Mo4O19]6? supporting two organic vanadyl moieties: Synthesis, characterization, and crystal structure of {[V(2,2-bipy)2]2(4,4-bipy)[Te2Mo4O19]}[J]. Inorg Chem Commun, 2008, 11(7): 825-828.
    [26] Zhao J W, Zhang J, Song Y, et al. Two Hexanickel-Substituted Keggin-Type Germanotungstates[J]. Eur J Inorg Chem, 2008, (24): 3809-3819.
    [27] Pope M T, Müller A. PolyoxometalateChemistry: From Topology Via Self-Assembly to Applications[M]. Kluwer: Dordrecht, The Netherlands, 2001.
    [28] Lahootun V, Karcher J, Courillon C, et al. A (Nitrido)chromium(V) Function Incorporated in a Keggin-Type Polyoxometalate: [PW_(11)O_(39)CrN]5--Synthesis, Characterization and Elements of Reactivity [J]. Eur J Inorg Chem, 2008, (31): 4899-4905.
    [29] Sadakane M, Iimuro Y, Tsukuma D, et al. Carbonyl–ruthenium substitutedα-Keggin-tungstosilicate, [α-SiW_(11)O_(39)RuII(CO)]6-: synthesis, structure, redox studies and reactivity[J]. Dalton Trans, 2008, (47): 6692-6698.
    [30] Brédas J L, Beljonne D, Coropceanu V, et al. Charge-transfer and energy-transfer processes inπ-conjugated oligomers and polymers: A molecular picture[J]. Chem Rev, 2004, 104(11): 4971-5004.
    [31] Locknar S A, Peteanu L A, Shuai Z G. Calculation of ground and excited state polarizabilities of unsubstituted and donor/acceptor polyenes: A comparison of the finite-field and sum-over-states methods[J]. J Phys Chem A, 1999, 103(14): 2197-2201.
    [32] Meyers F, Marder S R, Pierce B M, et al. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (α,β, andγ) and Bond Length Alternation[J]. J Am Chem Soc, 1994, 116(23): 10703-10714.
    [33] Chandra Jha P, Krishnan A, Das P K, et al. Nonlinear optical properties of linear chain phosphazenes, (PN)x [J]. J Chem Phys, 2002, 117(6): 2873-2881.
    [34] Bulat F A, Toro-LabbéA, Champagne B, et al. Density-functional theory (hyper) polarizabilities of push-pullπ-conjugated systems: Treatment of exact exchange and role of correlation[J]. J. Chem. Phys. 2005, 123(1): 014319-1-014319-7.
    [35] Liu C G, Qiu Y Q, Sun S L, et al. DFT Studies on second-order nonlinear optical properties of mono (salicylaldiminato) Nickel(II) polyenyl Schiff base metal complexes[J]. Chem Phys Lett, 2007, 443(1-3): 163-168.
    [36] Stark J L, Young V G, Maatta E A. A functionalized polyoxometalate bearing a ferrocenylimido ligand: preparation and structure of [(FcN)Mo6O_(18)]2-[J]. Angew Chem Int Ed Engl, 1995, 34(22): 2547-2548.
    [37] Stark J L, Young Jr V G., Maatta E A., Ein funktionalisiertes Polyoxometallat mit einem Ferrocenylimido-Liganden: Herstellung und Struktur von [(FcN)Mo6O_(18)]2-[J]. Angew Chem, 1995, 107(22): 2751-2753.
    [38] Xu B B, Peng Z H, Wei Y G, et al. Polyoxometalates covalently bonded with terpyridine ligands[J]. Chem Commun, 2003, (20): 2562-2563.
    [39] Peng Z. Rational Synthesis of Covalently Bonded Organic-Inorganic Hybrids[J]. Angew Chem Int Ed, 2004, 43(8): 930-935.
    [40] Xu B B, Lu M, Kang J H, et al. Synthesis and Optical Properties of Conjugated Polymers Containing Polyoxometalate Clusters as Side-Chain Pendants[J]. Chem Mater, 2005, 17(11): 2841-2851.
    [41] Attanasio D, Bonamico M, Fares V. Weak charge-transfer polyoxoanion salts: the reaction of quinolin-8-ol (Hquin) with phosphotungstic acid and the crystal and molecular structure of [H_2quin]3[PW12O40]·4EtOH·2H_2O[J]. J Chem Soc DaltonTrans, 1990, (11): 3221-3228.
