用户名: 密码: 验证码:
鲫鱼的形态、肌电、材料本构实验研究与“数字鱼”数据库初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对鱼类游动的生物力学问题进行实验研究,在科学探索和技术开发两方面都极具意义。近年来,伴随着实验手段和技术的多样化、精细化和系统化程度的提高,针对鱼类游动运动链一体化的定量化研究成为一大趋势。为此,本文基于“神经控制一肌肉主动收缩一被动变形”这一控制框架,对鲫鱼的形态学、肌电信号以及皮肤、肌肉和躯干力学性能及本构关系进行了实验研究,并在此基础上归纳总结出“数字鱼”的简化模型,进行了如下主要工作:
     一、对鲫鱼样本个体以及不同样本构成的鲫鱼群体,对几何形态参数、质量形态参数方面的规律进行了实验研究:通过对不同鲫鱼样本的二维形貌记录,确定了其身体各部位,如头长、躯干长、全长等变量和体长的线性对应关系;通过影栅云纹法和三维坐标机直接测量法的定量测量及其结果的对比,得到了鲫鱼三维形貌的几何形态参数。采用分段切片的实验方式,研究了其躯体由头到尾的质量分布规律。通过对不同鲫鱼样本体长和体重进行统计,明确了二者之间的幂指数对应关系。
     二、研究了鲫鱼游动过程中的肌电测量技术,详细论述了肌电实验的手术操作过程,经过成年男性心电信号测量实验的标定和检验,利用自行设计制作的肌电放大器对鲫鱼在C形快速起动状态下转弯侧体表红肌的肌电信号给出了初步的测量结果,得到了其转弯侧体表红肌几乎同时开始活动、其持续的活动时间大致相同、并远小于鱼体完成整个运动历程所需时间的结论;通过前人学者就其他鱼种在巡游状态下的肌电测量实验结果来推断鲫鱼相应的结论;根据肌电活动模式,探讨了鲫鱼快速起动过程中毛氏细胞同步触发运动神经信号、产生肌肉同步收缩的神经控制方式;基于鲫鱼肌肉伸展方向与头尾轴存在夹角的结构特点,讨论其可能提供更高收缩张力的潜在助益。
     三、采用单轴拉伸实验的方式对鲫鱼的皮肤和肌肉分别进行了破坏实验、松弛实验和蠕变实验,以确定其杨氏模量、归一化松弛函数和归一化蠕变函数,并通过粘弹性力学模型确定其本构关系,讨论了其粘弹性性质以很小的能量损耗为代价,却增加了躯体有效刚度的可能性。采用自行设计制作的弯曲变形实验机,对鲫鱼不同部位躯干进行弯曲变形实验,以考察其角刚度和力学性能,得到了其躯干前端角刚度最大的结论;通过长时间交变加载实验的结果,获得了在动态弯曲变形的情况下,可将鱼体躯干近似视为弹性体的结论。
     四、对鲫鱼的形态学参数、肌肉活动模式、皮肤和肌肉本构关系、以及躯干动态弯曲实验的结果进行归纳总结,通过无量纲化的方式进行处理,得到了通用的实验数据,初步建立了“数字鱼”模型,得到了诸如“数字鱼”水平断面即为其俯视形态,且包络于NACA0014和NACA0020翼型之中的结论;并将其在鱼体结构模型建立和计算流体力学两方面进行了初步应用,反映了“数字鱼”研究的必要性和重要意义。
Experimental researches on the biomechanics related to fish swimming are significant and meaningful for both scientific exploration and technical innovation. Recent advances in the diversity, precision and systematization of experimental methods and techniques lead to a general trend in quantitative researches and integrated studies on fish locomotion. Based on the control framework of "Neural Control-Active Contraction of Muscle-Passive Deformation", the morphology, electromyography (EMG), as well as the mechanical properties and constitutive relationship of the skin, muscle, and the body trunk of crucian carp are investigated with experiments, from which a simplified model of "digital fish" is established. The following work has been done in this dissertation.
     1. The distribution of geometric parameters and weight parameters for a single sample and multiple samples of crucian carp are studied with experiments. The linear relationship between variables, such as head length, total length, body height, et al, and standard length is acquired by the two dimensional records of different crucian carps. By use of shadow Moire method and the three-dimensional coordinate machine, the geometric parameters which characterize the 3D morphology of crucian carp are measured by comparing the experimental results. The distribution of weight parameters of crucian carp is obtained by applying slicing methods. The corresponding power function relationship between standard length and weight is clarified by statistics on different crucian carp samples.
     2. The electromyography(EMG) experimental technology is introduced to study the muscle activity of crucian carp during swimming, and the related operation procedures are elucidated in details. The EMG signals from red-muscle of crucian carp, which is evolving in the C-start movement, are acquired with a self-designing amplifier, after calibrated and tested by a male ECG experiment. A conclusion is drawn that there is nearly a simultaneous red muscle activity on the ipsilateral side of fish body with nearly a same duration, and the maximal amplitude of EMG locates in the anterior part of the body. Based on the electromyographic results from other fish species during steady swimming, the corresponding conclusions for crucian carp during steady swimming are inferred. Modes of the neural-control during a quick start movement, that Mauthner cell triggers motor neurons synchronously and then motivates muscle synchronous contraction, are evaluated by analyzing the activity patterns of EMG signals. Possible benefits of more muscle tension may be gained considering the special structural characteristic of the intersection between crucian carp's muscle contracting direction and cephalocaudal axis.
