用户名: 密码: 验证码:
黑龙江汤原断陷古近系层序地层格架内湖泊砂体沉积特征及成因机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汤原断陷是依舒地堑最北端的一级构造单元,古近纪时期总体表现为东断西超的箕状断陷盆地。论文采用三级层序四分方案,运用沉积学、层序地层学、古湖泊学、地球化学、古生物学等多学科研究方法,通过大量的岩心、露头、地球物理、古生物、地球化学等资料综合分析,识别划分了汤原断陷古近系一至五级层序地层单元并建立了等时层序地层格架,由1个超层序组、4个超层序和11个三级层序组成。从岩性组合、岩石结构、原生沉积构造、地球物理响应、砂体形态等方面,综合研究了古近纪汤原断陷湖盆发育的湖泊砂体的识别标志和沉积特征,将其划分为扇三角洲、湖相和水下重力流3大成因类型,针对本区湖相成因砂体深入研究并建立了水下重力流沉积的系统分类方案。恢复了汤原断陷古近系不同构造阶段的沉积体系平面分布特征,总结了等时层序地层格架内不同成因类型湖泊砂体的分布规律,半定量-定量综合分析了本区各级层序发育的控制因素,研究了坡折带、斜坡带、古中央隆起带及凹陷带背景下发育的各种层序样式。首次提出具古中央隆起的复合半地堑层序地层模式,进一步将其细化为超补偿型、补偿型和欠补偿型3种模式,在不同模式下,分别探讨了各类湖泊砂体的形成机制。
Most reservoirs in continental sedimentary basins are all kinds of sandbody sedimentation in lakes, at present the sandbody which sedimentary genesis are relevant to lakes are called lacustrine sandbody. The distribution range of lacustrine sandbody is broad and the types are various, the deposition is complexly controlled by lacustrine facies belt. Synthetically Utilizing the theories and methods of sedimentology, sequence stratigraphy, geophysics and geochemistry, here we concentrate on studying the genetic types and sedimentary characteristics of Paleogene lacustrine sandbody in Tangyuan fault depression, then discuss their distribution regulars and genetic mechanism in isochronic sequence stratigraphic framework. This research could service for petroleum geologic work in research target and enhance the forecast and success rate of oil and gas exploration.
     Yishu Graben is one branch of Tan-Lu fault to north, which trends NE and crosses throughout Northeast China. Tangyuan fault depression is the north sub-tectonic unit of Yishu Graben, which is a dustpan-like fault depression, faulting in the east and overlapping in the west, and is controlled by eastern border fault F1. Inside Tangyuan fault depression, the sedimentary fills are mainly Paleogene formations, faults are very developed. The fault depression has structural framework with east-west zoning and south-north blocking, which could be divided into five sub- structural units from east to west that is eastern strike-slip thrust zone, eastern hollow zone, center bossy zone, western hollow zone and ramp region, and five relatively independent blocks with obvious differences from north to south that could be further divided into fifteen second-order structural units and several third-order structural units. The basement characteristic, modality and fault activity of every block is different, which causes every secondary depression has the features of different geologic characteristics and evolutional history.
     Here we adopt the division concept of nine-class sequence unit (Van Wagoner et al, 1990) to do research on Paleogene sequence stratigraphig of the Tangyuan fault depression. Aim at third order sequence, we adopt the technical terms of four-division system tract within a third order sequence(Liu Zhaojun et al, 1994, 1997, 2002).Using core, outcrop and geophysics as main research methods, palaeontology, geochemistry and mineralogy as supplementary research methods, by synthetically analyzing a lot of materials of drilling cores, filed outcrop, logging, seismic data, palaeontologic fossils and test data of clay minerals, heavy minerals and geochemistry, we identifies the Paleogene sequence stratigraphic units of this area and marks twelve Sequence boundaries that is T_1, T_1~1, T_2, T_2~1, T_2~2, T_3, T_3~1, T_4, T_4~0, T_4~1, T_4~2, and T_5, and summarizes the characteristics of sequence boundaries from megasequence to parasequence and their identified marks. Among them, T5 is the megasequence boundary, T_1 is supersequence sets boundary, T2, T3, and T4 are supersequence boundaries, T_1~1, T_2~1, T_2~2, T_3~1, T_4~0, T_4~1, and T_4~2 are third order sequence boundaries.
     Based on distinguishing and dividing every sequence stratigraphic units, here we carefully analyze and study the system tracts, parasequence sets, and parasequence characteristics within third order sequence. According to observation and description of drilling cores and outcrops, this research interprets fifteen kinds of lithologic and sedimentary structural types, which makes up different sedimentary microfacies to explain the vertical inner characteristics of parasequences. According to the superimposed patterns of parasequence, it could be divided into progradational、retrogrational and aggradational parasequence sets, and the grain size、silt ratio、well logs and signal parasequence depth of different types have apparently different characteristics in vertical changes.
     By studying the interface characteristics and identified marks of every order sequence stratigraphic unit of Paleogene in Tangyuan fault depression, Uniting with the internal structural characteristics of sequences, this research sets up the isochronal sequence stratigraphic framework of Paleogene in Tangyuan fault depression in seismic data, signal well and the connected wells profile, which is make up of one supersequence set, four supersequences, and eleven third order sequences. Among them, during fault period, supersequence set consistes of intense fault supersequence(SS1), persistent fault supersequence(SS2), supersequence transformed from fault to depression(SS3), and fault shrinking supersequence (SS4). Intense fault supersequence (SS1)contains four third order sequences that are SW1, SW2, SX1 and SX2, equal to Wuyun Formation and Xinancun Formation, persistent fault supersequence (SS2) contains two third order sequences that is SD1 and SD2, equal to Dalianhe Formation. supersequence transformed from fault to depression(SS3)contains three third order sequences that is SB1, SB2, and SB3, equal to the 1st member of Baoquanling Formation. fault shrinking supersequence (SS4) contains two third order sequences that is SB4 and SB5, equal to the 2nd member of Baoquanling Formation.