    [42] Duhacek J C, Duncan D C. Phenylimido Functionalization ofα-[PW12O40]3-[J]. Inorg Chem, 2007, 46(18): 7253-7255.
    [43] Coronado E, Gómez-García C J. Polyoxometalate-Based Molecular Materials[J]. Chem ReV, 1998, 98(1): 273-296.
    [44] Guan W, Yang G C, Liu C G, et al. Reversible redox-switchable second-order optical nonlinearity in polyoxometalate: A quantum chemical study of [PW_(11)O_(39)(ReN)]n- (n = 3-7)[J]. Inorg Chem, 2008, 47(12): 5245-5252.
    [45] Yan L K, Yang G C, Guan W, et al. Density Functional Theory Study on the First Hyperpolarizabilities of Organoimido Derivatives of Hexamolybdates[J]. J Phys Chem B 2005, 109(47): 22332-22336.
    [46] Fonseca Guerra C, Snijders J G, te Velde G, et al. Towards an order-N DFT method[J]. Theor Chem Acc, 1998, 99(6): 391-403.
    [47] te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. J Comput Chem, 2001, 22(9): 931-967.
    [48] ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
    [49] van Lenthe E, Baerends E J, Snijders J G. Relativistic regular two-component Hamiltonians[J]. J Chem Phys, 1993, 99(6): 4597-4610.
    [50] van Lenthe E, Baerends E J, Snijders J G. Relativistic total energy using regular approximations[J]. J Chem Phys, 1994, 101(11): 9783-9792.
    [51] van Lenthe E, Snijders J G, Baerends E J. The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules[J]. J Chem Phys, 1996, 105(15): 6505-6516.
    [52] van Lenthe E, van Leeuwen R, Baerends E J, et al. Relativistic regular two-component Hamiltonians[J]. Int J Quantum Chem, 1996, 57(3): 281-293.
    [53] van Lenthe E, Ehlers A E, Baerends E J. Geometry optimizations in the zero order regular approximation for relativistic effects[J]. J Chem Phys, 1999, 110(18): 8943-8953.
    [54] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Can J Phys, 1980, 58(8): 1200-1211.
    [55] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys Rev A, 1988, 38(6): 3098-3100.
    [56] Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys Rev B, 1986, 33(12): 8822-8824.
    [57] Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J Chem Soc Perkin Trans, 1993, 2(5): 799-805.
    [58] Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena[J]. J Phys Chem, 1995, 99(7): 2224-2235.
    [59] Klamt A, Jones V. Treatment of the outlying charge in continuum solvation models[J]. J Chem Phys, 1996, 105(22): 9972-9981.
    [60] Pye C C, Ziegler T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package[J]. Theor Chem Acc, 1999, 101(6): 396-408.
    [61] Hu S Z, Zhou Z H, Tsai K R. Average van der Waals radii of atoms in crystals[J]. Acta Phys Chim Sin, 2003, 19(11): 1073-1077.
    [62] van Gisbergen S J A, Snijders J G, Baerends E J. Implementation of time-dependent density functional response equations[J]. Comp Phys Commun, 1999, 118(2-3): 119-138.
    [63] van Leeuwen R, Baerends E J. Exchange-correlation potential with correct asymptotic-behavior[J]. Phys Rev A, 1994, 49(4): 2421-2431.
    [64] Frisch M J, Trucks G W, Schlegel H B, et. al. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, 2004.
    [65] Dapprich S, Frenking G. Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals[J]. J Phys Chem, 1995, 99(23): 9352-9362.
    [66] Gorelsky S I, Ghosh S, Solomon E I. Mechanism of N2O Reduction by theμ4-S Tetranuclear CuZ Cluster of Nitrous Oxide Reductase[J]. J Am Chem Soc, 2006, 128(1): 278-290.
    [67] Gorelsky S I. AOMix: program for molecular orbital analysis. York University, Toronto. 2006.
    [68] López X, Fernández J A, Poblet J M. Redox properties of polyoxometalates: new insights on the anion charge effect[J]. Dalton Trans, 2006, (9): 1162-1167
    [69] Fernández J A, López X, Bo C, et al. Polyoxometalates with Internal Cavities: Redox Activity, Basicity, and Cation Encapsulation in [Xn+P5W30O110](15-n)- Preyssler Complexes, with X=Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+[J]. J Am Chem Soc, 2007, 129(40): 12244-12253.
