用户名: 密码: 验证码:
高分子链在表面上的吸附和扩散及聚合物共混物相行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Computer Simulation Study of the Adsorption and Diffusion of Polymer Chain on Surfaces and the Phase Behavior of Polymer Blends
  • 作者:牟丹
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:黄旭日 ; 吕中元
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-01
摘要
本论文运用计算机模拟方法研究高分子体系,其中涉及高分子链在表面上的吸附和扩散,以及聚合物共混物相行为这两方面的研究:
     一、微观尺度上的模拟:运用分子动力学(Molecular Dynamics, MD)的方法分别研究极性的聚乙烯醇链、非极性的聚乙烯链在强极性羟基化β-石英(100)表面上的吸附和扩散行为。研究表明,当表面具有有序极性的羟基阵列排布时,无论吸附高分子链的极性如何,都能够很快吸附到表面上,高分子链在表面上的扩散速度随着链长的增加而降低。较低聚合度(10-60)的高分子链在表面上的平衡吸附构型均为有序的二维折叠构型,并且沿着(110)方向取向。这一研究结果,为制造聚合物薄膜提供了理论参考。
     二、介观尺度上的模拟:通过介观模拟方法研究聚氧化乙烯(poly(ethylene oxide) , PEO)和聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)的二元共混物的相行为。研究表明,此共混物为相容体系,通过向共混物引入外界影响因素,如施加剪切场、添加嵌段共聚物等手段,可以改变共混物的相形态,其中,施加剪切场对共混物相行为的影响程度最大。另外,考虑了纳米颗粒在聚合物共混物中的掺杂,当共混物中聚氧化乙烯为主要成分时,其共混物相形态改变的程度最大。增加所掺杂的纳米颗粒的数密度和尺寸,对共混物相形态改变的程度最大。这些研究结果为改善聚合物共混物相形态提供了理论依据。
Because of the outstanding physical and chemical properties of polymer materials, the polymer products exist extensively in our life, and they have become our indispensable friends. However, there are some properties and phenomena of polymer materials which are difficult to be explained experimentally. The computer simulation provides us a reliable solution to overcome these problems with the help of theoretical tools. Combined with the experimental methods, it can enrich our understanding on the relation between the polymer materials and the microscopic structures.
     This paper has two main parts. The first part is to study the adsorption and diffusion of polymer chain on the surfaces at the microscopic scale with the help of computer simulations. The second part is to study the compatibility of PEO/PMMA blends at both microscopic and mesoscopic scales also with the help of computer simulations. In order to study the influence of the external factors on the phase morphologies of PEO/PMMA blends, we add the steady shear, block copolymers and nanoparticles into the blends.
     The first part: the computer simulation study of the adsorption and diffusion of polymer chain on surfaces
     It is common to study the adsorption behavior between the adsorbate and adsorption surface which possess the similar polarity. Among them, the study on the hydrophobic-hydrophobic systems has been carried out by many researchers. The adsorption systems in our researches are different, one is with hydrophilic-hydrophilic type, and the other is with hydrophobic-hydrophilic type. The adsorbates are poly(vinyl alcohol) (PVA) which is hydrophilic and polyethylene (PE) which is hydrophobic, respectively. We adopt the hydroxylatedβ-cristobalite (100) surface for both systems as the adsorption surfaces.
     (1) Hydrophilic-hydrophilic type:
     We study the adsorption of a typical hydrophilic chain on a strong hydrophilic surface where hydrogen bonds can form between them. The vacuum and“in solution”conditions are considered separately, and the effects of molecular weight on the adsorption behavior are taken into account. For short chains in vacuum, the adsorbed molecule configuration is ordered and the molecule is oriented along (110). Increasing the molecular weight to a moderate extent, the molecule possesses folded configuration and the whole molecule is still oriented along (110). Therefore we show the possibility of producing ordered single polymer layer and suggest control factors. When the molecular weight is large enough, the adsorbed molecule configuration is frozen with certain height in the Z direction, i.e., not easy to change due to the strong surface-polymer interactions. In solution, there is no orientation preference of the molecules and the configurations are always two dimensional and not ordered, no matter what the molecular weight is. Furthermore, the mobility of the molecules in solution is larger than that in vacuum, which implies that the molecules in solution are easier to be desorbed. These results may relate to the experiments of template-induced self-assembly of molecules.
     (2) Hydrophobic-hydrophilic type:
     The PE chain forms ordered folded 2D adsorption configuration on the hydroxylatedβ-cristobalite (100) surface, and the preferential adsorption direction for the whole PE chain is along (110) direction, this is the result from the competition between the intra-chain and chain-surface interactions. The hydroxyl groups with such ordered arrangement arrays on the hydroxylatedβ-cristobalite (100) surface can“direct”the PE chains to form ordered arrangement on the adsorption surface, furthermore, form a PE thin film at last with the increase in the PE concentration.