     According to drilling cores and field outcrops, united with logging, seismic, palaeontologic and geochemical data, and three kinds of sedimentary systems develope in this area that is fan delta, lacustrine, and underwater gravity current sedimentary systems, and twelve kinds of sedimentary subfacies and nineteen kinds of sedimentary microfacies can be further identified. From sedimentary characteristics of lithologic association, rock texture, primary sedimentary structure, geochemical response and sandbody morphology, we synthetically study all kinds of lacustrine sandbody developed in Paleogene of Tangyan fault depression and divide it into three genetic types of fan-delta, lacustrine and underwater gravity current. Among them, this is the first time to do research on sandbody of lacustrine genesis in this area. Moreover, learning from the past research results, here we firstly establish the systematical classification concept of subaqueous gravity current sedimentation of Paleogene in Tangyuan fault depression. According to formation mechanism and provenance supply factors, subaqueous gravity current could be divided into steady types and surging types. Among them, steady subaqueous gravity current sedimentation shows subaqueous fan with fan model, which could be further divided into abrupt subaqueous fan and gentle subaqueous fan by its tectonic location of distribution. Synthetically considering the dimensional distribution modality of surging subaqueous gravity current sedimentation, it could be divided into turbidite fan with fan model and turbidite with non-fan model, their formations are all related to the active intensity and style of faults developed in the region, and the formation of turbidite fan is effected by the degree of provenance supply controlled by the tectonic activity of syngenetic faults. Compared with steady subaqueous fan sedimentation, the scale of surging subaqueous gravity current sedimentation is smaller, so we could divide the internal microfacies and ascertain the plane distribution range according to the develop degree and completeness of Bouma series.
     Based on synthetically studying all kinds of sedimentary systems in isochronal sequence stratigraphic framework of Paleogene in this area, we recover the plane distribution characteristics of sedimentary systems in different structural stages, discuss and conclude the distribution regulars and formation mechanism of different types of lacustrine sandbody in sequence stratigraphic framework. In the period of Wuyun Formation and the 1st member of Baoquanling Formation, fan-delta sedimentary system developed in the two sides of the basin, subaqueous fan sedimentary system developed in the side of boundary fault controlling the basin, and coastal shallow lake sedimentation developed in the internal of basin. In the period of Dalianhe Formation and the 2nd member of Baoquanling Formation, fan-delta sedimentary system developed in the two sides of the basin, and coastal shallow lake sedimentation dominates over the internal of basin, semi-deep lake sedimentation developed only in the center of the west. Inside every third order sequence, LST is formed in the stage of forced rapid base-level fall, and base-level lies in the lowest. In the period of LST, the zones of steep slope and gentle slope with fault and slope-break develop mainly fan-delta sedimentary system, the types of sandbody in fan-delta plain and front zones are abundant, the eastern and western hollow zones develop partly subaqueous fan sandbody, the gentle slope with slope-break is exposed and eroded, and develops incised vally. TST is formed in the stage of rapid base-level rise. In the period of TST, the steep slope develops retrogradational fan-delta sandbody, the gentle slope develops retrogradational fan-delta sandbody and beach-bar sandbody, the periphery of the former center bossy zone develops beach-bar sandbody, the hollow zones of two sides develop subaqueous fan sandbody and surging turbidite sandbody in deep-water area. In the period of HST, base-level lies in the highest and be steady, the scale of fan-delta sedimentary system decreases and the fan-delta plain zone narrows down, the gentle slope develops beach-bar sandbody, the hollow zone develops steady argillaceous sediment of semideep and deep lake occasionally with surging turbidite sandbody. In the period of RST, base-level falls slowly, the two margin of basin develop progradational fan-delta sedimentary system dominated by fan-delta front sandbody, the former center bossy zone develops partly beach-bar sandbody, and the hollow zone develops sub-aqueous fan and surging turbidite sandbody.
     In continental fault depression basin, the factors controlled the sequence development is complex and diversified. By analyzing the buried history of Tangyuan fault depression in paleogene, we firstly use the Back-strip to quantitatively calculate the tectonic subsidence quantity and rates of every structural stage, semiquantitatively and quantitatively analyze the factors of controlling the develop of each order sequence, propose base-level change controlled by tectonic action, palaeoclimate, and sedimentary provenance supply forms third order sequence with different styles, and conclude every kinds of sequence styles developed in break of slope region, ramp region, palaeocentral uplift belt and depression belt.