    [70] Romo S, Fernández J A, Maestre J M, et al. Density functional theory and ab initio study of electronic and electrochemistry properties of the tetranuclear sandwich complex [Fe4III(H_2O)2(PW9O34)2]6-[J]. Inorg Chem, 2007, 46(10): 4022-4027.
    [71] Trasatti S. The absolute electrode potential: an explanatory note[J]. Pure Appl. Chem. 1986, 58(7): 955-966.
    [72] Reiss H, Heller A. The absolute potential of the standard hydrogen electrode: a new estimate[J]. J Phys Chem, 1985, 89(20): 4207-4213.
    [73] Nugent W A, Mayer J M. Metal-Ligand Multiple Bonds, Wiley: New York, 1988, Chapter 4, p 112.
    [74] Kelly C P, Cramer C J, Truhlar D G. Aqueous Solvation Free Energies of Ions and Ion?Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton[J]. J Phys Chem B, 2006, 110(32): 16066-16081.
    [75] Hogarth G, Konidaris P C, Saunders G C. Electrochemistry of dimolybdenum complexes containing oxo, imido, and sulphido moieties. A measure of their relativeπ-donor abilities?[J]. J Organomet Chem, 1991, 406(1-2): 153-157.
    [76] Gross E K U, Kobson J F, Petersilka M. In Density Functional Theory; Nalewajski, R.F., Ed., Topics in Current Chemistry; Springer: Heidelberg, Germany, 1996.
    [77] van Gisbergen S J A, Snijders J G, Baerends E J, Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory[J]. J Chem Phys, 1998, 109(24): 10644-10656. Erratum 1999, 111(14): 6652-6652.
    [78] van Gisbergen S J A, Snijders J G, Baerends E J. Time-dependent Density Functional Results for the Dynamic Hyperpolarizability of C60[J]. Phys Rev Lett, 1997, 78(16): 3097-3100.
    [79] van Gisbergen S J A, Snijders J G, Baerends E J. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules[J]. J Chem Phys, 1998, 109(24): 10657-10668.
    [80] Hieringer W, Baerends E J. First Hyperpolarizability of a Sesquifulvalene Transition Metal Complex by Time-Dependent Density-Functional Theory[J]. J Phys Chem A, 2006, 110(3): 1014-1021.
    [81] Elliott P, Furche F, Burke K. Rev Comp Ch, 2009, 26, Chapter 3, p 91.
    [82] Janjua M R S A, Liu C G, Guan W, et al. Prediction of Remarkably Large Second-Order Nonlinear Optical Properties of Organoimido-Substituted Hexamolybdates[J]. J Phys Chem A, 2009, 113(15): 3576-3578.
    [83] Liao Y, Feng J K, Yang L, et al. Theoretical Study on the Electronic Structure and Optical Properties of Mercury-Containing Diethynylfluorene Monomer, Oligomer, and Polymer[J]. Organometallics, 2005, 24(3): 385-394.
    [84] Ran X Q, Feng J K, Liu Y L, et al. Theoretical Study on Structural, Electronic, and Optical Properties of Ambipolar Diphenylamino End-capped Oligofluorenylthiophenes and Fluoroarene-thiophene as Light-emitting Materials[J]. J Phys Chem A, 2008, 112(43): 10904-10911.
    [1] Katsoulis D E. A survey of applications of polyoxometalates[J]. Chem Rev, 1998, 98(1): 359-387.
    [2] Pope M T. Heteropoly and Isopoly Oxometalates[M]. Springer, Berlin, 1983, 1.
    [3] (a) Zeng H, Newkome G R, Hill C L. Poly(polyoxometalate) Dendrimers: Molecular Prototypes of New Catalytic Materials[J]. Angew Chem Int Ed, 2000, 39(10): 1771-1774. (b) Sanchez C, Soler-Illia G J A A, Ribot F, et al. Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks[J]. Chem Mater, 2001, 13(10): 3061-3083. (c) Peng Z. Rational Synthesis of Covalently Bonded Organic-Inorganic Hybrids[J]. Angew Chem Int Ed, 2004, 43(8): 930-935. (d) Proust A, Thouvenot R, Gouzerh P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science[J]. Chem Commun, 2008, (16): 1837–1852. (e) Li Q, Wang L S, Yin P C, et al. Convenient syntheses and structural characterizations of mono-substituted alkylimido hexamolybdates: [Mo6O_(18)(NR)]2- (R=Me, Et, n-Pr, i-Pr, n-Bu,t-Bu, Cy, Hex, Ode)[J]. Dalton Trans. 2009, (7): 1172–1179. (f) Reinoso S, Fernando Piedra-Garza L, Dickman M H, et al. Trilacunary A-β-Keggin tungstogermanates and–silicates functionalized with phenyltin(IV) electrophiles[J]. Dalton Trans, 2010, 39(1): 248–255.
