用户名: 密码: 验证码:
砂土的剪胀性及本构模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剪胀性和压硬性是岩土材料的基本特性,这是由岩土材料的颗粒性以及颗粒间摩擦性决定的。一个较成功的本构模型应当能够正确的反映剪胀性和压硬性这两个基本特性。对于压硬性的认识和利用已经比较成熟,而剪胀性由于其影响因素比较多,过程比较复杂,要恰当的描述剪胀性还要做许多工作。
     本文首先对剪胀机理进行研究,提出了一种能描述砂土剪胀剪缩特性的简单的微观模型,同时在已有试验结果基础上定义了相变线,并提出了以相变状态为参考的状态参量和剪胀指标;接着,将剪胀指标引入到剑桥模型中,建立了基于剑桥模型的剪胀性砂土本构模型,另外结合热力学理论和边界面理论,并引入本文提出的剪胀指标和状态参量分别建立了基于热力学的剪胀性砂土本构模型和剪胀性砂土的边界面模型;最后,通过试验验证了本文建立的剪胀性砂土的边界面模型。
     通过引入本文提出的以相变线为参考的状态参量和剪胀指标来描述剪胀性砂土的变形特性是本论文最显著的特点。本文的主要研究结果如下:
     ①利用本文提出的微观模型并与已有的变形机制相结合,解释了砂土的一系列变形特性:松砂只发生剪缩,而密砂则先剪缩后剪胀;对于剪胀性砂土,初始孔隙比越小(或者说越密实),峰值应力比越高,而相变应力比越低;同时也可以解释卸载体缩、相变状态以及临界状态,等等。与已有的以临界状态为参考的状态参数相比,本文提出的以相变状态为参考的状态参量和剪胀指标能够反映初始孔隙比对砂土变形过程中所处状态的影响,更适合描述剪胀性砂土的剪胀剪缩特性。
     ②以传统弹塑性理论为基础的剑桥模型简单实用,但不能恰当的描述剪胀性材料的变形特性。本文通过在剑桥模型的塑性势函数中引入以相变线为参考的剪胀指标,建立了一个基于剑桥模型的弹塑性本构模型,该模型能够较好的反应密实砂土先剪缩后剪胀的变形特性,并且对于松砂该模型能很自然的退化为剑桥模型。
     ③热力学理论能够从本质上解释传统弹塑性力学无法解释的一些岩土材料的变形特性,并使得传统弹塑性模型中的关联和非关联流动法则得到统一的描述。本文将热力学理论引入到本构模型中,同时针对密实砂土先剪缩后剪胀的变形特性,将本文所提出的剪胀指标引入到耗散空间的屈服函数中,建立了一个基于热力学的砂土本构模型,该模型的一个显著特点是能够很自然的运用非关联流动法则,而且能够描述密实砂土先剪缩后剪胀的变形特性,比较真实的反映砂土的变形特征。
     ④边界面理论引入到本构模型后,使得本构模型能够描述一些经典塑性理论无法描述的土的真实特性,例如循环荷载下砂土的变形特性,但在描述密砂由剪缩到剪胀的过程中遇到困难。本文把以相变线作为参考的状态参量以及剪胀指标引入到塑性模量和剪胀函数中,建立了一个基于边界面模型的剪胀性砂土本构模型,该模型能较好的描述密砂在循环荷载作用下的剪胀剪缩特性,并且能很自然的退化为比较简单的可以描述松砂变形特点的经典的边界面模型。
Stress-dilatancy and stress hardening are basic characters of soils, which are determined by the arrangement of grains and the friction among them, a good model should reflect the above two characters. Till now, the stress-hardening has been studied and applied successfully, but as for the stress-dilatancy, due to its complicated process and the many influencing factors, much research needs to be carried out to give a satisfactory description of stress-dilatancy.
     In this dissertation, the mechanism of dilation in sands is researched, and on the basis of this research, we presented a microscope model which could describe sand's dilatant and compressive characteristics in a simple manner. With the help of some available experimental data, a phase transformation line is defined, and a state parameter together with a dilation index is introduced with the phase transformation line as a reference. Then, the dilation index was introduced into the Cam-Clay model and a stress-dilatancy model of sand was obtained. The thermomechanical framework and bounding surface theory could represent some behavior of some sand quite well, and combining with the proposed state parameter or the dilation index, those models could be more perfect, especially for describing compression and dilatancy. Finally, the proposed model based on the bounding surface theory was validated.
     It's a distinct characteristic for the dissertation to introduce the state parameter and the dilation index, which took the transformation state as reference, into the models to describe the behavior of dilatant sand. The main conclusions are as follows:
     ①Combined with other mechanism, the presented micro-model could explain many characteristics of sands, such as bigger initial void ratio will result in a smaller peak value of stress ratio, loose sand compressed only while dense sand compressed first and then dilates, volume becomes small when unloading, and the state of transformation, the state of critical, the strength of sand can also take into account. Comparing with the previous state parameter which took the critical state as reference, the proposed state parameter and dilation index in the dissertation could represent the effect of the initial void on the state during deformation process, and is more suitable to describe the behavior of dilative sand.
     ②By introducing the proposed dilation index into the plastic potential function of the Cam-Clay model, a model for sand especially for dense sand was presented, which could describe the dense sand compressing first and then dilating. And as for loose sand, the presented model evolved into the Cam-Clay model.
     ③Combined with the thermo-mechanical framework, by introducing the proposed dilation index into the yield function of dissipative stress space, a model was brought forward; and it's the notable point of the model to apply the non-associated flow rule naturally and describe the true deformation of sand.