     From these results, we can draw a conclusion that no matter the polymer chain is hydrophilic or hydrophobic, the polymer chains all adopt 2D ordered arrangement on the hydroxylatedβ-cristobalite (100) adsorption surface. These results can be applied in the experiments of template-induced self-assembly of molecules.
     The second part: the computer simulation study of the phase behavior of PEO/PMMA blends
     The study about PEO/PMMA blends is involved both the microscopic and mesoscopic simulation methods: we obtain the representative chain length of the component chains and the Flory-Huggins interaction parameter at the selected temperatures; then we obtain the phase morphologies of the blends via computer simulations from the mesoscopic scale.
     (1) the calculations at microscopic scale
     At first, we need to calculate the representative chain length of PEO and PMMA, respectively. It involves two steps to do this job: the first step, do minimization and anneal treatment on the PEO/PMMA blends. The second step, do MD simulations with a repeating ensemble cycle from NVT to NPT three times. The aim for these two steps are to reduce the end-end interactions in these oligomer systems, otherwise the calculated data would not be comparable with the polymer bulk properties. From the calculated relation between the solubility parameters of PEO and its chain lengths, we can find that the solubility parameter does not change when N reaches 50. Thus N=50 is the representation chain length for PEO chain. The process of finding the representation chain length of PMMA is the same as that of PEO. Next, we calculate the Flory-Huggins interaction parametersχat 270 K, 298 K and 400 K. Comparing the calculatedχwithχcritical, we find that the PEO/PMMA blends are all miscible. From the change tendency of the calculatedχdata of different PEO/PMMA blends at different simulation temperatures, we can draw a conclusion that the influence of the enthalpy effect performs more intensely than the entropy effect during this blending process. This conclusion is coincident with that of Hopkinson et al.
     (2) the calculations at mesoscopic scale
     We take 1/4 (PEO volume fraction 0.1021), 3/1 (PEO volume fraction 0.5771) and 8/1 (PEO volume fraction 0.7844) blends as examples for the composition rich in PMMA, roughly equal in PEO and PMMA, and rich in PEO, respectively. We discuss the influence of external factors on these phase morphologies by adding the block copolymers, the steady shear, and the nanoparticles into the PEO/PMMA blends.
     From the calculations of order parameter of three representative cases (1/4, 3/1 and 8/1 blends) with block copolymer added, we find that when the two ends of copolymer and the dominating composition in plain blends are different components, it can lead to evident local phase separation, especially in PEO-rich blends. The longer the chain, the stronger is the local phase separation. The simulations of testing the shear effect in different composition cases show that the 1/4 blending case suffers the most apparent local phase separation.
     We now consider the mesoscopic simulations carried out on the plain PEO/PMMA blends, doped with nanoparticles with various size, density and arrangement. The doped nanoparticles can even induce the blends to exhibit phase separation, especially when the blends are rich in PEO or PMMA, such as 6/1 and 1/4 blending cases, their phase morphologies are all sensitive to the doped nanoparticles. From the simulations, we find that the density and the size of doped nanoparticles are the most important factors influencing on the phase morphologies of PEO/PMMA blends.
引文
1. Roe R. J., Computer Simulation of Polymers, Prentice Hall, New Jersey, 1991.
    2. Flory P. J., “Molecular Size Distribution in Linear Condensation Polymers”,J. Am. Chem. Soc., 1936, 58, 1877.
    3. Flory P. J., Principles of Polymer Chemistry, Cornell University Press, New York, 1953.
    4. Stockmayer W. H., “Note on the kinetics of emulsion polymerization”, J. Polym. Sci., 1952, 9, 69.
    5. Flory P. J., “Molecular size Distribution in Three Dimensional Polymers. I. Gelation”,J. Am. Chem. Soc., 1941, 63, 3083.
    6. Stockmayer W. H., “Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers”, J. Chem. Phys., 1943, 11, 45.
    7. Macosko C. W. and Miller D. R., “A New Derivation of Average Molecular Weights of Nonlinear Polymers”, Macromolecules, 1976, 9, 199.
    8. Nakanishi H. and Stanley H. E., “Scaling studies of percolation phenomena in systems of dimensionality two to seven: Cluster numbers”, Phys. Rev. B, 1980, 22, 2466.
    9. Feller W., An Introduction to Probability Theory and its Applications, John Wiley-Sons, New York, 1957.
    10. Clerk E. J. and Hoffman J. D., “Regime III crystallization inpolypropylene”, Macromolecules, 1984, 17, 878.
    11. Hoffman J. D., “Role of reptation in the rate of crystallization of polyethylene fractions from the melt”, Polymer, 1982, 23, 656.