    [4] (a) Lu M, Wei Y G, Xu B B, et al. Hybrid Molecular Dumbbells: Bridging Polyoxometalate Clusters with an Organicπ-Conjugated Rod[J]. Angew Chem Int Ed, 2002, 41(9): 1566-1568. (b) Bar-Nahum I, Narasimhulu K V, Weiner L, et al. Phenanthroline-Polyoxometalate Hybrid Compounds and the Observation of Intramolecular Charge Transfer[J]. Inorg Chem, 2005, 44(14): 4900-4902. (c) Zhu Y, Wang L S, Hao J, et al. Synthetic, Structural, Spectroscopic, Electrochemical Studies and Self-assembly of Nanoscale Polyoxometalate-Organic Hybrid Molecular Dumbbells[J]. Cryst Growth Des, 2009, 9(8): 3509–3518.
    [5] (a) Yan L K, Jin M S, Zhuang J, et al. Theoretical Study on the Considerable Second-Order Nonlinear Optical Properties of Naphthylimido-Substituted Hexamolybdates[J]. J Phys Chem A, 2008, 112(40): 9919–9923. (b) Janjua M R S A, Liu C G, Guan W, et al. Prediction of Remarkably Large Second-Order Nonlinear Optical Properties of Organoimido-Substituted Hexamolybdates[J]. J Phys Chem A, 2009, 113(15): 3576–3587. (c) Liu C G, Guan W, Yan L K, et al. Second-Order Nonlinear Optical Properties of Transition-Metal-Trisubstituted Polyoxometalate-Diphosphate Complexes: A Donor-Conjugated Bridge-Acceptor Paradigm for Totally Inorganic Nonlinear Optical Materials[J]. J Phys Chem C, 2009, 113(45): 19672–19676.
    [6] (a) Lehn J-M. Supramolecular Chemistry: Concepts and Perspectives[M]. VCH, Weinheim, 1995; (b) Ward M D. Metal-metal interactions in binuclear complexes exhibiting mixed valency; molecular wires and switches[J]. Chem Soc Rev, 1995, 24(2): 121-134.
    [7] (a) Nakatani K, Delaire J A. Reversible Photoswitching of Second-Order Nonlinear Optical Properties in an Organic Photochromic Crystal[J]. Chem Mater, 1997, 9(12): 2682–2684. (b) Gilat S L, Kawai S H, Lehn J-M. Light-Triggered Molecular Devices: Photochemical Switching Of optical and Electrochemical Properties in Molecular Wire Type Diarylethene Species[J]. Chem Eur J, 1995, 1(5): 275–284. (c) Fernandez-Acebes A, Lehn J-M. Optical Switching and Fluorescence Modulation Properties of Photochromic Metal Complexes Derived from Dithienylethene Ligands[J]. Chem Eur J, 1999, 5(11): 3285–3292.
    [8] (a) Coe B J, Houbrechts S, Asselberghs I, et al. Efficient, Reversible Redox-Switching of Molecular First Hyperpolarizabilities in Ruthenium(II) Complexes Possessing Large Quadratic Optical Nonlinearities[J]. Angew Chem Int Ed, 1999, 38(3): 366–369. (b) Coe B J, Harris J A, Jones L A, et al. Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers[J]. J Am Chem Soc, 2005, 127(13): 4845–4859.
    [9] (a) Hill C L, Prosser-McCartha C M. Homogeneous catalysis by transition metal oxygen anion clusters[J]. Coord Chem Rev, 1995, 143: 407–455. (b) Neumann R. Polyoxometalate Complexes in Organic Oxidation Chemistry[J]. Prog Inorg Chem, 1998, 47: 317–370. (c) Neumann R, Khenkin A M. Molecular oxygen and oxidation catalysis by phosphovanadomolybdates[J]. Chem Commun, 2006, (24): 2529–2538.