     ④By introducing the proposed sate parameter and dilation index into the plastic hardening modulus expression and the stress-dilatancy equation, a new dilatant constitutive model for sand was developed within the general framework of bounding surface, which could describe the characteristic of dense sand during cyclic loading. What's more, for loose sand, the model could evolve into the simple and classical bounding surface model naturally.
引文
[1]沈珠江.理论土力学[M].中国水利水电出版社:北京,2000
    [2]赵成刚,白冰,王运霞.土力学原理[M].清华大学出版社:北京,2004
    [3]龚晓南.土塑性力学(第二版)[M].杭州大学出版社:杭州,1999
    [4]Saleeb,FA,Chen,QF.土的本构关系综述[J].力学进展,1987,17(2):261-268
    [5]Chen,W.F..Constitutive equations for engineering materials Vol.2:Plasticity and modeling.Elsevier,Amsterdam,1994
    [6]张学言.土塑性力学的建立与发展[J].力学进展,1989,19(4):485-495
    [7]张学言.岩土塑性力学[M].人民交通出版社:北京,1993
    [8]章根德.地质材料本构模型的最新进展[J].力学进展,1994,24(3):374-385
    [9]卢肇钧.土的变形破坏机理和土力学计算理论问题[J]_岩土工程学报,1989,(6):67-76
    [10]]濮家骝,李广信.发展水平报告之二土的本构类系及其验证与应用[J]岩土工程学报,1986,18(1):312-386
    [11]郑颖人,沈珠江,龚晓南.广义塑性力学-岩土塑性力学原理.中国建筑工业出版社:北京,2002
    [12]黄文熙.土的工程性质.水利电力出版社:北京,1983
    [13]徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究.岩土工程学报,1995,17(2):1-12
    [14]Rowe,P W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact,Proc.of the Royal Society of London,1962,269.Series A:500-527.
    [15]Oda,M,Konishi,J.Microscopic deformation mechanism of granular material in simple shear[J].Soils and Foundations,1974,14(4):25-38
    [16]Matsuoka,H.A microscopic study on shear mechanism of granular materials[J].Soils and Foundations,1974,14(1):29-43
    [17]Matsuoka,H.Stress-strain relationships of sands based on the mobilized plane[J].Soils and Foundations,1974,14(2):47-61
    [18]松岗元(著).罗汀,姚仰平(编译).土力学[M].中国水利水电出版社:北京,2001
    [19]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97
    [20]沈珠江.现代土力学的基本问题[J].力学与实践,1998,20(6):1-6
    [21]Shen,Z J.A granular medium model for liquefaction analysis of sands[J].Chinese Joumal of Geotechnical Engineering,1999,21(6):742-748
    [22]沈珠江.土体变形特性的损伤力学模拟[C].第五届全国岩土力学数值分析与解析方法的讨论会论文集(第一卷).武汉测绘科技出版社:武汉,1994:1-8
    [23]Desai,C S,Shao,C,Park,I.J.Disturbed state modeling of cyclic behavior of soils and interface in dynamic soils structure interaction.9th International Conference Computer Methods and Advances in Geomechanics,Wuhan,1997,(I):31-42
    [24]赵锡宏,孙红,罗冠威.损伤土力学.同济大学出版社:上海,2000
    [25]沈珠江.结构性粘土的堆砌体模型.岩土力学,2000,21(1):1-4
    [26]Konder,R.L..Hyperbolic stress-strain response:cohesive soils.Journal of the Soils Mechanics and Foundations Division,1963,89(SM1):115-143
    [27]Duncan,J.M.,Chang,C.Y..Nonlinear analysis of stress and strain in soils.Journal of the Soils Mechanics and Foundations Division,1970,96(SM5):1629-1653
    [28]屈智炯.土的塑性力学[M].成都科技大学出版社:成都,1987
    [29]Chen,W.F.,Saleeb,A.F..Constitutive equations for engineering materials Vol.1:Elasticity and modeling[M].John Wiley-Interscience,New York,1982
    [30]沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2):11-19
    [31]沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究,1986,4:1-14
    [32]Domaschuk,L.Valliappan,P..Nonlinear settlement analysis by finite element[J].Journal of the Soils Mechanics and Foundations Division,1975,101(GT7):601-614
    [33]Izumi,H.,Kamemura,K.,Sato,S..Finite element analysis of stresses and movements in excavations[J].International Journal for Numerical Analytical Methods in Geomechanics,1976,1:701-712
    [34]Chen,W.F.,Mizuno,E..Nonlinear analysis in soil mechanics-Theory and Implementation,Elsevier Science Publishers B.V,Amsterdam,1990
    [35]Drucker,D.C.,Prager,W..Extended limit design theorems for continuous media.Quarterly of Applied Mathematics,1952,9:381-389
    [36]Drucker,D.C.,Prager,W..Soil mechanics and plastic analysis or limit design.Quarterly of Applied Mathematics,1952,10:157-165
    [37]Drucker,D.C.,Gibson,R.E.,Henkel,D.J..Soil mechanics and work-hardening theories of plasticity.Transactions ASCE,1957,122:338-346
    [38]Roscoe,K.H.,Schofield,A.N.and Thurairajah,A..Yeilding of clays in states wetter than critical.Geotechnique,1963,13(3):211-240
    [39]Roscoe,K.H.,Burland,J.B..On the generalized stress-strain behavior of 'wet' clay[A].Engineering plasticity[C],Cambridge University Press,London,1968:535-609
    [40]Schofield,A.N.and Wroth,C.P..Critical state soil mechanics,Mc Graw-Hill,1968,New York
    [41]Wroth,C.P.and Bassett,R.H..A stress-strain relationship for the shearing behavior of sand. Geotechnique,1965,15(1):32-56
    [42]Poorooshasb,H.B.,Holubec,J.and Sherborne,A.N..Yielding and flow of sand in triaxial compression(Part Ⅰ).Canadian Geotechnical Journal,1966,3(4):179-190
    [43]Poorooshasb,H.B.,Holubec,J.and Sherborne,A.N..Yielding and flow of sand in triaxial compression(Part Ⅱ and Ⅲ).Canadian Geotechnical Journal,1967,4(4):376-397
    [44]魏汝龙.正常压密粘土的本构定律.岩土工程学报,1981,3(3):10-18
