用户名: 密码: 验证码:
碳纤维复合材料导线芯的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以碳纤维作为增强材料,采用拉挤成型工艺,制备出复合材料导线芯,并在外部绞合铝合金导线制备出架空导线。该新型碳纤维复合芯导线可以实现对现有输电线路的改造,增加输电能力,对于碳纤维复合芯及复合芯导线的研究具有重大的经济和社会意义。本文对自制的复合芯及导线的制备与性能做了系统的研究。
     调整了拉挤工艺中的排纱、树脂浸渍、入模及固化、牵引四部分的关键设置,获取了制备碳纤维复合芯的最佳工艺参数为后固化温度在200-220℃之间,固化剂的含量为40%。
     对比分析了实验室自制复合芯与CTC公司产品ACCC的性能,结果表明:实验室自制碳纤维复合芯的热膨胀系数比ACCC的小,更能有效地降低架空导线的弧垂;通过动态机械热分析(DMA)考察了复合芯的动态力学性能,发现自制复合芯具有更高的储能模量,抵抗变形的能力更强。自制复合芯的玻璃化转变温度(Tg)比ACCC低10℃,需通过对环氧基体进行改性提高复合芯的耐热性;考察复合芯的静态力学性能发现自制复合芯的抗拉强度比ACCC大;采用扫描电镜(SEM)观察了复合芯的横截面与剖面,纤维与基体界面粘结良好,无纤维的拨出、脱粘现象。
     初步探索了复合芯的湿热老化行为。复合芯的吸湿特性复合芯在低温下的湿热老化符合Fick扩散定律。在100℃的蒸馏水中,浸泡前期复合芯符合Fick扩散定律,后期吸湿率出现下降。同时,温度越高,复合芯的饱和吸湿率越大,达到饱和吸湿率的时间越短;湿热老化导致了复合芯的弯曲强度下降,温度越高,弯曲强度下降的越快,幅度越大;复合芯的动态力学性能测试结果表明,复合芯的储能模量随老化时间的延长而下降,损耗因子随老化时间的延长而增大;通过分析浸泡前后的复合芯的红外谱(IR)发现,复合芯在浸泡过程中结构未发生化学变化,只存在未固化的环氧基体的溶解或析出;采用扫描电镜观察了浸泡前后复合芯的劈裂面形貌,浸泡后的复合芯的纤维与基体的界面都出现了不同程度的破坏,尤其以在100℃蒸馏水中浸泡时破坏最严重。
     测试分析了自制新型碳纤维复合芯铝导线的各项性能,新型导线的各种表观质量均达到标准要求,与传统钢芯导线相比,新型导线的重量轻,抗拉强度大;在拉伸过程中复合芯只表现出弹性变化,而铝绞线要发生弹塑性变形,使导线的应力应变曲线上存在斜率的突然变化;碳纤维复合芯的热膨胀系数比铝绞线要小的多,在温度升高到一定值时导线的弧垂基本不再增加,大大降低了导线的弧垂,从而允许导线在更高的温度下使用;载流量测试结果表明新型导线的载流量大大超过传统钢芯铝导线,可以实现对输电线路扩容的改造;新型导线顺利通过了微风振动,电晕及无线电干扰测试;总之,自制碳纤维复合芯铝导线的各项性能均能够达到施工设计要求,并且在现场应用情况良好。
In this paper, a carbon fiber reinforced composites core was made by pultrusion, and the conductor was made by twisting aluminum wire outside. The aluminum conductor of carbon fiber reinforced composites core could achieve the transformation of exiting transmission lines and increase transmission capacity. So it was of great economic and social significance to study carbon fiber reinforced composites core and the conductor. Some research was done for the preparation and properties of the composites core and conductor in the paper.
     Pultrusion process, which consisted of setting of yarm, impregnation of resin, curing and traction, was adjusted. Carbon fiber reinforced composites core was made by pultrusion, whose final curing temperature was 200-220℃and content of curing agent was 40%.