    12. Hoffman J. D., “Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding”, Polymer, 1983, 24, 3.
    13. Cavallo L., Corradini P., Guerra G. and Vacatello M., “On the effects of methyl substituents on chelating ligands in models for homogeneous isospecific Ziegler-Natta catalysis”, Polymer, 1991, 32, 1329.
    14. Cavallo L., Guerra G. and Corradini P., “Model catalytic sites for olefin polymerization and diastereoselectivity in the cyclopolymerization of 1,5-hexadiene”, Macromolecules, 1993, 26, 260.
    15. Castonguay L. A. and Rappé A. K, “Ziegler-Natta catalysis. A theoretical study of the isotactic polymerization of propylene”, J. Am. Chem. Soc., 1992, 114, 5832.
    16. Hart J. R. and Rappé A. K., “Predicted structure selectivity trends: propylene polymerization with substituted rac-(1,2-ethylenebis(.eta.5-indenyl))zirconium(IV) catalysts”, J. Am. Chem. Soc., 1993, 115, 6159.
    17. Kawamura-Kuribayashi H., Koga N. and Morokuma K., “Synthesis, chemistry, and properties of a monoalkylatedbuckminsterfullerene derivative, tert-BuC60 anion”, J. Am. Chem. Soc., 1992, 114, 9697.
    18. Toto M., Cavallo L., Corradini P., Moscard G., Resconi L. and Guerra G., “Influence of -Ligand Substitutions on the Regiospecificity and Stereospecificity in Isospecific Zirconocenes for Propene Polymerization. A Molecular Mechanics Analysis”, Macromolecules, 1998, 31, 3431.
    19. Doi M. and Edwards S. F., The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.
    20. de Dennes P. G., Scaling Concepts in Polymer Physics, Comell University, Ithaca, New York, 1979.
    21. Lifson S. and Warshel A., “Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules”, J. Chem. Phys., 1968, 49, 5116.
    22. Flory P. J., Statistical Mechanics of Chain Molecules, Hanser, Munich, 1989.
    23. Allen M. P. and Tildesley D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
    24. Frenkel D. and Smit B., Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, San Diego, 1996.
    25. Rappaport D. C., The Art of Molecular Dynamics Simulation, Cambridge Univ. Press, Cambridge, 1995.
    26. Sarman S. S., Evans D. J. and Cummings P. T., “Recent developments.in non-Newtonian molecular dynamics”, Phys. Rep., 1998, 305, 1.
    27. Binder K., Monte Carlo Methods in Condensed Matter Physics, Springer-Verlag, Berlin, 1992.
    28. Binder K., Applications of the Monte Carlo Method in Statistical Physics, Springer-Verlag, Berlin, 1984.
    29. Khalatur P. G., Shirvanyanz D. G., Starovoitova Yu N. and Khokhlov A. R., “Conformational properties and dynamics of molecular bottle-brushes: A cellular-automaton-based simulation”, Macromol. Theory Simul., 2000, 9, 141.
    30. Binder K., Monte Carlo and Molecular Dynamics Methods in Polymer Science, Oxford University Press, Oxford, 1995.
    31. Carmesin I. and Kremer K., “The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions”, Macromolecules, 1988, 21, 2819.
    32. Deutsch H. P. and Binder K., “Interdiffusion and self-diffusion in polymer mixtures: A Monte Carlo study”, J. Chem. Phys., 1991, 94, 2294.
    33. Harris J. and Rice S. A., “A lattice model of a supported monolayer of amphiphile molecules: Monte Carlo simulations”, J. Chem. Phys., 1988, 88, 1298.
    34. Wall F. T. and Mandel F., “Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition”, J. Chem. Phys., 1975, 63, 4592.
    35. Siepmann J. I. and Frenkel D., “Configurational-bias Monte Carlo - A new sampling scheme for flexible chains”, Mol. Phys., 1992, 75, 59.
    36. de Pablo J. J., Laso M. and Suter U. W., “Simulation of polyethylene above and below the melting point”, J. Chem. Phys., 1992, 96, 2395.
    37. Escobedo F. A. and de Pablo J. J., “Simulation and theory of the swelling of athermal gels”, J. Chem. Phys., 1997, 106, 793.
    38. Madras N. and Sokal A. D., “The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk”, J. Stat. Phys., 1988, 50, 109.
    39. Santos S., Suter A. W., Müller M. and Nievergelt J., “A novel parallel-rotation algorithm for atomistic Monte Carlo simulation of dense polymer systems”, J. Chem. Phys., 2001, 114, 9772.
    40. Pant P. V. K. and Theodorou D. N., “Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts”, Macromolecules, 1995, 28, 7224.
    41. Mavrantzas V. G.., Boone T. D., Zervopoulou E. and Theodorou D. N., “End-Bridging Monte Carlo: A Fast Algorithm for Atomistic Simulation of Condensed Phases of Long Polymer Chains”, Macromolecules, 1999, 32, 5072.