    [45]黄文熙.土的弹塑性应力-应变模型理论.清华大学学报,1979,19(1):1-26
    [46]黄文熙.硬化规律对土的弹塑性应力—应变模型影响的研究.岩土工程学报,1980,2(1):1-12
    [47]黄文熙,濮家骝,陈愈炯.土的硬化规律和屈服函数.岩土工程学报,1981,3(3):19-27
    [48]殷有泉.岩土介质的弹塑性本构关系.塑性力学进展(王仁、黄克智、朱兆祥主编),中国铁道出版社:北京,1988:237-267
    [49]Lade,P.V.,Duncan,J.M..Elasto-plastic stress-strain theory for cohesionless soil.Journal of Geotechnic al Engineering,1975,101(10):1037-1064
    [50]Lade,P.V..Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces.International Journal of Solids and Structures,1977,13(11):1019-1035
    [51]Lade,P.V.,Nelson,R.B.,Ito,Y.M..Instability of granular materials with nonassociated flow.Journal of Engineering Mechanics,1988,114(12):2173-2191
    [52]Kim,M.K.,Lade,P.V..Single hardening constitutive model for frictional materials Ⅰ:Plastic potential function.Computers and Geotechnics,1988,5(4):307-324
    [53]Lade,P.V.,Kim,M.K..Single hardening constitutive model for frictional materials Ⅱ:Yield criterion and plastic work contours.Computers and Geotechnics,1988,6(1):13-29
    [54]DiMaggio,F.L.,Sandler,L.S..Material model for granular soils.Journal of Engineering Mechanics Division,1971,97(EM3):935-950
    [55]Sandler,L.S.,DiMaggio,F.L.,Baladi,G.Y..Generalized cap model for geological materials.Journal of Geotechnical Engineering Division,1976,102(GT7):683-699
    [56]Resende,L.,Martin,J.B..Formulation of Drucker-Prager cap model.Journal of Engineering Mechanics,1985,111(7):855-881
    [57]Resende,L.,Martin,J.B..Formulation of Drucker-Prager cap model(closure).Journal of Engineering Mechanics,1987,113(8):1257-1259
    [58]Vermeer,P.A..A double hardening model for sand.Geotechnique,1978,28(4):413-433
    [59]Nova,R..On the hardening of soils.Archives of Mechanics,1977,29(3):445-458
    [60]Nova,R.,Wood,D.M..A constitutive model for sand in triaxial compression.International Journal for Numerical Analytical Methods in Geomechanics,1979,3:255-278
    [61]Nova,R.,Hueckel,T..A unified approach to the modeling of liquefaction and cyclic mobility of sands. Soils and Foundations,1981,21(4):13-28
    
    [62] Jefferies, M.G. Nor-sand: a simple critical state model for sand. Geotechnique, 1993,43(1): 91-103
    [63] Poorooshasb, H.B., and Pietruszczak, S.A.. A generalized flow theory for sand. Soils and Foundations,1986,6(2):l-15
    [64] Mtsuoka, H.. A microscopic study on shear mechanism of granular materials. Soils and Foundations,1974,14(1):29-43
    [65] Mtsuoka, H.. Stress-strain relationships of sands based on the mobilized plane. Soils and Foundations,1974,14(2):47-62
    [66] Mtsuoka, H. and Nakai, T.. Stress-deformation and strength characteristics of soils under three difference principal stresses. Proc JSCE,1974,232:59-70
    [67] Mtsuoka, H. On the significance of the "Spatial Mobilized Plane". Soils and Foundations,1976,16(1):91-100
    [68] Nakai, T. and Mtsuoka, H.. Shear behaviors of sand and clay under three-dimensional stress condition. Soils and Foundations, 1983,23(2):26-42
    [69] Mtsuoka, H. and Geka, H.. A stress-strain model for granular materials considering mechanism of fabric change. Soils and Foundations, 1983,23(2):83-97
    [70] Nakai, T. and Mtsuoka, H.. Constitutive equation for soils based on the extended concept of "Spatial Mobilized Plane" and its application to finite element analysis. Soils and Foundations,1983,23(4):87-105
    [71] Nakai, T. and Mihara, Y.. A new mechanical quantity for soils and its application to elastoplastic constitutive models. Soils and Foundations, 1984,23(2):82-94
    [72] Nakai, T.. An isotropic hardening elastoplastic model for sand considering the stress path dependency in three-dimensional stresses. Soils and Foundations, 1989,29(1):119-137
    [73] Ohmaki, S.. Strength and deformation characteristics of overconsolidated cohesive soil. The third International Conference on Numerical Methods in Geomechanics, Aachen,1979:465-474
    [74] Mtsuoka, H. and Sun, D.H.. Extension of Spatial Mobilized Plane(SMP) to frictional and cohesive materials and its application to cemented sands. Soils and Foundations, 1995,35(4):63-72
    [75] Mtsuoka, H., Hoshikawa, T. and Ueno, K.. A general failure criterion and stress-strain relation for granular materials to metals. Soils and Foundations, 1990,30(2): 119-127
    [76] Mtsuoka, H. and Ishizaki, H.. Deformation and strength of anisotropic soil. Proc. 10th ICSMFE,1:699-702
    [77] Kabilamany, K. and Ishibara, K., Stress dilatancy and hardening laws for rigid granular model of sand.Soils Dynamics and Earthquake Engineering,1990,9(2):66-77
    [78] Pastor, M.. Generalized plasticity and the modeling of soil behavior. International Journal for Numerical Analytical Methods in Geomechanics,1990,4:151-190
    [79]Prevost,J.H..Multimechanism elasto-plastic model for soils.Journal of Engineering Mechanics,1990,116(9):1924-1944