     The self-made composites core was compared to ACCC made by CTC company. It was shown that the coefficient of thermal expansion of the core was smaller than ACCC, which meant that it was more effective to reduce the sag of conductor. Dynamic mechanical properties of the core were studied by dynamic mechanical analysis. The results show that the capability of resisting deformation of self-made core was greater for its higher storage modulus. The glass transition temperature of self-made core was lower than ACCC by 10℃, which should be improved through the modification of epoxy matrix. The tensile strength of self-made core was great than ACCC. The results of scanning electron microscope show that the matrix bond tightly with fiber without debonding phenomenon.
     Aging behavior of composites core was explored. It was found that the absorption characteristics of composites core obey the Fick's law at low temperature. When inmmersing in distilled water at 100℃, the absorption behavior agreed with Fick's law at the early stage, while the moisture rate decreased at the later stage. Moreover, the increase of environmental temperature led to a higher equilibrium moisture content and a shorter time to the equilibrium. Heat aging resulted in the decrease in the flexural strength of the composites core, and the higher the environmental temperature, the faster decline in flexural strength decreased, the greater the content. The results of DMA show that the storage modulus decreased with aging time, and loss factor increased with aging time. Infrared spectrometer was employed to study the composites core, it was found that there was no chemical reaction through the aging, only dissolution or precipitation of the uncured epoxy. The results of the SEM show that the interface between the fiber and matrix suffered different degrees of damage, especially in the distilled water at 100℃.
     Properties of self-made conductor was tested. The apparent quality of the conductor reached the standards, and compared with traditional conductor steel reinforced, the new conductor was ligher with higher tensile strength. There was a sudden change of slope in the stress-strain curve, because the core response in loading and unloading was entirely elastic, while the aluminum undergowent elastic-plastic deformation. The composite core had a much lower coefficient of thermal expansion than aluminum, which caused that the sag of the conductor hardly changed when temperature increased to certain constant. Thus, the new conductor could be used at higher temperature. Capacity of the test results show that the capacity of the new conductor was much more than traditional one, which enabled the expansion of transmission line. Moreover, the new conductor passed the vibration, corona and radio interference test successfully. All results shown that self-made aluminum conductor carbon fiber reinforced composites core was able to achieve the construction design requirements, and was in good condition in field application.
引文
[1]胡文堂.电线电缆[M].北京:中国电力出版社,2003.
    [2]雷毅.新一代铝包钢芯铝绞线的特点及应用[J].山西电网技术,2000,(1):44-45.
    [3]陈峰.铝包钢芯铝绞线在架空输电线路中的使用[J].江西电力,2002,26(4):46-48.
    [4]王延辉,高飞,宋国韫,贾春博.铝包钢线的性能特点及其应用分析[J].电线电缆,2001,(5):6-9.
    [5]何桂明,汤涛,李如振.高强度全铝合金导线在输电线路中的应用[J].山东电力技术,2004,(3):56-59.
    [6]何超.浅谈耐热铝合金导线的应用[J].沿海企业与科技,2009,(10):176-178.
    [7]唐继朋.耐热铝合金导线在电网建设中的应用[J].技术交流与应用,2008,36(3):49-51.
    [8]孙德勤,潘琰峰,高健,吴文祥,曹春艳.高强耐热铝合金导线的研究与开发[J].轻合金加工技术,2006,34(8):5-8.
    [9]尤传永.耐热铝合金导线的耐热机理及其在输电线路中的应用[J].电力建设,2003,24(8):4-8.
    [10]吴盛麟.对我国输电线路工作的几点建议[J].电网技术,1994,18(2):45-52.
    [11]张国光.碳纤维复合芯导线在电力传输线路上的应用[J].河南电力.2007,(4):56-57.
    [12]甘兴忠.碳纤维复合芯软铝绞线等扩容量导线的性能及应用[J].电线电缆2007,(5):37-41.
    [13]朱爱钧,尤志薇.碳纤维复合导线在上海电网应用前景初探[J].华东电力.2007,35(10):93-95.
    [14]费斐.新型耐热导线的优化设计[J].上海电力.2007,(5):525-528.
    [15]黄强,王家红,欧名勇.2005年湖南电网冰灾事故分析及其应对措施 [J].电网技术,2005,29(24):16-19.
    [16]郭日彩,李明,徐晓东.加快电网建设新技术推广应用的研究与建议[J].电网技术.2006,30(2):23-29.