    [10] (a) López X, Bo C, Poblet J M. Electronic Properties of Polyoxometalates: Electron and Proton Affinity of Mixed-Addenda Keggin and Wells-Dawson Anions[J]. J Am Chem Soc, 2002, 124(42): 12574–12582. (b) Duclusaud H, Borshch S A. Electron Delocalization and Magnetic State of Doubly-Reduced Polyoxometaltes[J]. J Am Chem Soc, 2001, 123(12): 2825–2829; (c) Yan L K, Dou Z, Guan W, et al. A DFT study on the electronic and redox properties of [PW_(11)O_(39)(ReN)]n– (n = 3, 4, 5) and [PW_(11)O_(39)(OsN)]2–[J]. Eur J Inorg Chem, 2006, 2006(24): 5126-5129.
    [11] Guan W, Yang G C, Liu C G, et al. Reversible redox-switchable second-order optical nonlinearity in polyoxometalate: A quantum chemical study of [PW_(11)O_(39)(ReN)]n- (n = 3-7)[J]. Inorg Chem, 2008, 47(12): 5245-5252.
    [12] te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. J Comput Chem, 2001, 22(9): 931-967.
    [13] Fonseca Guerra C, Snijders J G, te Velde G, et al. Towards an order-N DFT method[J]. Theor Chem Acc, 1998, 99(6): 391-403.
    [14] ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
    [15] van Lenthe E, Baerends E J, Snijders J G. Relativistic regular two-component Hamiltonians[J]. J Chem Phys, 1993, 99(6): 4597-4610.
    [16] van Lenthe E, Ehlers A E, Baerends E J. Geometry optimizations in the zero order regular approximation for relativistic effects[J]. J Chem Phys, 1999, 110(18): 8943-8953.
    [17] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Can J Phys, 1980, 58(8): 1200-1211.
    [18] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, 2004.
    [19] López X, Fernández J A, Poblet J M. Redox properties of polyoxometalates: new insights on the anion charge effect[J]. Dalton Trans, 2006, (9): 1162-1167.
    [20] Fernández J A, López X, Bo C, et al. Polyoxometalates with Internal Cavities: Redox Activity, Basicity, and Cation Encapsulation in [Xn+P5W30O110](15-n)- Preyssler Complexes, with X=Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+[J]. J Am Chem Soc, 2007, 129(40): 12244-12253.
    [21] Romo S, Fernández J A, Maestre J M, et al. Density functional theory and ab initio study of electronic and electrochemistry properties of the tetranuclear sandwich complex [FeIII4(H_2O)2(PW9O34)2]6-[J]. Inorg Chem, 2007, 46(10): 4022-4027.
    [22] Kelly C P, Cramer C J, Truhlar D G. Aqueous Solvation Free Energies of Ions and Ion?Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton[J]. J Phys Chem B, 2006, 110(32): 16066-16081.
    [23] Meyers F, Marder S R, Pierce B M, et al. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (α,β, andγ) and Bond Length Alternation[J]. J Am Chem Soc, 1994, 116(23): 10703-10714.
    [24] Brooker L G S, Sprague R H. Color and Constitution. IV.1 The Absorption of Phenol Blue[J]. J Am Chem Soc, 1941, 63(11): 3214-3215.
    [25] Brooker L G S, Craig A C, Heseltine D W, et al. Color and Constitution. XIII.1 Merocyanines as Solvent Property Indicators[J]. J Am Chem Soc, 1965, 87(11): 2443-2450.
    [26] Di Bella S, FragalàI. Two-dimensional characteristics of the second-order nonlinear optical response in dipolar donor-acceptor coordination complexes[J]. New J Chem, 2002, 26(3): 285-290.
    [27] Di Bella S, FragalàI, Ledoux I, et al. Dipolar Donor-Acceptor-Substituted Schiff Base Complexes with Large Off-Diagonal Second-Order Nonlinear Optical Tensor Components[J]. Chem Eur J, 2001, 7(17): 3738-3743.
    [1] Sheldon R A, Kochi J K. Metal-Catalyzed Oxidations of Organic Compounds[M]. (Academic Press: New York), 1981, Chapter 3.
    [2] Parshall G W, Ittel S D. Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes[M]. 2nd ed. (Wiley, New York),1992, p. 151.
    [3] Suslick K S. In ActiVation and Functionalization of Alkenes[M]. Hill C L. ed. (Wiley, New York). 1989, p. 219.
    [4] Jorgensen K A. Transition-metal-catalyzed epoxidations[J]. Chem ReV, 1989, 89(3): 431-458.