    [80]Gudehus,G.and Kolymbas,D..A constitutive law of the rate type for soil.Proc.3rd Int.Conf.Num.Mech.Geomech.,Aachen,W.Germany1979:319-329
    [81]Dafalias,Y.F.Bounding surface plasticity(Ⅰ):Mathematical foundation and hypoplasticity.Journal of Engineering Mechanics,1986,112(9):966-987
    [82]Wang,Z.L.,Dafalias,Y.F.,Shen,C.K..Bounding surface hypoplasticity model for sands.Journal of Engineering Mechanics,1990,116(5):983-1001
    [83]Bardet,J.P..Hypoplastic model for sands.Journal of Engineering Mechanics,1990,116(9):1973-1994
    [84]Wu,W.,Kolymbas,D..Numerical testing of the stability criterion for hypoplastic constitutive equations.Mechanics of Materials,1990,9:245-253
    [85]Wu,W.,Bauer,E..A simple hypoplastic constitutive model for sand.International Journal for Numerical and Analytical Methods in Geomechanics,1994,18:833-862
    [86]Wu,W..Hypoplastic constitutive model with critical state for granular material.Mechanics of Materials,1996,23(1):45-69
    [87]Gudehus,G..Constitutive relation for granular-liquid mixtures with a pectic constituent.Mechanics of Materials,1996,22(2):93-103
    [88]栾茂田,吴兴征,李湘崧.堆石料的亚塑性边界面模型及其验证.岩石力学与工程学报,2001,20(2):164-170
    [89]张建民,谢定义.饱和砂土动本构理论研究进展.力学进展,1994,24(2):187-204
    [90]Hardin B O,Dmevich V P.Shear modulus and damping in soils:measurement and parameter effects.Journal of the Soil Mechanics and Foundations Division,ASCE,1972,98(SM6):603-624
    [91]Martin G R,Finn W D L,Seed H B.Effects of system compliance on liquefaction tests.Journal of the Geotechnical Engineering Division,ASCE,1978,104(4):463-479
    [92]沈珠江.一个计算砂土液化变形的等价粘弹性模式.中国土木工程学会第四届土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社,1986:199-207
    [93]陈生水,沈珠江.钢筋混凝土面板坝的地震永久变形分析.岩土工程学报,1990,12(3):66-72
    [94]Prevost J H,Keane C M.Shear stress-strain curve generation from simple material parameters.Journal of Geotechnical Engineering,ASCE,1990,116(8):1255-1263
    [95]Pyke R M.Nonlinear soil models for irregular cyclic loadings.Journal of the Geotechnical Engineering Division,ASCE,1979,105(GT6):715-726
    [96]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹塑性模型.岩土工程学报,1980, 2(3):10-20
    [97]王志良,韩清宇.粘弹塑性土层地震反应的波动分析法.地震工程与工程振动,1981,1(1):117-137
    [98]Ishihara K,Yoshida N,Tsujino S.Modelling of stress-strain relations of soils in cyclic loading.Proceedings of The Fifth International Conference on Numerical Methods in Geomechanics,Nagoya,volume 1,1985:373-380
    [99]Nishi K,Tohma J,Kanatani M.Effective stress response analysis for level sand deposits with cyclic mobility.Proceedings of The Fifth International Conference on Numerical Methods in Geomechanics,Nagoya,volume 1,1985:389-397
    [100]Iwan W D.On a class of models for the yielding behavior of continuous and composite system.Journal of Applied Mechanics,ASME,1967,34(E3):612-617
    [101]郑大同,王惠昌.循环荷载作用下土的非线性应力应变模型.岩土工程学报,1983,5(1):65-76
    [102]Nossan A S.An overlay model for cyclic behaviour of sands.Proceedings of The International Symposium on Numerical Models in Geomechanics,Zurich,1982:110-116
    [103]李小军,廖振鹏.土应力应变关系的粘—弹—塑模型.地震工程与工程振动,1989,9(3):65-72
    [104]栾茂田.土动力非线性分析中的变参数Ramberg-Osgood本构模型.地震工程与工程振动,1992,12(2):69-78
    [105]李小军.非线性场地地震反应分析方法的研究.博士研究生学位论文.国家地震局工程力学研究所,1993年3月
    [106]Bardet J P.Scaled memory model for cyclic behavior of soils.Journal of Geotechnical Engineering,ASCE,1995,121(11):766-775
    [107]张克绪,李明宰,王治琨.基于非曼辛准则的土动弹塑性模型.地震工程与工程振动,1997,17(2):74-81
    [108]Muravskii G,Frydman S.Site response analysis using a non-linear hysteretic model.Soil Dynamics and Earthquake Engineering,1998,17(4):227-238
    [109]Puzrin A M,Shiran A.Effects of the constitutive relationship on seismic response of soils.Part Ⅰ.Constitutive modeling of cyclic behavior of soils.Soil Dynamics and Earthquake Engineering,2000,19(5):305-318
    [110]Mroz Z.On the description of anisotropic work hardening.Journal of the Mechanics and Physics of Solids,1967,15(3):163-175
    [111]Prevost J H.Mathematical modelling of monotonic and cyclic undrained clay behaviour.International Journal for Numerical and Analytical Methods in Geomechanics,1977,1(2):195-216
    [112] Prevost J H. Anisotropic undrained stress-strain behavior of clays. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(GT8): 1075-1090
    [113] Prevost J H. Plasticity theory for soil stress-strain behavior. Journal of the Engineering Mechanics Division, ASCE, 1978, 104(EM5): 1177-1194
    [114] Prevost J H. A simple plasticity theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering, 1985, 4(1): 9-17
    [115] Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic hardening model for soils and its application to cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 1978,2(3): 203~221
    [116] Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic, critical state model for soils subject to cyclic loading. Geotechnique, 1981, 31(4): 451~469
    
    [117] Zienkiewicz O C.广义塑性力学和地力学的一些模型.应用数学与力学, 1982, 3(3): 267-280