    [17]尤志魏.碳纤维复合芯导线在上海电网应用分析[J].华东电力.2009,37(8):1292-1294.
    [18]尤传永.架空输电线路新型复合材料合成导线的开发研究[J].电力建设,2004,25(11):1-6.
    [19]舒印彪,刘泽洪,高理迎.±800kV 6400MW特高压直流输电工程设计[J].电网技术,3006,30(1):1-8.
    [20]国家电网公司基建部.电网建设新技术[M].北京:中国电力出版社,2005.
    [21]熊织明,钮永华,邵丽东.500kV江阴长江大桥大跨越工程施工关键技术[J].电网技术,2006,30(1):28-34.
    [22]张禹芳.我国500kV输电线路风偏闪络分析[J].电网技术,2005,29(7):65-67.
    [23]杨宁.ACCC碳纤维复合芯导线在我国的应用前景分析[J].电气应用,2008,27(5):50-52.
    [24]蒋文东,张勇.碳纤维复合芯导线在线路增容工程中的应用[J].华东电力.2009,37(3):418-421.
    [25]牛海军.碳纤维复合芯梯形软铝导线的研究开发[J].电力建设.2009,30(11):92-94.
    [26]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [27]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用[J].机械制造与自动化,2004,33(4):41-43.
    [28]赵稼祥.碳纤维的现状与新发展[J].材料工程,1997,(12):3-6.
    [29]罗益锋.世界高科技纤维的新形势与发展我国高科技纤维的浅见[J].高科技纤维与应用,1997,2:4-14.
    [30]罗益锋.新世纪初世界碳纤维透视[J].高科技纤维与应用,2000,25(1):1-7.
    [31]贺福,李润民.碳纤维在国防军工领域中的应用(1)[J].高科技纤维与 应用,2006,31(6):5-10.
    [32]霍肖旭,刘红林,曾晓梅.碳纤维复合材料在固体火箭上的应用[J].高科技纤维与应用,2002,25(3):1-10.
    [33]陈绍杰.复合材料与民用航空[J].高科技纤维与应用,2002,27(1):1-8.
    [34]赵稼祥.新一代三向织物及其复合材料[J].玻璃钢/复合材料,2003,(6):49-51.
    [35]杜希岩,李炜.纤维复合材料在体育器材上的应用[J].纤维复合材料,2007,1(14):14-17.
    [36]仝爱莲.21世纪先进纤维和复合材料的市场前景[J].宇航材料工艺,1997,(7):57-60.
    [37]陈祥宝.复合材料在建筑工业上的应用[J].纤维复合材料,1996,4(42):42-45.
    [38]吴琪琳,潘鼎.炭材料在医学领域的应用[J].材料导报,2003,17(8):54-56.
    [39]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社.
    [40]黄家康,岳红军,董永祺.复合材料成型技术[M].北京:化学工业出版社,1999.
    [41]卞忠义.拉挤成型固化工艺探索[J].热固性树脂,2002,17(1):24-26.
    [42]沈慧平,裴红,高旭东,张娟.玻璃钢光缆增强芯快速拉挤工艺研制[J].玻璃纤维,2004,(1):18-20.
    [43]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2002.
    [44]孔庆宝,丁传荣,乔学东.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅰ)[J].纤维复合材料,1999,(4):45-51.
    [45]孔庆宝,丁传荣,乔学东.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅱ)[J].纤维复合材料,2000,(1):50-53.
    [46]孔庆宝,丁传荣,乔学东.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅲ)[J].纤维复合材料,2000,(2):35-39.
    [47]张亚娟,齐暑华.复合材料老化方法研究进展[J].工程塑料应用, 2002,30(1):39-41.
    [48]王莉莉.碳纤维/乙烯基酯树脂拉挤复合材料的环境老化性能研究[D].北京:北京工业大学,2004.
    [49]过美丽,肇研,许凤和.先进聚合物基复合材料的老化研究-Ⅰ热氧老化[J].航空学报,2002,21(4):62-65.
    [50]过美丽,肇研.航空航天结构复合材料湿热老化机理研究[J].宇航材料工艺,2002,(4):51-54.
    [51]李晓骏,许凤和,陈新文.先进聚合物基复合材料的热氧老化研究[J].材料工程,1999,(12):19-22.