     Based on analyzing the control factors of sequence development in depth, comparatively studying the typical examples of sequence stratigraphic models of other continental fault depression basins, taking third order sequence as basic sequence stratigraphic unit, we firstly propose the sequence stratigrphic model of compound half graben with palaeocentral uplift. Uniting the development characteristics of fault in different structural stage of Tangyuan fault depression and the interaction of the supply of sediments and accommodated space, we subdivide the sequence stratigraphic model into supercompensated, compensated and undercompensated, which separately display the types and characteristics of sequence developing in different structural stage of fault depression basin. Among them, supercompensated model is on behalf of sedimentary sequence with fan-delta and coastal shallow lake sedimentation developed in the early stage of intense fault, when tectonism actived intensely, the rate of subsidence is big, but the supply rate of sediments is bigger than the increase rate of accommodated space. In the sequence, LST and TST are most developed, the second is RST, and the develop scale of HST is smallest. The bottom and top of sequence are mostly scour surface with intense downcutting. In the margin of basin, every system tract develops mostly progradational fan-delta sedimentary system displayed by coarse sediments of several stages of distributary channel which superimpose and cut each other. In the internal of basin, LST develops shallow lake sedimentation, but the other systems tracts develop mainly semideep lake sedimentation. Totally it is shown that the water depth of basin becomes small, and the lake sedimentation depauperates. Compensated model is on behalf of sedimentary sequence with fan-delta and semideep lake sedimentation developed in permanent fault period, when tectonism actived intensely, but the rate of subsidence is small, the supply rate of sediments is equal to the increase rate of accommodated space. In the sequence, TST and RST are developed, the develop scale of HST is smaller, and LST is absent in some areas. The bottom and top of sequence are mostly scour surface and erosional surface. In the margin of basin, every system tract develops fan-delta sedimentary system with apparent cyclicity. In the internal of basin, coastal shallow lake, semideep lake and subaqueous gravity current sedimentation all develop, however, subaqueous gravity current sedimentation mainly develops in the period of TST and RST. Totally it is shown that the water depth of basin has no big change, and the lake sedimentation is steady. Undercompensated model is on behalf of sedimentary sequence with fan-delta and deep lake sedimentation developed in the period transformed from fault to depression, when tectonism actived stably, the scope of subsidence is wide, and the supply rate of sediments is smaller than the increase rate of accommodated space. In the sequence, HST is most developed, the second is TST and RST, and LST is undeveloped. The bottom and top of sequence are universally conformable surface in the internal of basin, and are unconformable surface in local area. In the margin of basin, every system tract develops retrogradational fan-delta sedimentary system displayed mostly by fan-delta front sedimentation. In the internal of basin, dark colored mudstone of deep lake is most developed, but in the period of LST,TST and RST, subaqueous fan and surging turbidity current sedimentation are also developed. Totally it is shown that the water depth of basin and the scale of deep lake sedimentation becomes big. Base on above research, we discuss the formation mechanism of every kinds of lacustrine sandbody in sequence stratigraphic framework with different model.