    [118] Mroz Z, Zienkiewicz O C. Uniform formulation of constitutive equations for clays and sands. Mechanics of Engineering Materials, edited by C. S. Desai and R. H. Gallagher, John Wiley & Sons Ltd., Chapter 22, 1984: 415-449
    [119] Zienkiewicz O C , Mroz Z . Generalized plasticity formulation and applications to geomechanics. Mechanics of Engineering Materials, edited by C. S. Desai and R. H. Gallagher, John Wiley & Sons Ltd., Chapter 33, 1984: 655~679
    [120] Elgamal A, Yang Z h, Parra E. Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 2002, 22(4): 259~271
    [121] Dafalias Y F, Popov E P. A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 1975, 21(3): 173~192
    [122] KriegRD. A practical two surface plasticity theory. Journal of Applied Mechanics, ASME, 1975,42(3): 641~646
    [123] MrozZ, Norris V A, Zienkiewicz O C. Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils. Geotechnique, 1979, 29(1): 1~34
    [124] Dafalias Y F, Herrmann L R. Bounding surface formulation of soil plasticity. Soil Mechanics —Transient and Cyclic Loads, Constitutive relations and numerical treatment, edited by G. N. Pande and O. C. Zienkiewicz, John Wiley & Sons Ltd., Chapter 10, 1982: 253~282
    [125] Aboim C A , Roth W H . Bounding-surface-plasticity theory applied to cyclic loading of sand. Proceedings of The International Symposium on Numerical Models in Geomechanics, Zurich,1982: 65~72
    [126] Pande GN, Pietruszczak S. " Reflecting surface " model for soils. Proceedings of The International Symposium on Numerical Models in Geomechanics, Zurich, 1982: 50~64
    [127] Bardet J P. Application of bounding surface plasticity to cyclic sand behavior. Soil Dynamics and Earthquake Engineering, Proceedings of The Second International Conference, on board the liner, New York to Southampton, edited by C. A. Brebbia, A. S. Cakmak and A. M. Abdel Ghaffar, C. M. Ltd and Springer-Verlag Berlin, 1985: 2-3~2-16
    [128] Bardet J P. Bounding surface plasticity model for sands. Journal of Engineering Mechanics, ASCE,1986, 112(11): 1198~1217
    [129] Zienkiewicz 0 C, Leung K H, Pastor M. Simple model for transient soil loading in earthquake analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(5):453~498
    [130] Poorooshasb H B, Pietruszczak S. On yielding and flow of sand; a generalized two-surface model. Computers and Geotechnics, 1985, 1(1): 33~58
    [131] Poorooshasb HB, Pietruszczak S. Generalized flow theory for sand. Soik and Foundations, 1986,26(2): 1~15
    [132] Desai C S, Somasundaram S, Faruque M O. Constitutive modelling of geological materials: a general procedure. Developments in Soil Mechanics and Foundation Engineering—2, Stress-Strain Modelling ofSoils, edited by P. K. Banerjee and R. Butterfield, Elsevier Applied Science Publishers Ltd, 1985:43~67
    [133] Hirai H. Elastoplastic constitutive model for cyclic behavior of sands. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(5): 503~520
    
    [134] Hirai H. An anisotropic hardening model for sand subjected to cyclic loading. Soil Dynamics and Liquefaction, edited by A. S. Cakmak, Computational Mechanics Publications and Elsevier Science Publishers B.V., 1987: 53~67
    [135] Meimon Y, Tan C H. A new double hardening model for soils under cyclic loading. Numerical Models in Geomechanics, edited by S. Pietruszczak and G. N. Pande, Elsevier Science Publishers Ltd, 1989:28~35
    [136] Tabbaa A AL, Wood DM. An experimentally based "bubble" model for clay. Numerical Models in Geomechanics, edited by S. Pietruszczak and G. N. Pande, Elsevier Science Publishers Ltd, 1989:91~99
    [137] Liang RY, Ma F G. Anisotropic plasticity model for undrained cyclic behavior of clays. Journal of Geotechnical Engineering, ASCE, 1992, 118(2): 229~265
    [138] Crouch R S, Wolf J P. Unified 3D critical state bounding-surface plasticity model for soils incorporating continuous plastic loading under cyclic paths. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 735~784
    [139] Borja R I, Amies A P. Multiaxial cyclic plasticity model for clays. Journal of Geotechnical Engineering, ASCE, 1994, 120(6): 1051~1070
    [140] Anandarajah A. Procedures for elastoplastic liquefaction modeling of sands. Journal of Engineering Mechanics, ASCE, 1994, 120(7): 1563~1587
    [141] Zhang Limin. Elastoplastic modelling of soil behaviour under cyclic loading. Proceedings of The First International Conference on Earthquake Geotechnical Engineering, Tokyo, volume 1, 1995: 423~428
    [142] BeenK, JefferiesMG. A state parameter for sands. Geotechnique, 1985, 35(2): 99~112
    [143] Manzari M T, DafaliasYF. A critical state two-surface plasticity model for sands. Geotechnique,1997, 47(2): 255~272