    [5] Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage[J]. Chem ReV, 1992, 92(6): 1411-1456.
    [6] Fox M A. Photoinduced electron transfer in arranged media[J]. Top Curr Chem, 1991, 159, 67-101.
    [7] Ollis D F, Pelizzetti E, Serpone N. Photocatalysis: Fundamentals and Applications[M]. Serpone N, Pelizzetti E. (Eds.) (John Wiley and Sons, Inc., New York). 1989, p. 603.
    [8] Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chem Rev, 1993, 93(1): 341-357.
    [9] Klemperer W G. Inorganic Synthesis[M]. Ginsberg A P. (Ed.), (John Wiley and Sons, Inc., New York). 1990, 27, Chapter 3, 71.
    [10] Duonghong D, Borgarello E, Gr?tzel M. Dynamics of light-induced water cleavage in colloidal systems[J]. J Am Chem Soc, 1981, 103(16): 4685-4690.
    [11] Henglein A. Colloidal TiO2 Catalyzed Photo- And Radiation Chemical Processes In Aqueous Solution[J]. Ber Bunsenges Phys Chem, 1982, 86(3): 241-246.
    [12] Yamagata S, Baba R, Fujishima A. Photocatalytic Decomposition of 2-Ethoxyethanol on Titanium Dioxide[J]. Bull Chem Soc Jpn, 1989, 62(4): 1004-1010.
    [13] Gratzel M. Photocatalysis: Fundamentals and Applications[M]. Serpone N, Pelizzetti E. (Eds.) (John Wiley and Sons, Inc. New York). 1989, p. 123.
    [14] Hill C L.“Polyoxometalates, reactivity”: in Comprehensive Coordination Chemistry II[M]. Ed.: Lockwood D J.), (Elsevier, Oxford). 2003, 4: 679-759.
    [15] Hill C L. Progress and challenges in polyoxometalate-based catalysis and catalytic materials chemistry[J]. J Mol Catal A, 2007, 262(1-2): 2-6.
    [16] (a) Pope M T, Varga Jr G M. Heteropoly Blues. I. Reduction Stoichiometries and Reduction Potentials of Some 12-Tungstates[J]. Inorg Chem, 1966, 5(7): 1249-1254. (b) Pope M T, Papaconstantinou E. Heteropoly blues. II. Reduction of 2:18-tungstates[J]. Inorg Chem, 1967, 6(6): 1147-1152. (c) Papaconstantinou E, Pope M T. Heteropoly blues. III. Preparation and stabilities of reduced 18-molybdodiphosphates[J]. Inorg Chem, 1967, 6(6): 1152-1155. (d) Varga Jr G M, Papaconstantinou E,Pope M T. Heteropoly blues. IV. Spectroscopic and magnetic properties of some reduced polytungstates[J]. Inorg Chem, 1970, 9(3): 662-667. (e) Papaconstantinou E, Pope M T. Heteropoly blues. V. Electronic spectra of one- to six-electron blues of 18-metallodiphosphate anions[J]. Inorg Chem, 1970, 9(3): 667-669.
    [17] Pope M T. Heteropoly and Isopoly Oxometalates[M]. New York: Springer, 1983, 1.
    [18] (a) Clemente-Leon M, Mingotaud C, Agricole B, et al. Anwendung der Langmuir-Blodgett-Technik auf Polyoxometallate: auf dem Weg zu neuartigen magnetischen Filmen[J]. Angew Chem, 1997, 109(10): 1143-1145. (b) M. Clemente-Leon, C. Mingotaud, B. Agricole, C.J. Gomez-Garcia, E. Coronado and P. Delhaes, Application of the Langmuir-Blodgett Technique to Polyoxometalates: Towards New Magnetic Films[J]. Angew. Chem. Int. Ed. Engl. 1997, 36(10): 1114-1116.
    [19] Clemente-Leon M, Coronado E, Delhaes P, et al. Hybrid Langmuir-Blodgett Films Formed by Alternating Layers of Magnetic Polyoxometalate Clusters and Organic Donor Molecules - Towards the Preparation of Multifunctional Molecular Materials[J]. Adv Mater, 2001, 13(8): 574-577.
    [20] Clemente-Leon M, Agricole B, Mingotaud C, et al. Toward New Organic/Inorganic Superlattices: Keggin Polyoxometalates in Langmuir and Langmuir?Blodgett Films[J]. Langmuir, 1997, 13(8): 2340-2347.