引文
[1] 张宝政.佳木斯-伊通断裂带的基本特征及其与郯庐断裂带的关系[J].长春地质学院学报,1980,10(1):34~36
    [2] 许志琴,张巧大,赵明.郯-庐断裂中段古裂谷的基本特征[J].中国地质科学院院报,1982,(4):17~43
    [3] 程学儒.对依兰一伊通地堑若干特征的认识[J].构造地质论丛,1984,(3):50~53
    [4] 赵文峰.下辽河-伊通大陆裂谷形成演化与地震活动[J].构造地质论丛,1984,(3):62~67
    [5] 王成金,刘士平.伊通-舒兰断裂带的演化过程及其邻区地震危险区的模拟[J].长春地质学院学报,1987,(1):21~28
    [6] 刘家麒.论中国东北大陆裂谷系的形成和演化[J].地质科学,1989,(3):209~215
    [7] 刘茂强.伊通-舒兰地堑地质构造特征及其演化[M].北京:地质出版社,1993,30~90
    [8] 许浚远.依舒断裂带中生代构造演化[J].石油与天然气地质,1993,14(2):137~144
    [9] 朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景[J].地质科学,2001,36(3):269~278
    [10] 李国立,吕鸣岗.中国含油气盆地图集[M].北京:石油工业出版社,2002
    [11] 王永春.伊通地堑含油气系统与油气成藏[M].北京:石油工业出版社,2003
    [12] 吴根耀,马力.“盆”“山”耦合和脱耦:进展,现状和努力方向[J].大地构造与成矿学,2004,28(1):81~97
    [13] 刘牧灵.东北地区晚白垩世-第三纪孢粉组合序列[J].地层学杂志,1990,14(4):277~285
    [14] 刘牧灵.黑龙江省依兰煤田始新世达连河组孢粉组合[J].中国地质科学院沈阳地质矿产研究所所刊(第 20 号),沈阳:辽宁科学技术出版社,1990,111~137
    [15] 张 莹,翟培民,郑少林,等.黑龙江汤原晚白垩世-早第三纪植物[J].古生物学报,1990,29(2):237~245
    [16] 赵传本,叶得泉,魏德恩,等.中国油气区第三系(III):东北油气区分册[M].北京:石油工业出版社,1994,1~156
    [17] 黄清华,张莹,王庆隆.裂变径迹测年法在汤原断陷的应用[J].大庆石油地质与开发,1997,16(2):14~16
    [18] 黄清华,张莹,金学新.汤原断陷早第三纪介形类新发现[J].大庆石油地质与开发,1997,16(4):20~24
    [19] 郑玉龙,张莹.汤原断陷白垩纪孢粉化石组合的发现及地层意义[J].大庆石油地质与开发,1997,16(4):25~29
    [20] 白新华,罗群.汤原断陷中生界地层及含油气远景预测[J].大庆石油地质与开发,1997,16(4):30~34
    [21] 黄清华,黄福堂,张莹,等.汤原断陷第三纪地层研究新进展[J].地层学杂志,1998,22(1):73~80
    [22] 中国地层典编委会.中国地层典——第三系[M].北京:地质出版社,2000
    [23] 孔惠,黄清华,乔秀云.依兰-伊通地堑北部早白垩世孢粉组合新发现[J].微体古生物学报,2002,19(4):407~414
    [24] 杨建国,黄清华,吴朝东,等.黑龙江汤原断陷第三纪地层层序及时代[J].地层学杂志,2004,28(2):168~172
    [25] 王青海,张帆.依-舒地堑汤原断陷构造活动与沉积作用关系研究[J].大庆石油学院学报,1993,17(4):9~13
    [26] 许浚远,李惠芳,王艳萍.汤原断陷早第三纪中期基底顶界的三维古构造重建[J].吉林地质,1997,16(1):63~70
    [27] 许浚远.依舒地堑新生代构造演化[J].地球科学,1997,22(4):406~410
    [28] 罗群,白新华.汤原断陷次级凹陷充填序列及石油地质意义[J].新疆石油地质,1998,19(2):145~148
    [29] 罗群,白新华,张树林.复杂地震资料解释技术及其在汤原断陷的应用[J].石油实验地质,1998,20(1):30~38
    [30] 罗群,白新华.断裂控烃理论与实践——断裂活动与油气聚集研究[M].武汉:中国地质大学出版社,1998
    [31] 王孔伟,陈守田,刘立刚.黑龙江省东部第三系盆地传递断层带特征及其石油地质意义[J].大庆石油地质与开发,1998,17(4):1~3
    [32] 罗群.汤原断陷断裂特征与油气成藏的关系[J].新疆石油地质,1999,20(2):90~95
    [33] 罗群,白新华.汤原断陷断裂构造特征及其对油气成藏的控制作用[J].长春科技大学学报,1999,29(3):247~251
    [34] 刘德来,丁贵明,鲁兵.伸展断层上盘向斜和中间隆起的成因模型[J].中国科学(D辑),2001,31(12):987~991
    [35] 马金龙,张宝权.汤原断陷构造沉积特征与油气成藏分布规律[J].石油实验地质,2006,28(3):220~224
    [36] 杨海波,刘晋威,张立国,等.汤原断陷断裂构造特征及油气成藏特点[J].世界地质,2006,25(3):275~281
    [37] 王世辉,杨建国,梁晓东,等.黑龙江东北部汤原断陷断块体运动特征及其对油气成藏的控制作用[J].地质通报,2006,25(9,10):1121~1127
    [38] 尚育秋,钟延秋,张立国.汤原断陷沉积演化及下第三系达连河组沉积相[J].大庆石油地质与开发,2006,25(6):30~33
    [39] 王孔伟,张帆,刘志宏,等.依舒地堑汤原、方正断陷古近纪边界断裂活动特征[J].大地构造与成矿学,2006,30(4):445~454
    [40] 钟延秋.依舒地堑汤原断陷构造演化及其对成藏的控制作用[D].中国地质大学(北京)博士学位论文,2006,7~98
    [41] 杨建国,刘俊来,吴河勇,等.黑龙江东部汤原断陷构造特征及其演化[J].大庆石油学院学报,2007,31(1):19~21
    [42] 王孔伟,张帆,林东成.汤原断陷构造活动对沉积的控制[J].石油地质与工程,2007,21(6):7~10
    [43] 张帆,王孔伟,刘立.依舒地堑下第三系地层格架与成因单元[J].吉林大学学报(地球科学版),2007,37(1):112~119
    [44] 王洪伟,杨建国,林东成.汤原断陷古近纪砂岩重矿物组合与物源分析[J].大庆石油地质与开发,2007,26(3):39~42
    [45] 黑龙江省区域地层表编写组.东北地区区域地层表:黑龙江省分册[M].北京:地质出版社,1979,1~300
    [46] 黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993,168~191
    [47] 黑龙江省地质矿产局.黑龙江省岩石地层[M].武汉:中国地质大学出版社,1997,133~255
    [48] 王有勤,苏养正,刘尔义.东北地区区域地层[M].武汉:中国地质大学出版社,1997,114~123
    [49] 陈章明.汤原断陷烃源岩评价及气藏类型分析[J].大庆石油学院学报,1993
    [50] 孟元林,肖利华,李泰明,等.盆地模拟在油气勘探初期阶段的应用[J].天然气工业,1994,14(4):6~9
    [51] 孟元林,李泰明,肖利华,等.汤原断陷煤成油初步研究[J].大庆石油学院学报,1995,19(1):35~38