    42. Panagiotopoulos A. Z., Quirke N., Stapleton M. and Tildesley D. J., “Phase equilibria by simulation in the Gibbs ensemble. Alternative derivation, generalization and application to mixture and membrane equilibria”, Mol. Phys., 1988, 63, 527.
    43. Panagiotopoulos A. Z., “Direct determination of phase coexis tence properties of fluids by Monte - Carlo simulation in a new ensemble”, Mol. Phys., 1987, 61, 813.
    44. Smit B. De Smedt P. H. and Frenkel D., “Computer simulations in the Gibbs ensemble”, Mol. Phys., 1989, 68, 931.
    45. Yoon D. Y. and Flory P. J., “Moments and distribution functions for polymer chains of finite length. II. Polymethylene chains”, J. Chem. Phys., 1974, 61, 5366.
    46. Mattice W. L., “Asymmetry of Flexible Chains, Macrocycles, and Stars”, Macromolecules, 1980, 13, 506.
    47. Mattice W. L., “Subchain expansion in generator matrix and Monte Carlo treatments of simple chains with excluded volume”, Macromolecules, 1981, 14, 1491.
    48. Mattice W. L. and Napper D. H., “End effects and asymmetries of the distribution of chain atoms in polymethylene chains perturbed by attachment to an impenetrable interface”, Macromolecules, 1981, 14, 1066.
    49. Mark J. E. and Curro J. G., “Distribution functions for very short n-alkane chains”, J. Chem. Phys., 1984, 81, 6408.
    50. Theodorou D. N. and Suter U. W., “Shape of unperturbed linear polymers: polypropylene”, Macromolecules, 1985, 18, 1206.
    51. Mattice W. L., “The role of in the response of the mean square dipole moment to the expansion of a family of model chains”, J.Chem. Phys., 1987, 87, 5512.
    52. Mattice W. L., “Behavior of .ltbbrac.r2.mu.2.rtbbrac.0 in several monosubstituted vinyl polymers”, Macromolecules, 1988, 21, 3320.
    53. Dodge R. and Mattice W. L., “Simulation by molecular dynamics of poly(1,4-trans-butadiene) as an inclusion complex in the channel of crystalline perhydrotriphenylene”, Macromolecules, 1991, 24, 2709.
    54. Zhan Y. and Mattice W. L., “Conformation and mobility of 1,4-trans-polybutadiene in the crystalline state”, Macromolecules, 1992, 25, 1554.
    55. Zhan Y. and Mattice W. L., “Creation, migration, and termination of conformational defects in poly(1,4-trans-butadiene) in form II and in the inclusion complex in perhydrotriphenylene”, J. Chem. Phys., 1992, 96, 3279.
    56. Vacatello M. and Yoon D. Y., “Conformational statistics of polyisobutene by a Monte Carlo study”, Macromolecules, 1992, 25, 2502.
    57. Vilaseca E., “Conformational analysis and dipole moments of dimethyl esters of some simple dicarboxylic acids. A Monte Carlo study”, J. Phys. Chem., 1993, 97, 1684.
    58. Cifra P. and Bleha T., “Conformer populations and the excluded volume effect in lattice simulations of flexible chains in solutions”, Polymer, 1993, 34, 3716.
    59. Li X., Yang X. and Zhao D., “Configuration energy calculation ofsingle-chain polystyrene glass sphere by the RIS-Monte Carlo method”, Polymer, 1996, 37, 3929.
    60. Flory P. J., Statistical Mechanics of Chain Molecules, New York, Interscience, 1969.
    61. Flory P. J.,链状分子的统计力学,吴大诚等译,四川科技出版社,1990.
    62. Mattice W. L. and Suter U. W., Conformational Theory of Large Molecules,N. Y., 1994.
    63. Hopfinger A. J., Conformational Properties of Macromolecules,New York, Academic Press, 1973.
    64. Volkenstein M. V., Configurational Statistics of Polymer Chains,New York, Interscience, 1963.
    65. 陈世元、沈良骏编著,分子内旋转和聚合物链构象理论,吉林大学出版社,1989.
    66. Smith S., Hall C. and Freeman B., “Large-Scale Molecular Dynamics Study of Entangled Hard-Chain Fluids”, Phys. Rev. Lett., 1995, 75, 1316.
    67. Smith S., Hall C. and Freeman B., “Molecular dynamics study of entangled hard-chain fluids”, J. Chem. Phys., 1996, 104, 5616.
    68. Kremer K. and Grest G. S., “Dynamics of entangled linear polymer melts: A molecular-dynamics simulation”, J. Chem. Phys., 1990, 92, 5057.
    69. Rudisill J. W. and Cummings P. T., “The contribution of internaldegrees of freedom to the non-Newtonian rheology of model polymer fluids”, Rheol. Acta, 1991, 30, 33.