    [144] Papadimitriou AG, Bouckovalas G D, DafaliasYF. Use of elastoplasticity to simulate cyclic sand behavior. Proceedings of The Second International Conference on Earthquake Geotechnical Engineering, Lisboa, volume 1, 1999: 125~130
    [145] Papadimitriou A G, Bouckovalas GD, Dafalias Y F. Plasticity model for sand under small and large cyclic strains. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(11):973~983
    [146] Papadimitriou A G, Bouckovalas GD. Plasticity model for sand under small and large cyclic strains: a multiaxial formulation. Soil Dynamics and Earthquake Engineering, 2002, 22(3): 191~204
    [147] Pestana J M, Biscontin G, Nadim F, Andersen K. Modeling cyclic behavior of lightly overconsolidated clays in simple shear. Soil Dynamics and Earthquake Engineering, 2000, 19(7): 501~519
    [148] Li T, Meissner H. Two-surface plasticity model for cyclic undrained behavior of clays. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(7): 613~626
    [149] DafaliasYF. Bounding surface plasticity. I : Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics, ASCE, 1986, 112(9): 966~987
    [150] Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplasticity model for sand. Journal of Engineering Mechanics, ASCE, 1990, 116(5): 983~1001
    [151] Kolymbas D, Herle I, Von Wolffersdorff P A. Hypoplastic constitutive equation with internal variables. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(6):415~436
    [152] Wu W, Bauer E, Kolymbas D. Hypoplastic constitutive model with critical state for granular materials. Mechanics of Materials, 1996, 23(1): 45~69
    [153] Li X S. Reduced-order sand model for ground response analysis. Journal of Engineering Mechanics,ASCE, 1996, 122(9): 872~881
    [154] LiXS, DafaliasYF, Wang Z L. State-dependent dilatancy in critical-state constitutive modelling of sand. Canadian Geotechnical Journal, 1999, 36(4): 599~611
    [155] Arulanandan K , Li X S , Sivathasan K . Numerical simulation of liquefaction-induced deformations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(7):657~666
    [156] Reynolds, O. (1885). On the dilatancy of media composed of rigid particles in contact, Phil. Mag.,5(20): 469~478.
    [157] Casagrande, A.. Characteristics of cohesionless soils affecting the stability of earthfills, Journal of the Boston Society of Civil Engineering, 1936: 257~276
    [158] Casagrande, A.. The shearing resistance of soils and its relation to the stability of Earth dams, Pro. Soils found. Conf. US Engineering Department, 1938
    
    [159] Taylor, D.W.. Fundamentals of soil mechanics, John Wiley and Sons Inc., 1948, New York.
    [160] Newland, P.L. and Allely, B.H.. Volume change in drained triaxial test on granular materials,Geotechnique, 1957,7(1): 17~34.
    [161] Home, M.R.. The behaviour of an assembly of rotund, rigid, cohesionless particles, Proc. Royal Society,A., London, 1965,286: 62~97.
    [162] Vermeer P A and Borst R. Non-associated plasticity for soils, concrete and rock.[R] Geotechnical report,Civil Engineering Department,University of Calgary, 1984 ■
    
    [163] Matsuoka, H.. Dilatancy characteristics of soil, Soils and Foundations, 1974,14(3).
    [164] Matsuoka, H. and Geka, H.. A stress-strain model for granular materials considering mechanism of fabric change, Soils and Foundations, 1983, 23(2): 83~97.
    [165] Tokue, T.. Deformation behaviours of dry sand under cyclic loading and a stress-dilatancy model, Soils and Foundations, 1979,19(2): 63~78. ■■
    
    [166] Nemat-Nasser, S.. On behaviour of granular soils in simple shear, Soils and Foundations, 1980, 20(1):59~73.
    [167] Ueng, T. and Lee, C. Deformation behaviour of sand under shear-particulate approach, J.Geotech.Eng.,ASCE,1990,6(11):1625~1640.
    [168] Oda, M.. The mechanism of fabric change during compressional deformation of sand, Soils and Foundations, 1972,12(2): 1~18.
    [169] Oda, M.. A mechanical and statistical model for granular materials, Soils and Foundations, 1974, 14(1):13~26.
    [170] Oda, M., Tatsuoka, F. and Yoshida, T.. Void ratio in shear band of dense granular soils (Does the critical void ratio exist in dense assemblies of granular soils?), In: Deformation and progressive failure in geomechanics(Ed. Asaoka, A., Adachi, T. and Oka, F.), Pergamon, 1997: 157~162.
    [171] Moroto, N. A new parameter to measure degree of shear deformation of granular material in triaxial compression tests, Soils and Foundations, 1976, 16(4):586~596
    [172] Dafalias, Y.F. An anisotropic critical state clay plasticity model, Proc. 2nd. Int. Conf. on Constitutive laws for Engineering Materials:Theory and Applications,1987,1:513-521.
    [173]Modaressi,H.and Laloui,L.Thermodynamical approach for Cam Clay-family models with Roscoe-type dilatancy rules,Int.J.Num.Anal.Methods in Geomech.,1994,18:133-138.
    [174]Muhunthan,B.,Chameau,J.L.and Masad,E.Fabric effects on the yield behavior of soils,Soils and Foundations,1996,36(3):85-97.