    [52] 肖利华,孟元林,王建国,等.碎屑岩成岩温度的数值模拟和成岩阶段的预测[J].中国海上油气(地质),1995,9(6):389~394
    [53] 付广,姜振学,陈章明.汤原断陷 E5 段泥岩盖层综合评价及预测[J].河南石油,1995,9(3):6~10
    [54] 周海燕,庞雄奇.应用排烃门限理论评价汤原断陷泥质烃源岩[J].石油勘探与开发,2000,27(1):25~28
    [55] 冯子辉,汪振英,王雪.汤原断陷煤成油地球化学特征[J].大庆石油地质与开发,2000,19(6):1~3
    [56] 王青海.依舒地堑成盆动力学及油气勘探方向研究[D].长春科技大学博士学位论文,2000,1~60
    [57] 吴河勇,王世辉,杨建国,等.大庆外围盆地勘探潜力[J].中国石油勘探,2004,9(4):23~30
    [58] 吴河勇,刘文龙.外围盆地评价优选[J].大庆石油地质与开发,2004,23(5):20~22
    [59] 杨建国,吴河勇,刘俊来.大庆探区外围盆地中、新生代地层对比及四大勘探层系[J].地质通报,2006,25(9,10):1088~1093
    [60] 张相春,王振平,孔令芳.汤原断陷生物标志化合物的分布及其地球化学意义[J].大庆石油地质与开发,2007,26(3):22~26
    [61] 王孔伟,张帆,林东成.依舒地堑烃源岩及资源量评价[J].石油地质与工程,2007,21(4):5~8
    [62] 刘远宏,赵国庆,孙东.汤原断陷天然气成因类型划分[A].2005,186~188
    [63] 单秀兰,陈春雷.依-舒地堑汤原断陷自然伽马能谱与岩性及矿物成分的关系[J].大庆石油学院学报,1997,21(3):76~78
    [64] 孙德君,赵霞飞,萧德铭.汤原断陷下第三系地层准层序组特征[J].大庆石油地质与开发,1997,16(1):17~20
    [65] 杨玉峰,王孔伟,王始波,等.汤原断陷下第三系构造活动对层序的控制作用[J].石油与天然气地质,1999,20(1):50~54
    [66] 陈守田,唐建人.汤原断陷下第三系层序地层学探讨[J].长春科技大学学报,2000,30(4):363~366
    [67] 陈守田,张克民,王青海,等.依-舒地堑下第三系层序地层分析[J].石油与天然气地质,2002,23(2):150~153
    [68] 柳蓉,刘招君,杨建国,等.汤原断陷古近系层序地层及沉积体系分析[J].世界地质,2006,25(4):367~372
    [69] 何玉平,刘招君,董清水,等.依舒地堑汤原断陷古近系湖底扇沉积与层序特征[J].世界地质,2006,25(1):23~28
    [70] 吴河勇,杨建国,王世辉,等.黑龙江东部汤原断陷古近系沉积相类型及其演化规律[J].地质通报,2007,26(5):537~545
    [71] Vail P R,Mitchum R M,Thompson S.Global cycles of relative changes of sea level.In:Seismic Stratigraphy application to hydrocarbon exploration,Ed.by Payton C E.AAPG Memoir 26,1977,1:99~116
    [72] Van wagoner J C and Posamentier H W.An overview of the fundamentals of sequence stratigraphy and key definitions.In:Wilgus C K,et al.(eds),Sea-level changes:an integrated approach.SEPM Special Publication,1988,42:39~45
    [73] Vail P R.Seismic Stratigraphy Interpretation Using Sequence Stratigraphy,Part 1:Seismic Stratigraphy Interpretation Procedure.In A.W.Bally,ed.,Atlas of Seismic Stratigraphy,AAPG Studies in Geology 27,1987,1:1~10
    [74] Vail P R,Audemard F,Bowman S A,et al.The stratigraphic signature of tectonics,eustasy and sedimentology-an overview.In:Einsele G,Ricken W,Seilacher A,eds.Cycles and events in stratigraphy.Berlin Heidelberg New York Springer-Verlag,1991,617~659
    [75] Van Wagoner J C,et al.Siliciclastic sequence stratigraphy in well logs,cores and outcrops:concepts for High-Resolution Correlation of Time and Facies[M].Published by The American Association of Petroleum Geologists,Oklahoma,USA,1990
    [76] Wilgus C K and Posamentier H W,et al.Sea-level changes:an integrated approach[M].SEPM Special Publication,1988,42
    [77] Posamentier H W and Allen G P.Variability of the sequence stratigraphic model:Effectsof local basin factors [J].Sedimentary Geology,1993,86(1):91~109
    [78] Allen G P and Posamentier H W.Sequence stratigraphy and facies model of an incised valley-fill:the Gironde estuary,France [J].Journal of Sedimentary Petrology,1993,63(3):378~391
    [79] Sloss L L.Sequence in the cratonic interior of North America[J].GSA Bulletin,1963,74:93~114
    [80] Posamentier H W and Vail P R.Eustatic controls on clastic deposition Ⅱ-Sequence and systems tract models.In:Wilgus C K,et al.(eds),Sea-level changes:an integrated approach.SEPM Special Publication,1988,42:125~154
    [81] Galloway W E.Genetic stratigraphic sequence in basin analysis.I.Architecture and genesis of flooding-surface bounded depositional units[J].AAPG Bulletin,1989,73:125~142
    [82] Galloway W E.Genetic stratigraphic sequence in basin analysis.II.Application to the northwest Gulf of Mexico Cenozoic Basin[J].AAPG Bulletin,1989,73:143~154