    70. Rudisill J. W. and Cummings P. T., “Brownian Dynamics Simulation of Model Polymer Fluids on Shear Flow. I. Dumbbell models”, J. Non-Newtonian Fluid Mech., 1992, 41, 275.
    71. Schoppe G. and Heermann D., “Alternative off-lattice model with continuous backbone mass for polymers”, Phys. Rev. E, 1999, 59, 636.
    72. Baschnagel J., Binder K., Doruker P., Gusev A. A. and Hahn O., Advances in Polymer Science: Viscoelasticity, Atomistic Models, Statistical Chemistry, Springer, Berlin, 2000.
    73. Bennemann C., Donati C., Baschnagel J. and Glotzer S. C., “Growing range of correlated motion in a polymer melt on cooling towards the glass transition”, Nature, 1999, 399, 246.
    74. Bennemann C., Paul W., Binder K. and D ü nweg B., “Molecular-dynamics simulations of the thermal glass transition in polymer melts: α-relaxation behavior”, Phys. Rev. E, 1998, 57, 843.
    75. Everaers R. and Kremer K., “Topological interactions in model polymer networks”, Phys. Rev. E, 1996, 53, R37.
    76. Kremer K., “Numerical Studies of Polymer Networks and Gels”, Computational Mater. Sci., 1998, 10, 168.
    77. Escobedo F. A. and de Pablo J. J., “Molecular Simulation of Polymeric Networks and Gels: Phase behavior and Swelling”, Phys. Rep., 1999, 318, 86.
    78. Micka U. and Kremer K., “Strongly charged flexible polyelectrolytes in poor solvents: from stable spheres to necklace chains”, Europhys. Lett., 2000, 49, 189.
    79. Shew C. Y. and Yethiraj A., “Monte Carlo simulations and self-consistent integral equation theory for polyelectrolyte solutions”, J. Chem. Phys., 1999, 110, 5437.
    80. Verdier P. H. and Stockmayer W. H., “Monte Carlo Calculations on the Dynamics of Polymers in Dilute Solution”, J. Chem. Phys., 1962, 36, 227.
    81. Kolinski A., Skolnik J. and Yaris R., “Does reptation describe the dynamics of entangled, finite length polymer systems? A model simulation”, J. Chem. Phys., 1986, 86, 1567.
    82. Binder K., “Collective diffusion, nucleation and spinodal decomposition in polymer mixtures”, J. Chem. Phys., 79, 6387.
    83. Paul W., Binder K., Heermann D. W. and Kremer K., “Crossover scaling in semidilute polymer solutions: a Monte Carlo test”, J. Phys. II, 1991, 1, 37.
    84. Deutsch H. P. and Binder K., “Evidence against the integral equation theory of polymer blends”, Europhys. Lett., 1992, 17, 697.
    85. Dickmann R., “New simulation method for the equation of state of lattice chains”, J. Chem. Phys., 1987, 87, 2246.
    86. Müller M., “Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study”, Macromol. Theory Simul., 1999, 8, 343.
    87. Müller M. and Schmid F., Annual Reviews of Computational Physics, World Scientific, Singapore, 1999.
    88. Ivanov V. A., Paul W. and Binder K., “Finite chain length effects on the coil–globule transition of stiff-chain macromolecules: A Monte Carlo simulation”, J. Chem. Phys., 1998, 109, 5659.
    89. Kreitmeier S., Wittkop M. and G?ritz D., “Computer simulations on the cyclic deformation of a single polymer chain above and below the Θ temperature”, Phys. Rev. E, 1999, 59, 1982.
    90. Hoogerbrugge P. J. and Koelman J. M. V. A., “Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics”, Europhys. Lett., 1992, 19, 155.
    91. Espa?ol P. and Warren P. B., “Statistical mechanics of dissipative particle dynamics”, Europhys. Lett., 1995, 30, 191.
    92. Groot R. D. and Warren P. B., “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation”, J. Chem. Phys., 1997, 107, 4423.
    93. Martys N. S. and Mountain R. D., “Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions”, Phys. Rev. E, 1999, 59, 3733.
    94. Haynes C. A. and Norde W., “Globular proteins at solid/liquid. Interfaces”, Colloids. Surf. B., 1994, 2, 517.
    95. Malmsten M., “Formation of adsorbed protein layers”, J. Colloid. Interface. Sci., 1998, 207, 186.
    96. Decher G., “Fuzzy nanoassemblies: Toward layered polymeric multi-composites”, Science, 1997, 277, 1232.
    97. Esker A. R., Mengel C. and Wegner G., “Ultrathin films of a polyelectrolyte with layered architecture”, Science, 1998, 280, 892.
    98. Caruso F., Caruso R. A. and Mohwald H., “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating”, Science, 1998, 282, 1111.