     3. Young's modulus, the reduced relaxation function and the reduced creep function of crucian carp's skin and muscle are determined by failure tests, relaxation tests and creep tests with uniaxial tensile ways, respectively. Viscoelastic models are adopted to deduce the constitutive relationship, and body effective stiffness may be increased with a little energy dissipation according to the viscoelastic nature. The mechanical properties and angular stiffness of different sites on cucian carp's body are obtained from dynamic bending experiments, where a self-designing dynamic bending test machine is employed, and a conclusion is drawn that maximal angular stiffness locates in the anterior part of the body. The conclusion of regarding the body trunk of cucian carp under dynamic bending deformation as an approximate elastomer is also confirmed.
     4. Based on the above experimental results of the geometric parameters, the activity patterns of muscle, the constitutive relationship of skin and muscle, and the results from dynamic bending tests, generic experimental data are obtained by normalization, and a preliminary "digital fish" model is established. Conclusions are drawn such that the horizontal transection is the overlook configuration of fish, and it is enveloped between NACA0014 and NACA0020 airfoil, and so on. Its applications are attempted on both the fish-body construction model establishment and the 2-D fish shape model related to its fluid dynamic characteristics, which reflects the necessity and significance of "digital fish" studying.
引文
冯元桢.1983.生物力学[M].第一版.北京:科学出版社.
    国家自然科学基金委员会数学物理科学部.2007.《力学学科发展研究报告》[R].北京:科学出版社.
    蒋明.2009.鱼类三维运动精密测量方法研究[D].[博士].南京:东南大学.
    敬军.2005.鱼类C形起动的运动特性及机理研究[D].[博士].合肥:中国科学技术大学.
    李学敏.2002.鱼类波状游动尾涡流场测量[D].[硕士].合肥:中国科学技术大学.
    陆夕云,杨基明,尹协振,童秉纲.2007.飞行和游动的生物运动力学和仿生技术研究[J].中国科学技术大学学报,37(10):1159-1163.
    罗斯纳.2004.生物统计学基础[M].孙尚拱,译.第五版.北京:科学出版社.
    孟庆闻,苏锦祥,李婉端.1987.鱼类比较解剖[M].第一版.北京:科学出版社.
    诺门.1978.鱼类史[M].邹源林,译.北京:科学出版社.
    童秉纲,陆夕云.2004.关于飞行和游动的生物力学研究[J].力学进展,34(1):1-8.
    吴冠豪.2007.鱼自主游动的跟踪测量研究及运动学和动力学分析[D].[博士].北京:清华大学.
    杨焱.2008.锦鲤常规自由游动的流动物理研究[D].[博士].合肥:中国科学技术大学.
    赵亮.’2006.鱼类C型起动尾鳍模型受力特性实验研究[D].[硕士].合肥:中国科学技术大学.
    钟世镇.2004.数字人和数字解剖学[M].济南:山东科学技术出版社.
    Alben S, Madden PG, et al.2007. The mechanics of active fin-shape control in ray-finned fishes[J]. Journal of the Royal Society Interface 4(13):243-256.
    Alexander RM.2005. Models and the scaling of energy costs for locomotion[J]. Journal of Experimental Biology 208(9):1645-1652.
    Altringham JD and Ellerby DJ.1999. Fish swimming:Patterns in muscle function[J]. Journal of Experimental Biology 202(23):3397-3403.
    Altringham JD and Johnston IA.1990. Scaling Effects on Muscle Function-Power Output of Isolated Fish Muscle-Fibers Performing Oscillatory Work[J]. Journal of Experimental Biology 151:453-467.
    Altringham JD, Wardle CS, et al.1993. Myotomal Muscle Function at Different Locations in the Body of a Swimming Fish[J]. Journal of Experimental Biology 182:191-206.
    Anderson EJ, McGillis WR, et al.2001. The boundary layer of swimming fish[J]. Journal of Experimental Biology 204(1):81-102.
    Baba Y, Kake Y, et al.2003. Activities of mesencephalic nucleus neurons during fictive swimming of the carp Cyprinus carpio[J]. Fisheries Science 69(3):581-588.
    Barrett DS, Triantafyllou MS, et al.1999. Drag reduction in fish-like locomotion[J]. Journal of Fluid Mechanics 392:183-212.
    Beal DN, Hover FS, et al.2006. Passive propulsion in vortex wakes[J]. Journal of Fluid Mechanics 549:385-402.
    Bensamoun S, Stevens L, et al.2006. Macroscopic-microscopic characterization of the passive mechanical properties in rat soleus muscle[J]. Journal of Biomechanics 39(3):568-578.
    Bernadsky G, Sar N, et al.1993. Drag Reduction of Fish Skin Mucus-Relationship to Mode of Swimming and Size[J]. Journal of Fish Biology 42(5):797-800.
    Bernal D, Sepulveda C, et al.2003. Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure[J]. Journal of Experimental Biology 206(16):2831-2843.
    Blake RW.2004. Fish functional design and swimming performance[J]. Journal of Fish Biology 65(5):1193-1222.
    Bonabeau E, Dagorn L, et al.1998. Space dimension and scaling in fish school-size distributions[J]. Journal of Physics a-Mathematical and General 31(44):L731-L736.