    [21] Clegg W, Elsegood M R J, Errington R J, et al. Alkoxide hydrolysis as a route to early transition-metal polyoxometalates: synthesis and crystal structures of heteronuclear hexametalate derivatives[J]. J Chem Soc Dalton Trans, 1996, (5): 681-690.
    [22] Crano N J, Carlisle Chambers R, Lynch V M, et al. Preparation and photocatalytic studies on a novel Ti-substituted polyoxometalate[J]. J Mol Catal A, 1996, 114(1-3): 65-75.
    [23] Trubitsyna T A, Kholdeeva O A. Kinetics and mechanism of the oxidation of 2,3,6-trimethylphenol with hydrogen peroxide in the presence of Ti-monosubstituted polyoxometalates[J]. Kinet Catal, 2008, 49(3): 371-378.
    [24] Kikukawa Y, Yamaguchi S, Tsuchida K, et al. Synthesis and Catalysis of Di- and Tetranuclear Metal Sandwich-Type Silicotungstates [(γ-SiW_(10)O_(36))2M2(μ-OH)2]10? and [(γ-SiW_(10)O_(36))2M4(μ4-O)(μ-OH)6]8? (M = Zr or Hf)[J]. J Am Chem Soc, 2008, 130(16): 5472-5478.
    [25] John Errington R, Petkar S S, Middleton P S, et al. Non-aqueous synthetic methodology for TiW5 polyoxometalates: protonolysis of [(MeO)TiW_5O_(18)]3– with alcohols, water and phenols[J]. Dalton Trans, 2007, (44): 5211-5222.
    [26] Kholdeeva O A, Maksimovskaya R I, Titanium- and zirconium-monosubstituted polyoxometalates as molecular models for studying mechanisms of oxidation catalysis[J]. J Mol Catal A Chem, 2007, 262(1-2): 7-24.
    [27] te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. J Comput Chem, 2001, 22(9): 931-967.
    [28] Fonseca Guerra C, Snijders J G, te Velde G, et al. Towards an order-N DFT method[J]. Theor Chem Acc, 1998, 99(6): 391-403.
    [29] ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
    [30] van Lenthe E, Baerends E J, Snijders J G. Relativistic regular two-component Hamiltonians[J]. J Chem Phys, 1993, 99(6): 4597-4610.
    [31] van Lenthe E, Ehlers A E, Baerends E J. Geometry optimizations in the zero order regular approximation for relativistic effects[J]. J Chem Phys, 1999, 110(18): 8943-8953.
    [32] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Can J Phys, 1980, 58(8): 1200-1211.
    [33] Handy N C, Cohen A J. Left-right correlation energy[J]. Mol Phys, 2001, 99(5): 403-412.
    [34] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
    [35] Pye C C, Ziegler T, van Lenthe E, et al. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package—Part II. COSMO for real solvents1[J]. Can J Chem, 2009, 87(7): 790-797.
    [36] Hu S Z, Zhou Z H, Tsai K R. Average van der Waals radii of atoms in crystals[J]. Acta Phys Chim Sin, 2003, 19(11): 1073-1077.
    [37] Elliott P, Furche F, Burke K. Excited States from Time-Dependent Density Functional Theory[M]. Rev Comp Ch, 2009, 26, Chapter 3: 91-164.
    [38] Frisch M J, Trucks G W, Schlegel H B. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, 2004.
    [39] López X, Fernández J A, Poblet J M. Redox properties of polyoxometalates: new insights on the anion charge effect[J]. Dalton Trans, 2006, (9): 1162-1167.
    [40] Fernández J A, López X, Bo C, et al. Polyoxometalates with Internal Cavities: Redox Activity, Basicity, and Cation Encapsulation in [Xn+P5W30O110](15-n)- Preyssler Complexes, with X=Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+[J]. J Am Chem Soc, 2007, 129(40): 12244-12253.
    [41] Romo S, Fernández J A, Maestre J M, et al. Density Functional Theory and ab Initio Study of Electronic and Electrochemistry Properties of the Tetranuclear Sandwich Complex [FeIII4(H_2O)2(PW9O34)2]6-[J]. Inorg Chem, 2007, 46(10): 4022-4027.
    [42] Kelly C P, Cramer C J, Truhlar D G. Aqueous Solvation Free Energies of Ions and Ion?Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton[J]. J Phys Chem B, 2006, 110(32): 16066-16081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700