    [83] Sarg J F and Vail P R.Carbonate sequence stratigraphy.In:Wilgus C K,et al.(eds),Sea-level changes:an integrated approach.SEPM Special Publication,1988,42:155~181
    [84] Mitchum R M,Sangree J B,Vail P R,et al.Sequence stratigraphy in Late Cenozoic expanded sections,Gulf of Mexico,in Gulf Coast Section,Society of Economic Paleontologists and Mineralogists Foundation Eleventh Annual Research Conference Program and Abstract.1990:237~256
    [85] Mitchum R M,Jr.Seismic stratigraphy and global changes of sealevel.Part 11.Glossary of terms used in seismic stratigraphy.In:C.E.Payton(Editor).Seismic stratigraphy-Applications to Hydrocarbon Exploration.Am.Assoc.Pet.Geol.Mem.,1977,26:205~212
    [86] Brown L F Jr,Fisher W L.Seismic stratigraphic interpretation of depositonal systems:example from Brazilian rift and pull-apart basins[J].AAPG Memoir 26,1977, 213~248
    [87] Weimer R J.Developments in sequence stratigraphy:Foreland and Cratonic basins[J]. AAPG Bulletin,1992,76(7):965~982
    [88] 薛良清.层序地层学研究现状、方法与前景[J].石油勘探与开发,1995,22(5):8~13
    [89] 薛良清.成因层序地层学的回顾与展望[J].沉积学报,2000,18(3):484~487
    [90] Aitken J F,Flints S.The application of high-resolution sequence stratigraphy to fluvial systems:A case study from the Upper Carboniferous Breathitt Group,eastern Kentucky,USA [J].Sedimentology,1995,42(1):3~30
    [91] 曾允孚,覃建雄.沉积学发展现状与前瞻[J].成都理工学院学报,1999,26(1):1~7
    [92] 陆永潮,解习农,周瑶琪.精确的定量和定年技术在高频层序地层研究中的重要性[J].地学前缘,1999,6(增刊):28
    [93] 刘宝珺,李文汉.层序地层学研究与应用[M].成都:四川科学技术出版社,1994
    [94] Cross T A.Stratigraphic controls on reservoir attributes in continental strata [J].Earth Science Frontiers,2000,7(3):119~132
    [95] 邓宏文,王洪亮,李熙喆.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177~183
    [96] 邓宏文,王洪亮,宁宁.沉积物体积分配原理——高分辨率层序地层学的理论基础[J].地学前缘,2000,7(4):305~313
    [97] 樊太亮,李庆谋.沉积基准面变化分析技术及其应用[J].石油与天然气地质,1997,18(2):108~113
    [98] 王洪亮,邓宏文.地层基准面原理在湖相储层预测中的应用[J].石油与天然气地质,1997,18(2):96~102
    [99] 郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理工学院学报,2000,27(3):241~244
    [100] Weimer R G . Developments in sequence stratigraphy : foreland and cratonic basins[J].AAPG Bulletin,1992,76(7):965~982
    [101] Posamentier H W and Allen G P.Siliciclastic sequence stratigraphic patterns in foreland ramp-type basins [J].Geology,1993,21(5):455~458
    [102] Krystinik L F,Dejarnett B B.Lateral variability of sequence stratigraphic framework in the Campanian and lower mastrichtian of the Western inferior Seaway[J].In:Van Wagoner J C and Bertram G T.Sequence stratigraphy of foreland basin deposits outcrop and subsurface example from the Cretaceous of North America.AAPG Memoir,1995,64:11~26
    [103] Yoshida S,Miall A D and Willis A.Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata,Book Cliffs,Utah,USA:Discussion.AAPG Bull,1998,(8):1596~1606
    [104] Muto T and Steel R J.The middle Jurassic Oserberge Delta,Northern sea-a sedimentological and sequence stratigraphic interpretion [J].AAPG bulletin,1997,81(7):1070~1086
    [105] Shanley K W,McCabe P J.Perspectives on the sequence stratigraphy of continental strata [J].AAPG bulletin,1994,78(4):544~568
    [106] Katz B J,Liu X.Summary of the AAPG research symposium on lacustrine basin exploration in China and southeast Asia [J].AAPG bulletin,1998,82 (7):1300~1307
    [107] Scholz A and Rosendahl B R.Coarse-clastic facies and stratigraphic sequence models from Lakes Malawi and Tanganyika,East Africa.In:Katz B J (eds):Lacustrine Basin Exploration-Case Studies and Modern Analogs.AAPG Memoir 50,1990,151~168
    [108] Van Wagoner J C.Sequence stratigraphy and marine to non-marine facies architecture of foreland basin strata[J].AAPG Memoir,1995,64:137~223