    Borazjani I and Sotiropoulos F.2008. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes[J]. Journal of Experimental Biology 211(10):1541-1558.
    Brackenbury J.2004. Kinematics and hydrodynamics of swimming in the mayfly larva[J]. Journal of Experimental Biology 207(6):913-922.
    Bronmark C and Miner JG.1992. Predator-Induced Phenotypical Change in Body Morphology in Crucian Carp[J]. Science 258(5086):1348-1350.
    Breder CM.1926. The locomotion of fishes[J]. Zoologica,4:159-256.
    Carling J, Williams TL, et al.1998. Self-propelled anguilliform swimming:Simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion[J]. Journal of Experimental Biology 201(23):3143-3166.
    Chagnaud BP, Bleckmann H, et al.2006. Neural responses of goldfish lateral line afferents to vortex motions[J]. Journal of Experimental Biology 209(2):327-342.
    Cheng JY and Blickhan R.1994. Bending Moment Distribution Along Swimming Fish[J]. Journal of Theoretical Biology 168(3):337-348.
    Cheng JY, Pedley TJ, et al.1998. A continuous dynamic beam model for swimming fish[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 353(1371):981-997.
    Cheng JY, Zhuang LX, et al.1991. Analysis of Swimming 3-Dimensional Waving Plates[J]. Journal of Fluid Mechanics 232:341-355.
    Clark RP and Smits AJ.2006. Thrust production and wake structure of a batoid-inspired oscillating fin[J]. Journal of Fluid Mechanics 562:415-429.
    Cooke SJ, Thorstad EB, et al.2004. Activity and energetics of free-swimming fish:insights from electromyogram telemetry[J]. Fish and Fisheries 5(1):21-52.
    Cooper LN, Sedano N, Johansson S, May B, Brown JD, Holliday CM, Kot BW, Fish FE.2008. Hydrodynamic performance of the minke whale (Balaenoptera acutorostrata) flipper. Journal of Experimental Biology 211:1859-1867.
    Coughlin DJ, Valdes L, et al.1996. Muscle length changes during swimming in scup: Sonomicrometry verifies the anatomical high-speed cine technique[J]. Journal of Experimental Biology 199(2):459-463.
    Dabiri JO.2009. Optimal Vortex Formation as a Unifying Principle in Biological Propulsion[J]. Annual Review of Fluid Mechanics 41:17-33.
    Dalton R.2002. High speed biomechanics:Caught on camera[J]. Nature 418(6899):721-722.
    Daniel TL and Combes SA.2002. Flexible wings and fins:Bending by inertial or fluid-dynamic forces[J]? Integrative and Comparative Biology 42(5):1044-1049.
    D'Aout K, Curtin NA, et al.2001. Mechanical properties of red and white swimming muscles as a function of the position along the body of the eel Anguilla Anguilla[J]. Journal of Experimental Biology 204(13):2221-2230.
    Deng J, Shao XM, et al.2007. Hydrodynamic studies on two traveling wavy foils in tandem arrangement. Physics of Fluids 19(11):
    Digital Fish Library.2009. Digital Fish Library[EB/OL].//.Frank, Berquist. Digital Fish Library. http://www.digitalfishlibrary.org/index.php
    Doehring TC, Freed AD, et al.2005. Fractional order viscoelasticity of the aortic valve cusp:An alternative to quasilinear viscoelasticity[J]. Journal of Biomechanical Engineering Transactions of the ASME.127:700-708.
    Domenici P and Blake RW.1997. The kinematics and performance of fish fast-start swimming[J]. Journal of Experimental Biology 200(8):1165-1178.
    Domenici P, Turesson H, et al.2008. Predator-induced morphology enhances escape locomotion in crucian carp[J]. Proceedings of the Royal Society B-Biological Sciences 275(1631): 195-201.
    Dong GJ and Lu XY.2007. Characteristics of flow over traveling wavy foils in a side-by-side arrangement[J]. Physics of Fluids 19(5):
    Donley JM, Sepulveda CA, et al.2004. Convergent evolution in mechanical design of lamnid sharks and tunas[J]. Nature 429(6987):61-65.
    Eldredge JD and Pisani D.2008. Passive locomotion of a simple articulated fish-like system in the wake of an obstacle[J]. Journal of Fluid Mechanics 607:279-288.
    Ellington CP.1984. The aerodynamics of hovering insect flight. Ⅱ. Morphological parameters[J]. Phil. Trans. R. Soc. Lond. B 305,17-40
    Engelmann J, Hanke W, et al.2002. Lateral line reception in still- and running water[J]. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology 188(7):513-526.
    Etnier SA.2003. Twisting and bending of biological beams:Distribution of biological beams in a stiffness mechanospace[J]. Biological Bulletin 205(1):36-46.
    Fish FE and Lauder GV.2006. Passive and active flow control by swimming fishes and mammals[J]. Annual Review of Fluid Mechanics 38:193-224.
    FishBase.2009. Crucian carp[EB/OL].//. Laxamana, Elijah. FishBase.15 July 2009. http://www.fishbase.org/Summary/SpeciesSummary.php?id=270.
    Flammang BE and Lauder GV.2009. Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus[J]. Journal of Experimental Biology 212(2):277-286.