    99. Shiratori S. S. and Rubner M. F., “pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes”, Macromolecules, 2000, 33, 4213.
    100. Clark S. L. and Hammond P. T., “Engineering the Microfabrication of Layer-by-Layer Thin Films”,Adv. Mater.1998, 10, 1515.
    101. Husemann M., Morrison M., Benoit D., Frommer J., Mate C. M., Hinsberg W. D., Hedrick J. L. and Hawker C. J., “Manipulation of Surface Properties by Patterning of Covalently Bound Polymer Brushes”, J. Am. Chem. Soc., 2000, 122, 1844.
    102. Xia Y. N. and Whitesides G. M., “Soft Lithography”, Annu. Rev. Mater. Sci., 1998, 28, 153.
    103. Huck W. T. S., Strook A. D. and Whiteside G. M., “Synthesis of geometrically well defined, molecularly thin polymer films”, Angew. Chem., Int. Ed., 2000, 39, 1058.
    104. Milchev A. and Binder K., “Dewetting of thin polymer films adsorbed on solid substrates: A Monte Carlo simulation of the early stages”, J.Chem. Phys., 1997, 106, 1978.
    105. Pandey R. B., Milchev A. and Binder K., “Semidilute and Concentrated Polymer Solutions near Attractive Walls: Dynamic Monte Carlo Simulation of Density and Pressure Profiles of a Coarse-Grained Model”, Macromolecules, 1997, 30, 1194.
    106. Varnik F., Baschnagel J., Binder K. and Mareschal M., “Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function”, Eur.Phys. J. E., 2003, 12, 167.
    107. Lin Y. -C., Müller M. and Binder K., “Stability of thin polymer films: Influence of solvents”, J. Chem. Phys., 2004, 121(8), 3816.
    108. Briggman K. A., Stephenson J. C., Wallace W. E. and Richter L. J., “Absolute Molecular Orientational Distribution of the Polystyrene Surface”, J. Phys. Chem. B.,2001, 105, 2785.
    109. Kim D. and Lu W., “Three-dimensional model of electrostatically induced pattern formation in thin polymer films”, Phys. Rev. B., 2006, 73, 035206.
    110. Desai T., Keblinski P. and Kumar S. K., “Computer Simulations of the Conformations of Strongly Adsorbed Chains at Solid-Liquid Interface”, Polymer, 2006, 47, 722.
    111. Du J. and Cormack A. N., “Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces”, J. Am. Ceram. Soc., 2005, 88(10), 2978.
    112. Iarlori S., Ceresoli D., Bernasconi M., Donadio D. and Parrinello M., “Dehydroxylation and Silanization of the Surfaces of -Cristobalite Silica: An ab Initio Simulation”, J. Phys. Chem. B., 2001, 105, 8007.
    113. Stamenkovic V., Chou K. C., Somorjai G. A., Ross P. N., and Markovic N. M., “Vibrational Properties of CO at the Pt(111)-Solution Interface: the Anomalous Stark-Tuning Slope”, J. Phys. Chem. B., 2005, 109(12), 678.
    114. Hoover W. G., “Canonical dynamics: Equilibrium phase-space distributions”, Phys. Rev. A., 1985, 31, 1695.
    115. Sun H., “COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds”, J. Phys. Chem. B., 1998, 102, 7338.
    116. Sun H., Ren P. and Fried J. R., “The COMPASS Force Field: Parameterization and Validation for Polyphosphazenes”, Comput. Theor. Polym. Sci., 1998, 8, 229.
    117. Rigby D., Sun H. and Eichinger B. E., “Computer Simulations of Poly(ethylene oxide): Force Field, PVT Diagram and Cyclization Behaviour”, Polym. Int., 1997, 44, 311.
    118. Ewald P. P., “Die Berchnung optischer und elektrostatischer Gitterpotentiale”, Ann. Phys., 1921, 64, 253.
    119. Verlet L., “Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., 1967, 159, 98.
    120. Roiter Y. and Minko S., “Adsorption of Polyelectrolyte versus Surface Charge: in Situ Single-Molecule Atomic Force Microscopy Experiments on Similarly, Oppositely, and Heterogeneously Charged Surfaces”, J. Phys. Chem. B., 2007, 111(29), 8597.
    121. Ph. Wernet, Nordlund D., Bergmann U., Cavalleri M., Odelius M., Ogasawara H., N?aslund L. A., Hirsch T. K., Ojam?ae L., Glatzel P., Pettersson L. G. M. and Nilsson A., “The structure of the first coordination shell in liquid water”, Science, 2004, 304, 995.
    122. Wang X. L., Lu Z. Y., Li Z. S. and Sun C. C., “Molecular Dynamics Simulation Study on Adsorption and Diffusion Processes of a Hydrophilic Chain on a Hydrophobic Surface”, J. Phys. Chem. B., 2005, 109(37), 17644.