    [109] Van Wagoner J C.Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata, Book Cliffs,Utah,USA:Reply.AAPG Bull,1998,82(8):1607~1618
    [110] Wright V P and Marriott S B.The sequence stratigraphy of fluvial depositional systems:the role of floodplain sediment storage.In:Cloetingh S,et al(eds):Basin analysis and dynamics of sedimentary basin evolution.Sedimentary Geology,1993,86:203~210
    [111] 谢渊,刘家铎,王剑,等.陆相层序地层学研究进展与挑战[J].沉积与特提斯地质,2002,22(2):8~17
    [112] 徐怀大.寻找非构造油气藏的新思路[J].勘探家,1996,1(1):43~47
    [113] 王剑,刘宝珺,等.桂中北层控铅锌矿与海平面变化[M].成都:西南交通大学出版社,1996
    [114] Miall A D.Stratigraphic sequences and their chronostratigraphic correlation[J].Journal of Sedimentary Petrology,1991,61:497~506
    [115] 李思田.含能源盆地沉积体系[M].武汉:中国地质大学出版社,1996,1~11
    [116] Rivenas J C.Impact of sedimentary transport efficiency on large-scale sequence architecture:Results from stratigraphic computer simulation[J].Basin Research,1997,9:91~105
    [117] Ross W C,Watts D E,Jeffrey A.Insight from stratigraphic modeling:Mud-limited versus sand-limited depositional system[J].AAPG Bulletin,1995,79(2):231~238
    [118] Milana J P,Sequences stratigraphy in alluvial setting:A flume-based model with applications to outcrops and seismic date[J].AAPG Bulletin,1998,82(9):1736~1753
    [119] 解习农,任建业,焦养泉,等.断陷盆地构造作用与层序样式[J].地质论评,1996,42(3):33~43
    [120] 顾家裕.陆相层序地层学格架概念与模式[J].石油勘探与开发,1995,22(4):6~10
    [121] 许效松.层序地层学在沉积学和油储勘查中研究的关键点[J].岩相古地理,1996,16(6):55~62
    [122] 池英柳,张万选,张厚福,等.陆相断陷盆地层序成因初探.石油学报,1996,17(3):19~25
    [123] 刘招君,程日辉,王璞珺.层序地层学术的概念、进展与争论[J].世界地质,1994,13(3):56~68
    [124] 刘招君,郭巍,董清水,等.湖盆层序地层学术语体系及模式——以松辽盆地西部斜坡为例[J].长春地质学院学报,1997,27(增刊):54~60
    [125] 郭巍,刘招君,董清水,等.松辽盆地西部斜坡区坳陷期层序地层发育控制因素研究[J].长春地质学院学报,1997,27(3):327~332
    [126] 徐怀大.陆相层序地层学研究中的某些问题[J].石油与天然气地质,1997,18 (2):83~89
    [127] 王嗣敏,刘招君,董清水,等.陆相盆地层序地层形成机制——以松辽盆地为例.长春科技大学学报,2000,30(2):139~144
    [128] 冯有良,李思田,解习农,等.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘,2000,7(3):119~132
    [129] 冯有良,周海民,李思田.陆相断陷盆地层序类型与构造特征[J].地质论评,2004,50(1):43~49
    [130] 胡受权,郭文平,杨凤根,等.试论控制断陷湖盆陆相层序发育的影响因素[J].沉积学报,2001,19(2):256~262
    [131] 徐怀大等,译.层序地层学原理——海平面变化综合分析[M].北京:石油工业出版社,1993
    [132] 纪友亮,张世奇,等.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996
    [133] 姜在兴,李华启,等.层序地层学原理及应用[M].北京:石油工业出版社,1996
    [134] 魏魁生.非海相层序地层学-以松辽盆地为例[M].北京:地质出版社,1996
    [135] 朱筱敏.层序地层学[M].东营:石油大学出版社,2000
    [136] 吴因业,顾家裕.油气层序地层学[M].北京:石油工业出版社,2002
    [137] 邓宏文,T. A. Cross,等主编.高分辨率层序地层学原理及应用.北京:地质出版社,2002
    [138] 刘招君,董清水,王嗣敏,等.陆相层序地层学导论与应用[M].北京:石油工业出版社,2002
    [139] 蔡希源,李思田.陆相盆地高精度层序地层学[M].北京:石油工业出版社,2003
    [140] 李丕龙.陆相断陷盆地层序地层学应用[M ].北京:石油工业出版社,2003
    [141] 冯有良,李思田,邹才能.陆相断陷盆地层序地层学研究——以渤海湾盆地东营凹陷为例[M].北京:科学出版社,2005
    [142] 陈广军,宋国奇,等.斜坡带低位扇砂岩体岩性油气藏勘探方法——以埕岛潜山披覆构造东部斜坡带为例[J].石油学报,2002,23 (3):34~39
    [143] 陈文学,姜在兴.层序地层学与隐蔽圈闭预测——以河南泌阳凹陷为例[M].北京:石油工业出版社,2001
    [144] 邓宏文,王洪亮,翟爱军,等.中国陆源碎屑盆地层序地层与储层分布[J].石油与天然气地质,1999,20 (2):108~114
    [145] 樊太亮,李卫东.层序地层应用于陆相油藏预测的成功实例[J].石油学报,1999,20(2):12~17
    [146] 李群.松辽盆地南部隐蔽圈闭及有利地区预测[J].石油与天然气地质,2002,23 (2):159~161
    [147] 薛良清.湖相盆地中的层序、体系域与隐蔽油气藏[J].石油与天然气地质,2002,23(2):115~120
    [148] Vail P R,Wornardt W W.An integrated approach to exploration and development in the 90’s:well log-seismic sequence stratigraphy analysis[J].Gulf Coast Assoc.Geol Soc.Trans.,1991,41:630~650
    [149] 王鸿祯,史晓颖.沉积层序及海平面旋回的分类级别——旋回周期的成因讨论[J].现代地质,1998,12(1):1~16
    [150] 李思田,林畅松,解习农,等.大型陆相盆地层序地层学研究——以鄂尔多斯中生代盆地为例[J].地学前缘,1995,2(4):133~136
    [151] 岳文浙,丁保良,魏乃颐.陆盆层序地层研究的思路[J].地质论评,2000,46(4):347~354
    [152] 郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001,19(2):249~255