    Frith HR and Blake RW.1991. Mechanics of the Startle Response in the Northern Pike, Esox Lucius[J]. Canadian Journal of Zoology-Revue Canadienne De Zoologie 69(11):2831-2839.
    Furukawa R and Ijiri K.2002. Swimming behavior of larval medaka fish under microgravity[J]. Space Life Sciences:Biological Research and Space Radiation 30(4):733-738.
    Galper A and Miloh T.1995. Dynamic Equations of Motion for a Rigid or Deformable Body in an Arbitrary Nonuniform Potential Flow Field[J]. Journal of Fluid Mechanics 295:91-120.
    Galper AR and Miloh T.2000. Hydroelasticity of the Kirchhoff rod:Buckling phenomena[J]. Journal of Fluids and Structures 14(7):1089-1100.
    Gibb AC, Swanson BO, et al.2006. Development of the escape response in teleost fishes:Do ontogenetic changes enable improved performance? [J] Physiological and Biochemical Zoology 79(1):7-19.
    Goldbogen JA, Shadwick RE, et al.2005. Fast-start muscle dynamics in the rainbow trout Oncorhynchus mykiss:phase relationship of white muscle shortening and body curvature[J]. Journal of Experimental Biology 208(5):929-938.
    Gray B.2006. Bioengineering-Artificial arrays could help submarines make like a fish[J]. Science 313(5792):1382-1383.
    Gray J.1936. Studies in animal locomotion VI. The propulsive powers of the dolphin[J]. Journal of Experimental Biology.13:192-199.
    Greven H, Zanger K, Schwinger G.1995. Mechanical properties of the skin of Xenopus laevis (Anura, Amphibia)[J]. Journal of Morphology 224:15-22
    Hale ME.2002. S- and C-start escape responses of the muskellunge (Esox masquinongy) require alternative neuromotor mechanisms [J]. Journal of Experimental Biology 205(14):2005-2016.
    Han LH, Noble JA, et al.2003. A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue[J]. Ultrasound in Medicine and Biology 29(6): 813-823.
    Hanke W and Bleckmann H.2004. The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry[J]. Journal of Experimental Biology 207(9): 1585-1596.
    Hanson KC, Hasler CT, et al.2007. Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environmen[J]. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 148(4):913-920.
    Harvey E, Cappo M, et al.2003. The accuracy and precision of underwater measurements of length and maximum body depth of southern bluefin tuna(Thunnus maccoyii) with a stereo-video camera system[J]. Fisheries Research 63(3):315-326.
    He P and Wardle CS.2005. Effect of caudal fin height on swimming kinematics in the mackerel Scomber scombrus L[J]. Journal of Fish Biology 67(1):274-278.
    Hebrank JH, Hebrank MR, et al.1990. Backbone Mechanics of the Blue Marlin Makaira Nigricans (Pisces, Istiophoridae)[J]. Journal of Experimental Biology 148:449-459.
    Hebrank MR, Hebrank JH.1986. The mechanics of fish skin:lack of an external tendon role in two teleosts[J]. Biological Bulletin 171:236-247
    Hebrank, MD.1980. Mechanical properties and locomotor functions of eel. skin.[J] Biological Bulletin 158:58-68.
    Herrel A, Schaerlaeken V, et al.2008. Electromyography and the evolution of motor control: limitations and insights[J]. Integrative and Comparative Biology 48(2):261-271.
    Hess F and Videler JJ.1984. Fast continuous swimming of saithe (pollachius virens):a dynamics analysis of bending moments and muscle power[J]. Journal of Experimental Biology.109: 229-251.
    Higham TE.2007. Feeding, fins and braking maneuvers:locomotion during prey capture in centrarchid fishes[J]. Journal of Experimental Biology 210(1):107-117.
    Horton JM and Summers AP.2009. The material properties of acellular bone in a teleost fish[J]. Journal of Experimental Biology 212(9):1413-1420.
    Hove JR, Gordon MS, et al.2000. A modified Blazka-type respirometer for the study of swimming metabolism in fishes having deep, laterally compressed bodies or unusual locomotor modes[J]. Journal of Fish Biology 56(4):1017-1022.
    Hu DL, Goreau TJ, et al.2009. Flow visualization using tobacco mosaic virus[J]. Experiments in Fluids 46(3):477-484.
    Hu W R, Yu Y L, Tong B G, Liu H.2004. A numerical and an analytical study on a tail-flapping model for fish fast C-start[J]. Acta Mechanica Sinica 20:16-23.
    Hultmark M, Leftwich M, et al.2007. Flowfield measurements in the wake of a robotic lamprey[J]. Experiments in Fluids 43(5):683-690.
    Inada Y and Kawachi K.2002. Order and flexibility in the motion of fish schools[J]. Journal of Theoretical Biology 214(3):371-387.
    Jayne BC, Lauder GV, et al.1990. The Effect of Sampling Rate on the Analysis of Digital Electromyograms from Vertebrate Muscle[J]. Journal of Experimental Biology 154:557-565.
    Jayne BC, Lauder GV.1995. Are Muscle-Fibers within Fish Myotomes Activated Synchronously? Patterns of Recruitment within Deep Myomeric Musculature during Swimming in Largemouth Bass[J]. Journal of Experimental Biology 198(3):805-815.