    123. Rubinstein M. and Colby R. H., Polymer Physics, Oxford University Press, Oxford, 2003.
    124. Reddy G. and Yethiraj A., “Implicit and Explicit Solvent Models for the Simulation of Dilute Polymer Solutions”, Macromolecules., 2006, 39 (24), 8536
    125. Picaud S., Toubin C. and Girardet C., “Monolayer of acetone and methanol molecules on ice”, Surface, Surf. Sci., 2000, 454, 178.
    126. Compoint M., Toubin C., Picaud S., Hoang P. N. M. and Girardet C., “Geometry and dynamics of formic and acetic acids adsorbed on ice”, Chem. Phys. Lett., 2002, 365, 1.
    127. Toubin C., Picaud S., Hoang P. N. M. and Girardet C., “Structure anddynamics of ice Ih films upon HCl adsorption between 190 and 270 K. II. Molecular dynamics simulations”, J. Chem. Phys., 2002, 116(12), 5150.
    128. Bae S.C., Xie F., Jeon S. and Granick S., “Single isolated macromolecules at surfaces”, Curr. Opin. Solid. St.M., 2001, 5, 327.
    129. Chen L. –J., Zhang Z. –J., Lu Z. –Y. and Sun C. –C.,“聚合物链长及表面吸附强度对三维受限下嵌段共聚物微观相分离的影响”,Chem. J. Chinese Universities, 2007, 28(2), 316.
    130. Seymour R. B. and Carraher C. E., Polymer Chemistry: An Introduction, 2th ed. New York, Marcel Dekker Inc, 1988.
    131. Munk P. and Aminabhavi T. M., Introduction to Macromolecular Science, New York, Wiley-VCH, 2002.
    132. Carraher C. E., Giant molecules: Essential Materials for Everyday Living and Problem Solving, 2th ed. New York, Wiley, 2003.
    133. Martuscelli E., Demma G., Rossi E. and Segre A. L., “Evidence of compatibility in the melt for poly(ethylene oxide)/poly(methyl methacrylate) blends by NMR investigations”, Polym. Commun., 1983, 24, 266.
    134. Zawada J. A., Ylitalo C. M., Fuller G. G., Colby R. H. and Long T. E., “Component relaxation dynamics in a miscible polymer blend: poly(ethylene oxide)/poly(methyl methacrylate)”, Macromolecules, 1992, 25(11), 2896.
    135. Rao G. R., Castiglioni C., Gussoni M., Zerbi G. and Martuscelli E.,“Probing the structure of polymer blends by vibrational spectroscopy: the case of poly(ethylene oxide) and poly(methyl methacrylate) blends”, Polymer, 1985, 26, 811.
    136. Colby R. H., “Breakdown of time-temperature superposition in miscible polymer blends”, Polymer, 1989, 30, 1275.
    137. Nishi T. and Wang T. T., “Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures”, Macromolecules, 1975, 8, 909.
    138. Silvestre C., Cimmino S., Martuscelli E., Karasz F. E. and MacKnight W. J., “Poly(ethylene oxide)/poly(methyl methacrylate) blends: Influence of tacticity of poly(methyl methacrylate) on blend structure and miscibility”, Polymer,1987, 28, 1190.
    139. Ito H., Russell T. P. and Wignall G. D., “Interactions in mixtures of poly(ethylene oxide) and poly(methyl methacrylate)”, Macromolecules, 1987, 20, 2213.
    140. Hopkinson I., Kiff F. T., Richards R. W., King S. M. and Farren, T., “Isotopic labelling and composition dependence of interaction parameters in polyethylene oxide/polymethyl methacrylate blends”, Polymer, 1995, 36, 3523.
    141. Chung T. C., Raate M., Berluche E. and Schulz D. N., “Synthesis of functional hydrocarbon polymers with well-defined molecular structures”, Macromolecules, 1988, 21, 1703.
    142. Straka J., Schmidt P., Dybal J., Schneider B. and Spevacek J., “Blendsof poly(ethylene oxide)/poly(methyl methacrylate). An i.r. and n.m.r. study”, Polymer, 1995, 36, 1147.
    143. Lartigue C., Guillermo A. and Cohen-Addad J. P., “Proton NMR investigation of the local dynamics of PEO in PEO/PMMA blends”, J Polym Sci, Part B, Polym. Phys., 1997, 35, 1095.
    144. Schantz S., “Structure and Mobility in Poly(ethylene oxide)/Poly(methyl methacrylate) Blends Investigated by 13C Solid-State NMR”, Macromolecules, 1997, 30, 1419.
    145. Guillermo A., Lartigue C. and Cohen Addad J. P., “PEO Temporary Network in PEO/PMMA Blends: NMR Approach”, Macromolecules, 1998, 31, 769.