    [175]Rowe P W,Barden L,Lee I K.Energy components during the triaxial cell and direct shear tests[J].Geotechnique,1964,14(3):247-261
    [176]魏汝龙.论土的剪胀性[J].水力学报,1963(6):31-40.
    [177]柴田彻.粘土的剪胀[J].京都大学防灾年报,1963(6):128-134.
    [178]De Josselin,De Jong G.The double sliding,free rotating model for granular assemblies[J].Geotechnique,1971(21):155-163
    [179]Oda M.On stress-dilatancy relation of sand in simple shear[J].Soils and Foundations,1975,15(2):17-29
    [180]Tokue T.A consideration about Rowe's minimum energy ratio principle and a new concept of shear mechanism[J].Soils and Foundations,1978,17(1):1-10
    [181]Vermeer P A.A double hardening model for sand[J].Geotechnique,1978,28(4):413-433.
    [182]Bolton M D.The strength and dilatancy of sands[J].Geotechnique,1986,36(1):65-78.
    [183]Ishihara K Liquefaction and flow failure during earthquakes[J].Geotechnique,1993,43(3):351-415
    [184]Verdugo R.Characterization of sandy soil behavior under large deformation[D].University of Tokyo,1992.
    [185]Cubrinovski M and Ishihara K.Modeling of sand behavior based on state concept.Soils and Foundations,1998,38(3):115-127
    [186]Gutierrez M,Ishihara K and Towhata I.Model for the deformation of sand during rotation of principal stress directions[J].Soils and Foundations,1993,33(3):105-117
    [187]Wan R G and Guo R G.A simple constitutive model for granular soils:modified stress-dilatancy approach.Computers and Geotechnics,1998,22(2):109-133
    [188]Gajo A and Wood DM.Severn-Trent sand:a kinematic-hardening constitutive model:the q-p formulation[J].Geotechnique,1999,49(5):595-614
    [189]Li X S and Dafalias Y F.Dilatancy for cohesionless soils[J].Geotechnique,2000,50(4):449-460.
    [190]李广信.应力路线对土的应力应变关系的影响[D].北京:清华大学,1980
    [191]矫德全,陈愈炯.土的各向异性和卸荷体缩[J].岩土工程学报,1994,16(4):9-16
    [192]Shamoto Y,Zhang J M and Goto S.Mechanism of large post-liquefaction deformation in saturated sand[J].Soils and Foundations,t997,37(2):71-81
    [193]张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报,2000,22(1):12-17
    [194]沈珠江.复杂荷载下砂土液化变形的结构性模型[A].栾茂田主编,第五界全国土动力学学术会议论文集[C]。大连:大连理工大学出版社,1998:1-10
    [195]邵生俊,谢定义.土的变形非线性与剪缩剪胀性新认识.岩土工程学报,2000,22(1):72-76
    [196]李广信,郭瑞平.土的卸载体缩与可恢复剪胀.岩土工程学报,2000,22(2):158-161
    [197]李广信,武世峰.土的卸载体缩的试验研究及其机理探讨.岩土工程学报,2002,24(1):47-50
    [198]刘元雪,施建勇.土的可恢复剪胀的一种解释.岩土力学,2002,23(3):304-308
    [199]Roscoe K H,Schofield A N,Wroth C P.On the yielding of soil[J].Geotechnique,1958,8(1):22-52
    [200]Wood D M.Soil behaviour and critical state soil mechanics[M].Cambridge University Press:New York,1990
    [201]Li X S,Wang Y.Linear representation of steady-state line for sand[J].Journal of Geotechnical and Geoenvironmental Engineering.,1998.124(12):1215-1217.
    [202]Ishihara K,Tatsuoka F & Yasuada S.Undrained deformation and liquefaction of sand under cyclic stress[J].Soils and foundations.,1975.15(1):29-44.
    [203]Yoshimine M.Undrained shear strength of clean sands to trigger flow liquefaction[J].Geotechnique,1999.Vol.36:891-906.
    [204]Verdugo R.,Ishihara K.The steady state of sandy soils[J].Soils and Foundations,1996,36(2):81-91
    [205]Saada A S and Bianchni G.Constitutive equations for granular non-cohesive soil.Case Western Reserve University,Balkema,1988
    [206]沈珠江.几种屈服函数的比较[J].岩土力学,1993,14(1):41-50
    [207]沈珠江.关于破坏准则和屈服函数的总结[J].岩土工程学报,1995,17(1):1-8
    [208]沈珠江.三种硬化理论的比较[J].岩土力学,1994,15(2):13-19
    [209]Chen W F,Mizuno E.Nonlinear analysis in soil mechanics-theory and implementation[M],Elsevier Science Publishers B V,Amsterdam,1990
    [210]Brown E T.Analytical and computional methods in engineering rock mechanics.Allen and Unwin Ltd.1987
    [211]Yao Y P,Luo T,Sun D A,et al.A simple 32D constitutive model for both clay and sand[J].Chinese Journal of Geotechnical Engineering,2002,24(2):240-246
    [212]罗汀,姚仰平.岩土材料应力路径无关硬化参量的构成方法.岩土力学,2007,28(1):69-76
    [213]Nakai T.An isotropic hardening elastoplastic model considering the stress path dependency in three-dirnensional stresses[J].Soils and Foundations,1989,29(1):119-139.
    [214]姚仰平,罗汀.岩土硬化的应力路径相关性及硬化参数的构造方法。中国岩石力学与工程学会第七次学术大会论文集(C),中国,西安,2002
    [215]Collins I F,Kelly P A.A themomechanical analysis of a family of soil models[J],Geotechnique, 2002,52(7):507-518.