    Jia LB and Yin XZ.2008. Passive oscillations of two tandem flexible filaments in a flowing soap film. Physical Review Letters 100(22):
    Jing J, Yin XZ, Lu XY.2004. Hydrodynamic analysis of C-start in Crucian Carp[J]. Journal of Bionics Engineering.1(2):102-107.
    Jing J, Yin XZ, Lu XY.2005. Observation and hydrodynamic analysis of fast-start of yellow catfish (Pelteobagrus fulvidraco)[J]. Progress in Natural Science.15(1):34-40.
    Jordan CE.1998. Scale effects in the kinematics and dynamics of swimming leeches[J]. Canadian Journal of Zoology-Revue Canadienne De Zoologie 76(10):1869-1877.
    Katz SL and Shadwick RE.1998. Curvature of swimming fish midlines as an index of muscle strain suggests swimming muscle produces net positive work[J]. Journal of Theoretical Biology 193(2):243-256.
    Katz SL, Shadwick RE, et al.1999. Muscle strain histories in swimming milkfish in steady and sprinting gaits[J]. Journal of Experimental Biology 202(5):529-541.
    Kern S and Koumoutsakos P.2006. Simulations of optimized anguillifonn swimming[J]. Journal of Experimental Biology 209(24):4841-4857.
    Knower T, Shadwick RE, et al.1999. Red muscle activation patterns in yellowfin (Thunnus albacares) and skipjack(Katsuwonus pelamis) tunas during steady swimming[J]. Journal of Experimental Biology 202(16):2127-2138.
    Koeltzsch K, Dinkelacker A, et al.2002. Flow over convergent and divergent wall riblets[J]. Experiments in Fluids 33(2):346-350.
    Koob TJ and Long JH.2000. The vertebrate body axis:Evolution and mechanical function[J]. American Zoologist 40(1):1-18.
    Lauder GV, Madden PGA.2006. Learning from fish:Kinematics and experimental hydrodynamics for roboticists[J]. International Journal of Automation and Computing, V3(4): 325-335.
    Lauder GV, Madden PGA.2007. Fish locomotion:kinematics and hydrodynamics of flexible foil-like fins. Experiments in Fluids 43:641-653.
    Lauder GV, Madden PGA.2008 Advances in comparative physiology from high-speed imaging of animal and fluid motion. Annual Review of Physiology 70:143-163.
    Lauder GV.2009. Swimming hydrodynamics:ten questions and the technical approaches needed to resolve them. Experiments in Fluids. Online.
    Lefrancois C, Shingles A, et al.2005. The effect of hypoxia on locomotor performance and behaviour during escape in Liza aurata[J]. Journal of Fish Biology 67(6):1711-1729.
    Liao JC, Beal DN, et al.2003. Fish exploiting vortices decrease muscle activity[J]. Science 302(5650):1566-1569.
    Liao JC.2004. Neuromuscular control of trout swimming in a vortex street:implications for energy economy during the Karman gait[J]. Journal of Experimental Biology 207(20): 3495-3506.
    Liao JC.2006. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow[J]. Journal of Experimental Biology 209(20): 4077-4090.
    Liao Q, Dong GJ, et al.2004. Vortex formation and force characteristics of a foil in the wake of a circular cylinder[J]. Journal of Fluids and Structures 19(4):491-510.
    Lighthill MJ.1971. Large-amplitude elongated body theory of fish locomotion [J]. Proceedings of the Royal Society(B),179:125-138
    Lighthill MJ.1975. Mathematical biofluiddynamics[M]. Philadelphia:Society for Industrial and Applied Mathematics.
    Lighthill MJ.1960. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics 9(2):305-317.
    Lim KH, Chew CM, et al.2008. New extensometer to measure in vivo uniaxial mechanical properties of human skin[J]. Journal of Biomechanics 41(5):931-936.
    Liu H, Wassersug R, et al.1997. The three-dimensional hydrodynamics of tadpole locomotion[J]. Journal of Experimental Biology 200(22):2807-2819.
    Liu J, Hu H.2004. A 3D simulator for autonomous robotic fish[J]. International Journal of Automation and Computing 1(1):42-50.
    Loeb GE and Gans C.1986. Electromyography for Experimentalists[M]. Chicago, IL:University of Chicago Press.
    Long JH and Nipper KS.1996. The importance of body stiffness in undulatory propulsion[J]. American Zoologist 36(6):678-694.
    Long JH, Hale ME, et al.1996. Functions of fish skin:Flexural stiffness and steady swimming of longnose gar Lepisosteus osseus[J]. Journal of Experimental Biology 199(10):2139-2151.
    Long JH, Koob-Emunds M, et al.2002. The notochord of hagfish Myxine glutinosa:visco-elastic properties and mechanical functions during steady swimming[J]. Journal of Experimental Biology 205(24):3819-3831.
    Long JH, Mchenry MJ, et al.1994. Undulatory Swimming-How Traveling Waves Are Produced and Modulated in Sunfish (Lepomis Gibbosus)[J]. Journal of Experimental Biology 192: 129-145.
    Long JH, Pabst DA, et al.1997. Locomotor design of dolphin vertebral columns:Bending mechanics and morphology of Delphinus delphis[J]. Journal of Experimental Biology 200(1): 65-81.
    Long JH.1992. Stiffness and Damping Forces in the Intervertebral Joints of Blue Marlin (Makaira Nigricans)[J]. Journal of Experimental Biology 162:131-155.