    146. Fernandes A. C., Barlow J. W. and Paul D. R., “Blends Containing Polymers of Epichlorohydrin and Ethylene Oxide. Part I. Poly-methacrylates”, J. Appl. Polym. Sci., 1986, 32, 5481.
    147. Hopkinson I., Kiff F. T. and Richards R. W., “Isotopic labelling and composition dependence of interaction parameters in polyethylene oxide/polymethyl methacrylate blends”, Polymer, 1995, 36(18), 3523.
    148. Reading M., “Modulated DSC- A New Way Forward in Materials Characterization”, Trends. Polym. Sci., 1993, 8, 248.
    149. Reading M., Elliot D. and Hill V. L., “A New Approach to the Calorimetric Investigation of Physical and Chemical-Transitions”, J. Therm. Anal., 1993, 40, 949.
    150. Dionisio M., Fernandes A. C., Mano J. F., Correia N. T. and Sousa R.C., “Relaxation Studies in PEO/PMMA Blends”, Macromolecules, 2000, 33, 1002.
    151. Wang M. T., Braun H. G. and Meyer E., “Crystalline structures in ultrathin poly(ethylene oxide)/poly(methyl methacrylate) blend films”, Polymer, 2003, 44, 5015.
    152. Wang M. T., Braun H. G. and Meyer E., “Transition of Crystal Growth as a Result of Changing Polymer States in Ultrathin Poly(ethylene oxide)/Poly(methyl methacrylate) Blend Films with Thickness of <3 nm”, Macromolecules, 2004, 37, 437.
    153. Lodge T. P., Wood E. R. and Haley J. C., “Two calorimetric glass transitions do not necessarily indicate immiscibility: The case of PEO/PMMA”, J. Polym. Sci. Part. B: Polym. Phys. 2006, 44, 756.
    154. Rigby D., Sun H. and Eichinger B. E., “Computer Simulations of Poly(ethylene oxide): Force Field, PVT Diagram and Cyclization Behaviour”, Polym. Int., 1997, 44, 311.
    155. Grulke E. A., Solubility parameter values in Polymer Handbook, 4th ed. New York, Wiley, 1999.
    156. Calahorra E., Cortazar M. and Guzman G. M., “Thermal decomposition of poly(ethylene oxide), poly(methyl methacrylate), and their mixtures by thermogravimetric method”, J. Polym. Sci. Polym. Lett. Ed., 1985, 23, 257.
    157. Silvestre C., Cimmino S., Martuscelli E., Karasz F. E. and Macknight W. J., “Poly(ethylene oxide)/poly(methyl methacrylate) blends: Influence oftacticity of poly(methyl methacrylate) on blend structure and miscibility”, Polymer, 1987, 28, 1190.
    158. Jawalkar S. S., Adoor S. G., Sairam M., Nadagouda M. N. and Aminabhavi T. M., “Molecular Modeling on the Binary Blend Compatibility of Poly(vinyl alcohol) and Poly(methyl methacrylate): An Atomistic Simulation and Thermodynamic Approach”, J. Phys. Chem. B., 2005, 109, 15611.
    159. Valls O. T. and Farrell J. E., “Spinodal decomposition in a three-dimensional fluid model”, Phys. Rev. E., 1993, 47, R36.
    160. Ramírez-Piscina L., Hernández-Machado A. and Sancho J. M., “Numerical algorithm for Ginzburg-Landau equations with multiplicative noise: Application to domain growth”, Phys. Rev. B., 1993, 48, 125.
    161. Kawakatsu T., Kawasaki K., Furusaka M., Okabayashi H. and Kanaya T., “Late stage dynamics of phase separation processes of binary mixtures containing surfactants”, J. Chem. Phys., 1993, 99(10), 8200.
    162. Shinozaki A. and Oono Y., “Spinodal decomposition in 3-space”, Phys. Rev. E., 1993, 48, 2622.
    163. Fraaije J. G. E. M., “Dynamic density functional theory for microphase separation kinetics of block copolymer melts”, J. Chem. Phys., 1993, 99, 9202.
    164. Fraaije J. G. E. M., van Vlimmeren B. A. C., Maurits N. M., Postma M., Evers O.A., Hoffman C., Altevogt P. and Goldbeck-Wood G., “Thedynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts”, J. Chem. Phys., 1997, 106, 4260.
    165. Groot R. D. and Madden T. J., “Dynamic simulation of diblock copolymer microphase separation”, J. Chem. Phys., 1998, 108, 8713.
    166. Brandrup J., Immergut E. H. and Grulke E. A., Polymer Handbook, New York, John Wiley-Sons, 1999.
    167. Spyriouni T. and Vergelati C., “A molecular modeling study of binary blend compatibility of polyamide 6 and poly(vinyl acetate) with different degrees of hydrolysis: An atomistic and mesoscopic approach”, Macromolecules., 2001, 34 , 5306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700