    [216]Houlsby G T,Puzrm A M.A thermomechanical framework for constitutive models for rateindependent dissipative materials[J].International Journal of Plasticity,2000,16(9):1017-1047.
    [217]赵成刚,张雪东,郭旋.土的本构方程与热力学.力学进展,2006,35(4):535-547
    [218]郑颖人.关于岩土塑性的几点认识[J].岩土工程界,2002,5(4):14-16
    [219]曲圣年,殷有泉.塑性力学的Drucker公设和Iliushin公设[J].力学学报,1981,(5):47-55
    [220]殷有泉,曲圣年.弹塑性耦合和广义正交法则[J].力学学报,1982,(1):66-73
    [221]殷有泉.奇异屈服面的弹塑性本构关系的应力空间表述和应变空间表述[J].力学学报,1986,(1):33-40
    [222]郑颖人,孔亮.塑性力学中的分量理论-广义塑性力学[J].岩土工程学报,2000,22(3):269-274
    [223]刘元雪.岩土本构理论的几个基本问题研究[J].岩土工程学报,2001,23(1):45-48
    [224]刘元雪,郑颖人.岩土弹塑性理论的加卸载准则探讨[J].岩石力学与工程学报,2001,20(6):768-771
    [225]张柔雷.关于塑性力学公设适用性的讨论[J].力学与实践,1990,(6):72-73.
    [226]黄文彬.关于塑性力学两公设适用性的分析[J].力学与实践,1992,(2):66-67
    [227]黄速建.塑性力学的稳定性公设的热力学原理[J].固体力学学报,1988,9(2):95-101
    [228]胡亚元.关于率无关塑性力学和广义塑性力学的评述[J].岩土工程学报,2005,27(1):128-131
    [229]Collins I F,Houlsby G T.Application of thermomechanical principles to th,e modelling of geotechnical materials[A].Proceedings of the Royal Society of LondonA[C],1997,453:1975-2001.
    [230]Biot M.A.thermoelasticity and irreversible thermodynamics[J].Journal of Applied Physics,1956,27:240-253.
    [231]Fung Y C.Foundations of solid mechanics[J].New Jersey:Prentice-Hall,1965.
    [232]Coleman B D,Gurtin M E.Thermodynamics with internal state variables[J].Journal of Chemical Physics,1967,47:597-613.
    [233]Ziegler H.An Introduction to Thermomechanics(2end ed),Amsterdam:North-Holland,1983
    [234]Ziegler H and Wehrli C.The derivation of constitutive relations from the free energy and the dissipation function[J].Advances in Applied Mechanics,1987,25,183-238.
    [235]Houlsby GT.and Puzrin AM.Rate-dependent plasticity models derived from potential functions,Journal of Rheology,2001,46:113-126.
    [236]Puzrin AM and Houlsby GT.A thermomechanical framework for rat-independent dissipative materials with internal functions,International Journal of Plasticity,2001a,17:1147-1165.
    [237]Puzrin AM and Houlsby GT.Rat-dependent hyperplasticity with internal functions,ASCE,Engineering Mechanics Div.,2003,29(3):252-263.
    [238]Puzrin AM and Houlsby GT.Fundamentals of kinematic hardening hyper plasticity,International Journal of Solids and Structures,2001b,Vol.38:3771-3794.
    [239]Collins IF and Hilder T.A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests.International Journal for Numerical Analytical Methods in Geomechanics,2002,Vol.26:1313-1347
    [240]Collins IF.Associated and Non- Associated Aspects of the constitutive laws for coupled Elastic/Plastic Materials,The International Journal of Geomechanics,2002,Vol.2:259-267.
    [241]Collins IF and B.MUHUNTHAN.On the relationship between stress-dilatancy,and plastic dissipation for granular materials,Geotechnique,2003,Vol.7:611-618.
    [242]Collins IF.The concept of stored plastic work for frozen elastic energy in soil mechanics.Geotechnique,2005,Vol.5:373-382.
    [243]Houlsby GT,Amorosi A and Rojas E.Elastic moduli of soils dependent on pressure:a hyperelastic formulation,Geotechnique,2005,Vol.5:383-392.
    [244]严济慈.热力学第一和第二定律.人民教育出版社:北京,1966
    [245]Lubliner J.Plasticity Theory.MacMillan:NewYork,1990
    [246]Rice JR.Inelastic constitutive relations for solids:an internal-variable theory and its application to metal plasticity[J].Journal of Mechanics and Physics of Solids,1971,9:411-56
    [247]Maier G;Hueckel T.Non-associated and coupled flow roles of elastoplasticity for geotechnical media.Proceeding of 9th International Conference Soil Mechanics and Foundation Engineering,1977,Tokyo:Speciality session 7.Constitutive relations for soils:129-142
    [248]Desai CS,Siriwardane HJ.A concept of correction functions to account for non-associative characteristics of geological media[J].International Joumal for Numerical and Analytical Methods in Geomechanics,1980,4:377-387
    [249]Li X.S..A sand model with state-dependent dilatancy[J],Geotechnique,2002,52(3):173-186
    [250]王刚,张建民.砂土液化大变形的弹塑性循环本构模型[J],岩土工程学报,2007,29(1):51-59.
    [251]Barker,R.& Desai,C.S..Consequences of deviatoric normality in plasticity with isotropic strain hardening[J].International Journal for Numerical and Analytical Methods in Geomechanics,1982,6(3):383-390
    [252]中华人民共和国水利部主编,中华人民共和国国家标准.土工试验方法标准(GB/T 50123—1999).北京:中国计划出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700