    Long JH.1998. Muscles, elastic energy, and the dynamics of body stiffness in swimming eels[J]. American Zoologist 38(4):771-792.
    Lou F, Curtin NA, et al.2002. Isometric and isovelocity contractile performance of red musle fibres from the dogfish Scyliorhinus canicula[J]. Journal of Experimental Biology 205(11): 1585-1595.
    Marey EJ.1894. Le movement[M]. Paris:Masson.
    McHenry MJ and Lauder GV.2005. The mechanical scaling of coasting in zebrafish (Danio rerio)[J]. Journal of Experimental Biology 208(12):2289-2301.
    McHenry MJ and Lauder GV.2006. Ontogeny of form and function:Locomotor morphology and drag in zebrafish (Danio rerio)[J]. Journal of Morphology 267(9):1099-1109.
    McHenry MJ, Pell CA, et al.1995. Mechanical Control of Swimming Speed:Stiffness and Axial Wave Form in Undulating Fish Models[J]. Journal of Experimental Biology 198(11): 2293-2305.
    McLaughlin RL, Noakes DLG.1998. Going against the flow:an examination of the propulsive movements made by young brook trout in streams[J]. Canadian Journal of Fisheries and Aquatic Sciences.55,853-860.
    McMillen T, Holmes P.2006. An elastic rod model for anguilliform swimming[J]. Journal of Mathematical Biology 53(5):843-886.
    McMillen T, Williams T, et al.2008. Nonlinear Muscles, Passive Viscoelasticity and Body Taper Conspire To Create Neuromechanical Phase Lags in Anguilliform Swimmers[J]. Plos Computational Biology 4(8):
    Meager JJ, Domenici P, et al.2006. Escape responses in juvenile Atlantic cod Gadus morhua L. the effects of turbidity and predator speed[J]. Journal of Experimental Biology 209(20): 4174-4184.
    Michael Hutchins, Dennis A Thoney, Paul V Loiselle and Neil Schlager.2003. Grzimek's Animal Life Encyclopedia,2nd edition. Volumes 4-5, Fishes Ⅰ-Ⅱ, Farmington Hills, MI:Gale Group:297-309.
    Mittal R.2004. Computational modeling in biohydrodynamics:Trends, challenges, and recent advances[J]. leee Journal of Oceanic Engineering 29(3):595-604.
    Moon TW, Altringham JD, et al.1991. Energetics and Power Output of Isolated Fish Fast Muscle-Fibers Performing Oscillatory Work[J]. Journal of Experimental Biology 158: 261-273.
    Muijres FT. and Lentink D.2007. Wake visualization of a heaving and pitching foil in a soap film[J]. Experiments in Fluids 43(5):665-673.
    Muller UK and van Leeuwen JL.2006. Undulatory fish swimming:from muscles to flow[J]. Fish and Fisheries 7(2):84-103.
    Muller UK.2003. Fish'n flag[J]. Science 302(5650):1511-1512.
    Nachtigall W.2001. Some aspects of Reynolds number effects in animals[J]. Mathematical Methods in the Applied Sciences 24(17-18):1401-1408.
    Naresh MD, Arumugam V, et al.1997. Mechanical behaviour of shark skin[J]. Journal of Biosciences 22(4):431-437.
    Nauen JC and Lauder GV.2001. Three-dimensional analysis of finlet kinematics in the chub mackerel (Scomber japonicus)[J]. Biological Bulletin 200(1):9-19.
    Nauen JC and Lauder GV.2002. Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry[J]. Journal of Experimental Biology 205(21):3271-3279.
    Neumeister H, Cellucci CJ, et al.2004. Dynamical analysis reveals individuality of locomotion in goldfish[J]. Journal of Experimental Biology 207(4):697-708.
    Noca F, Shiels D, et al.1997. Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives [J]. Journal of Fluids and Structures 11(3):345-350.
    Osse JWM and Van Den Boogaart JGM.2000. Body size and swimming types in carp larvae; effects of being small[J]. Netherlands Journal of Zoology 50(2):233-244.
    Pabst DA.1996. Springs in swimming animals[J]. American Zoologist 36(6):723-735.
    Pavlov VV.2003. Wing design and morphology of the harbor porpoise dorsal fin[J]. Journal of Morphology 258(3):284-295.
    Pedley TJ and Hill SJ.1999. Large-amplitude undulatory fish swimming:Fluid mechanics coupled to internal mechanics[J]. Journal of Experimental Biology 202(23):3431-3438.
    Peng JF and Dabiri JO.2007. A potential-flow, deformable-body model for fluid-structure interactions with compact vorticity:application to animal swimming measurements[J]. Experiments in Fluids 43(5):655-664.
    Peng JF and Dabiri JO.2008. An overview of a Lagrangian method for analysis of animal wake dynamics[J]. Journal of Experimental Biology 211(2):280-287.
    Peng JF,Dabiri JO, et al.2007. Non-invasive measurement of instantaneous forces during aquatic locomotion:a case study of the bluegill sunfish pectoral fin[J]. Journal of Experimental Biology 210(4):685-698.
    Perry CN, Cartamil DC, Bernal D, Sepulveda CA, Theilmann RJ, Graham JB & Frank LR. 2007. Quantification of red myotomal muscle volume and geometry in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark(Lamna ditropis), using T1-weighted magnetic resonance imaging[J]. Journal of Morphology.268(4):284-92.