    [52]李哲曌,曾竟成,杜刚.复合材料线芯铝导线的应用[J].电网技术.2008,30(8):225-227.
    [53]Takayuk M. Materials Science Monographs I. Dynamic Mechanical Analysisi of Polymeric Material[M]. Elservier Scientific Publishing Company,1978.
    [54]Tsagaropoulos G, Eisenberg A. Dynamic mechanical study of the factors effecting the two glass transitior behavior of filled polymers similarities and differences with random ionomers[J]. Marcomolecules,1995,28 (18): 6067-6077.
    [55]过美丽.高聚物与复合材料的动态力学分析[M].北京:化学工业出版社材料科学与工程出版中心,2002.
    [56]仲伟虹,李芙蓉,张佐光.先进复合材料耐热性评价(11)[J].宇航材料工艺,1997,27(2):45-48.
    [57]Czigany T. Effect of hygrothermal aging on the fracture and failure behavior in short glass fiber reinforced toughened PBT composites[J]. Polymer Composite,1996,17 (6):900-902.
    [58]Akay M. Moisture absorption and its influence on the tensile properties of glass fiber reinforced polyamide[J]. Polymer and Polymer Composite, 1994,2 (6):324-350.
    [59]Shen C H, Springer G S. Moisture absorption and desorption of composite materials[J]. Journal of Composite Material,1976,10 (1):2-20.
    [60]Selzer R, Friedrich K. Influence of water up-take on interlaminar fracture properties of carbon fiber-reinforced composites[J]. Journal of Material Science,1995, (30):2713-2733.
    [61]Michael B. Challenges for composites into the next millennium-a reinforcement perspective[J]. Composite Part A,2001, (32):901-903.
    [62]Grant T S, Bradly W L. In-situ oberservation in SEM of degradation of graphite/epoxy composite materials due to sea water immersion[J]. Journal of Composite Materials,1995,29 (7):852-867.
    [63]Soulier J P, Berruet R, Chateauminois A, Chabert B, Gauthier R. Interaction of fiber-reinforced expoxy composites with different salt water solutions including isotonic liquid[J]. Polymer Communication, 1988,28 (8):243.
    [64]Selzer R, Friedrich K. Mechanical properties and failure behavior of carbon fiber-reinforced polymer composites under the influence of moisture[J]. Composites,1997, (28):595-604.
    [65]张立晨,何峰,石勇.复合材料去湿性能研究[J].玻璃钢/复合材料.1999,(4):11-13.
    [66]黄再满.深水环境对复合材料吸湿和力学性能的影响[J].玻璃钢/复合材料.2000,(4):49-52.
    [67]曾竟成,罗青,唐羽章.复合材料理化性能[M].长沙:国防科技大学出版社,1998.
    [68]Zheng Q, Morgan R J. Synergistic themal-moisure damage mechanisms of epoxy and their carbon fiber composites[J]. Journal of Composites Materials,1993.27 (15):1465-1478.
    [69]Antoon M K, Koenig J L. The structural and moisure stability of matrix phase in glass-reinforced epoxy composites[J]. Journal of Macromolecular Science-Review:Macromolecular Chmistry,1980, C19 (1):135-173.
    [70]方旭东,杨鸿昌,安章荣.碳纤维/钛超混杂复合材料老化性能[J].宇航材料工艺,2002,(2):35-37.
    [71]Antoon M K, Koenig J L. Fourier-transfoem infrared study of the reversible interaction of water and a crlsslinked epoxy matrix[J]. Journal of Polymer Science:Polymer Physics,1981,19 (10):1567-1575.
    [72]Zhou J M, James P L. Hygrothemal effects of epoxy resin part I:the natrue of water in epoxy[J]. Polymer,1999,40 (20):5505-5512.
    [73]Ahmad A, Eric J B, Steven R N. A composite core conductor for low sag at high temperature[J]. IEEE Transactions On Power Delivery,2005,20 (3):2193-2196.
    [74]邵天晓.架空送电线路的电线力学计算[M].北京:中国电力出版社,2003.
    [75]杨津基.气体放电[M].北京:科学出版社,1983.
    [76]孟遂民.架空输电线路设计[M].北京:中国电力出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700