    Plachta DTT, Hanke W, et al.2003. A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus[J]. Journal of Experimental Biology 206(19):3479-3486.
    Plaut I.2000. Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio[J]. Journal of Experimental Biology 203(4):813-820.
    Porter ME, Beltran JL, et al.2006. Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes)[J]. Journal of Experimental Biology 209(15):2920-2928.
    Post JR and Lee JA.1996. Metabolic ontogeny of teleost fishes[J]. Canadian Journal of Fisheries and Aquatic Sciences 53(4):910-923.
    Randall D and Brauner C.1991. Effects of Environmental-Factors on Exercise in Fish[J]. Journal of Experimental Biology 160:113-126.
    Rapo MA, Jiang JS, et.al.2009. Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water[J]. Journal of Experimental Biology 212(10): 1494-1505.
    Rohr JJ and Fish FE.2004. Strouhal numbers and optimization of swimming by odontocete cetaceans[J]. Journal of Experimental Biology 207(10):1633-1642.
    Rome LC, Swank D, et al.1993. How Fish Power Swimming[J]. Science 261(5119):340-343.
    Rome LC.1992. Scaling of Muscle-Fibers and Locomotion[J]. Journal of Experimental Biology 168:243-252.
    Rowe DM, Denton EJ, et al.1993. Head Turning in Herring and Some Other Fish[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 341(1296):141-148.
    Sagong W, Kim C, et al.2008. Does the sailfish skin reduce the skin friction like the shark skin[J]? Physics of Fluids 20(10):-
    Schrank AJ and Webb PW.1998. Do body and fin form affect the abilities of fish to stabilize swimming during maneuvers through vertical and horizontal tubes[J]? Environmental Biology of Fishes 53(4):365-371.
    Schriefer JE and Hale ME.2004. Strikes and startles of northern pike (Esox lucius):a comparison of muscle activity and kinematics between S-start behaviors[J]. Journal of Experimental Biology 207(3):535-544.
    Shirgaonkar AA, Curet OM, et al.2008. The hydrodynamics of ribbon-fin propulsion during impulsive motion[J]. Journal of Experimental Biology 211(21):3490-3503.
    Spierts ILY and Van Leeuwen JL.1999. Kinematics and muscle dynamics of C- and S-starts of carp (Cyprinus carpio L.)[J]. Journal of Experimental Biology 202(4):393-406.
    Standen EM and Lauder GV.2007. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis)[J]. Journal of Experimental Biology 210(2):325-339.
    Standen EM.2008. Pelvic fin locomotor function in fishes:three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss)[J]. Journal of Experimental Biology 211(18): 2931-2942.
    Swank DM and Rome LC.2001. The influence of thermal acclimation on power production during swimming II. Mechanics of scup red muscle under in vivo conditions[J]. Journal of Experimental Biology 204(3):419-430.
    Tan GK, Shen GX, et al.2007. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement[J]. Experiments in Fluids 43(5):811-821.
    Tangorra JL, Davidson SN, et al.2007. The development of a biologically inspired propulsor for unmanned underwater vehicles[J]. Ieee Journal of Oceanic Engineering 32(3):533-550.
    Taylor GI.1952. Analysis of the swimming of long narrow animals[J]. Proceedings of the Royal Society(A).214:158-183.
    Tillett R, McFarlane N, et al.2000. Estimating dimensions of free-swimming fish using 3D point distribution models[J]. Computer Vision and Image Understanding 79(1):123-141.
    Triantafyllou M S, Triantafyllou G S.1995. An efficient swimming machine[J]. Scientific American 272(3):64-70.
    Triantafyllou MS, Triantafyllou GS, et al.2000. Hydrodynamics of fishlike swimming[J].Annual Review of Fluid Mechanics 32:33-53.
    Tytell ED and Alexander JK.2007. Bluegill Lepomis macrochirus synchronize pectoral fin motion and opercular pumping[J]. Journal of Fish Biology 70(4):1268-1279.
    Tytell ED and Lauder GV.2002. The C-start escape response of Polypterus senegalus:bilateral muscle activity and variation during stage 1 and 2[J]. Journal of Experimental Biology 205(17):2591-2603.
    Tytell ED.2007. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies[J]. Experiments in Fluids 43(5):701-712.
    van Leeuwen JL, van der Meulen T, et al.2008. A functional analysis of myotomal muscle-fibre reorientation in developing zebrafish Danio rerio[J]. Journal of Experimental Biology 211(8):1289-1304.
    Verhagen JHG.2004. Hydrodynamics of burst swimming fish larvae; a conceptual model approach[J]. Journal of Theoretical Biology 229(2):235-248.
    Wainwright PC, Bellwood DR, et al.2002. Ecomorphology of locomotion in labrid fishes[J]. Environmental Biology of Fishes 65(1):47-62.
    Wakeling JM and Johnston IA.1999a. Body bending during fast-starts in fish can be explained in terms of muscle torque and hydrodynamic resistance[J]. Journal of Experimental Biology 202(6):675-682.
    Wakeling JM and Johnston IA.1999b. White muscle strain in the common carp and red to white muscle gearing ratios in fish[J]. Journal of Experimental Biology 202(5):521-528.
    Wakeling JM, Kemp KM, et al.1999. The biomechanics of fast-starts during ontogeny in the common carp Cyprinus carpio[J]. Journal of Experimental Biology 202(22):3057-3067.
    Walker JA.1998. Estimating velocities and accelerations of animal locomotion:A simulation experiment comparing numerical differentiation algorithms[J]. Journal of Experimental Biology 201(7):981-995.
    Wang H, Zeng LJ, et al.2002. A video tracking system for measuring the position and body deformation of a swimming fish[J]. Review of Scientific Instruments 73(12):4381-4384.
    Wardle CS and Videler JJ.1993. The Timing of the Electromyogram in the Lateral Myotomes of Mackerel and Saithe at Different Swimming Speeds[J]. Journal of Fish Biology 42(3): 347-359.
    Webb PW and Fairchild AG.2001. Performance and maneuverability of three species of teleostean fishes[J]. Canadian Journal of Zoology-Revue Canadienne De Zoologie 79(10): 1866-1877.
    Webb PW, Sims D, et al.1991. The Effects of an Air Water-Surface on the Fast-Start Performance of Rainbow-Trout (Oncorhynchus-Mykiss)[J]. Journal of Experimental Biology 155:219-226.
    Webb PW, Weihs D.1983. Optimization of locomotion.//Webb P W, Weihs D. Fish Biomechanics[M]. New York:Praeger:339-371.
    Webb PW.1971a. The swimming energetic of trout Ⅰ. Thrust and power at cruising speeds[J]. Journal of Experimental Biology,55:489-520.
    Webb PW.1971b. The swimming energetic of trout Ⅱ. Oxygen consumption and swimming efficiency[J]. Journal of Experimental Biology,55:521-540.
    Webb PW.1991. Composition and mechanics of routine swimming of rainbow trout Oncorhynchus mykiss[J]. Canadian Journal of Fisheries and Aquatic Sciences.48,583-590.
    Webb PW.1993. The Effect of Solid and Porous Channel Walls on Steady Swimming of Steelhead Trout Oncorhynchus Mykiss[J]. Journal of Experimental Biology 178:97-108.
    Weber PW, Howle LE, et al.2009. Lift and drag performance of odontocete cetacean flippers[J]. Journal of Experimental Biology 212(14):2149-2158.
    Weihs D.1972. A hydrodynamical analysis of fish turning maneuvers[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 182(1066):59-72.
    Weihs D.1973. The mechanism of rapid starting of slender fish[J]. Biorheology,10:343-350.
    Weihs D.2002. Stability versus maneuverability in aquatic locomotion[J]. Integrative and Comparative Biology 42(1):127-134.
    Westneat MW, Hale ME, et al.1998. Mechanics of the fast-start:Muscle function and the role of intramuscular pressure in the escape behavior of Amia calva and Polypterus palmas[J]. Journal of Experimental Biology 201(22):3041-3055.
    Wilga CD and Lauder GV.2002. Function of the heterocercal tail in sharks:quantitative wake dynamics during steady horizontal swimming and vertical maneuvering[J]. Journal of Experimental Biology 205(16):2365-2374.
    Wilga CD and Lauder GV.2004. Biomechanics-Hydrodynamic function of the shark's tail[J]. Nature 430(7002):850-850.
    Williams PJ, Brown JA, et al.1996. Developmental changes in escape response performance of five species of marine larval fish[J]. Canadian Journal of Fisheries and Aquatic Sciences 53(6):1246-1253.
    Wu GH, Yang Y, et al.2007a. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyptinus carpio koi)[J]. Journal of Experimental Biology 210(12):2181-2191.
    Wu GH, Yang Y, et al.2007b. Routine turning maneuvers of koi carp Cyprinus carpio koi:effects of turning rate on kinematics and hydrodynamics [J]. Journal of Experimental Biology 210(24):4379-4389.
    Wu TY.1961. Swimming of a waving plate[J]. Journal of Fluid Mechanics 10(3):321-344.
    Wu TY.1971. Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid[J]. Journal of Fluid Mechanics 46(2):337-355.
    Wu TY.2001. Mathematical biofluiddynamics and mechanophysiology of fish locomotion[J]. Mathematical Methods in the Applied Sciences 24(17-18):1541-1564.
    Yanase K and Arimoto T.2007. A hydro-mechanical approach to the scaling of swimming performance in the sand flathead Platycephalus bassensis Cuvier:effects of changes in morphological features based on fish size[J]. Journal of Fish Biology 71(6):1751-1772.
    Yang Y, Wu GH, Yu YL, et al.2008. Two-Dimensional Self-Propelled Fish Motion in Medium:An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics[J]. Chinese Physics Letters 25(2):597-600.
    Yuan F, Song DQ, et al.2001. Measuring 3D profile and position of a moving object in large measurement range by using tracking fringe pattern[J]. Optics Communications 196(1-6): 85-91.
    Zeddies DG and Fay RR.2005. Development of the acoustically evoked behavioral response in zebrafish to pure tones[J]. Journal of Experimental Biology 208(7):1363-1372.
    Zhu Q and Shoele K.2008. Propulsion performance of a skeleton-strengthened fin[J]. Journal of Experimental Biology 211(13):2087-2100.
    Zhu Q, Wolfgang MJ, et al.2002. Three-dimensional flow structures and vorticity control in fish-like swimming[J]. Journal of Fluid Mechanics 468:1-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700