    [153] Hunt D and Tucker M E.Stranded parasequences and the forced regressive wedge systems tract:deposition during base-level fall.Sedimentary Geology,1992,81(1): 1~9
    [154] 李思田,杨士恭,林畅松.论沉积盆地的等时地层格架和基本建设单元[J].沉积学报,1992,10(4):11~12
    [155] 王东坡,刘立.大陆裂谷盆地层序地层学研究[J].岩相古地理,1994,14(3):1~9
    [156] 吴因业,罗平,唐祥华,等.西北侏罗纪盆地沉积层序演化与储层特征[J].地质论评,1998,44(1):90~99
    [157] 胡受权,颜其彬.泌阳断陷双河-赵凹地区陆相层序地层学模式[J].地质科学,1998,33(4):435~446
    [158] 姜在兴,操应长,邱隆伟,等.砂体层序地层及沉积学研究[M].北京:地质出版社,2000
    [159] 冯有良,潘元林,郑和荣,等:东营凹陷中始新统上部-上始新统层序地层模式及其石油地质意义[J].沉积学报,2000,18(3):376~383
    [160] 冯有良,李思田.东营凹陷沙河街组三段层序低位域砂体特征[J].地质论评,2001,47(3):279~286
    [161] 覃建雄,陈洪德,田景春.层序成因动力学中的构造因素研究[J].古地理学报,2003,5(1):77~86
    [162] 侯明才,陈洪德,田景春.层序充填动力学——层序地层研究的新方向[J].地层学杂志,2003,27(4):358~364
    [163] 胡宗全,朱筱敏.具有地形坡折带的坳陷湖盆层序地层模拟[J].沉积学报,2002,20(2):217~221
    [164] 胡宗全.层序地层研究的新思路——构造-层序地层研究[J].现代地质,2004,18(2):549~554
    [165] 王纪祥,陈发景,李趁义.山东惠民凹陷伸展构造及调节带特征[J].现代地质,2003,17(2):203~209
    [166] 陈发景,调节带(或传递带)的基本概念和分类[J].现代地质,2003,17(2):186
    [167] 陈发景,贾庆素,张洪年.传递带及其在砂体发育中的作用[J].石油与天然气地质,2004,25(2):144~148
    [168] 樊太亮,吕延仓,丁明华.层序地层体制中的陆相储层发育规律[J].地学前缘,2000,7(4):315~321
    [169] 邓宏文,王红亮,王敦则.古地貌对陆相裂谷盆地层序充填特征的控制-以渤中凹陷西斜坡区下第三系为例[J].石油与天然气地质,2001,22(4):293~296
    [170] 林畅松,潘元林,肖建新等.“构造坡折带”——断陷盆地层序分析和油气预测的重要概念[J].地球科学,2000,25(3):260~266
    [171] 胡受权,郭文平,杨凤根,等.断陷湖盆陡坡带陆相层序地层的“沉积滨线坡折”问题探讨[J].古地理学报,2000,2(4):20~29
    [172] 陈洪德,覃建雄,田景春.右江盆地层序充填动力学初探[J].沉积学报,2000,18(2):165~171
    [173] 程日辉,郑和荣,林畅松.反向断阶构造样式与砂质沉积体发育[J].沉积学报,2001,31(2):146~148
    [174] 王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类型、展布及其勘探意义[J].石油与天然气地质,2003,24(3):199~204
    [175] 朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报,2003,31(2):283~287
    [176] 任建业,陆永潮,张青林.断陷盆地构造坡折带形成机制及其对层序发育样式的控制[J].地球科学,2004,29(5):596~602
    [177] 郭少斌.陆相断陷盆地层序地层模式[J].石油勘探与开发,2006,33(5):548~552
    [178] 胡受权,陈萍,闫福旺,等.泌阳断陷湖盆陡坡带陆相层序油气成藏类型及分布规律探讨[J].河南石油,2001,15(2):7~10
    [179] 何治亮.中国陆相非构造圈闭油气勘探领域[J].石油实验地质,2004,26(2):194~199
    [180] Eschard R,Lemouzy P,Bacchiuna,et al.Combining sequence stratigraphy,geostatistical simulations and Production data for modeling a fluvial reservoir in the Chauchoy Field,Triassic,France[J].AAPG Bulletin,1998,82(4):545~568
    [181] Strecker U,Stridtmann J R,Smithson.A conceptual tectonostratigraphic model for seismic facies migration in a fluvio-facustrine extensional basin[J].AAPG Bulletin,1999,83(1):43~61
    [182] Perimutter,Matthews.Global Cyclostratigraphy[M].1990
    [183] 纪友亮,杜金虎,赵贤正,等.饶阳凹陷下第三系层序类型及发育模式[J].沉积学报,2007,25(1):1~9
    [184] 郭建华.陆相断陷湖盆 T-R 旋回沉积层序研究与研究实例[J].沉积学报,1998,16(1):8~13
    [185] Prosser S.Rift-related linked depositional systems and their seismic expression [J].Geological Society Special Publication.1993,71:35~66
    [186] Ryand W H,Chough S K.Sequential development of alluvial/lacustrine system southeastern Eumsuny basin,Korea[J].Journal of Sedimentary Research,1997,67(2):274~285
    [187] 魏魁生,徐怀大,等.华北典型箕状断陷盆地层序地层学模式及其与油气赋存关系[J].地球科学,1993,18(3):139~149
    [188] 林畅松,张燕梅,刘景彦.沉积盆地动力学与模拟研究[J].地学前缘,1998,5:119~125
    [189] 林畅松,张燕梅,刘景彦,等.高精度层序地层学和储层预测[J].地学前缘,2000,7(3):111~117
    [190] 林畅松,刘景彦,张英志,等.构造活动盆地的层序地层与构造地层分析——以中国中、新生代构造活动湖盆分析为例[J].地学前缘,2005,12(4):365~374
    [191] 李思田,潘元林,陆永潮,等.断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究[J].地球科学,2002,27(5):592~598
    [192] Posamentier H W,Allen G P,et al.Forced regressions in a sequence stratigraphic framework:concepts examples,and exploration significance[J].AAPG Bulletin,1992,76:1687~1709
    [193] 方玉斌,刘秋生,刘淑,等.缓坡坡折——箕状断陷的精华[J].断块油气田,2003,10(1):15~17
    [194] Brown L F Jr, Bemspm J M,Brink G J,e al.Sequence stratigraphy in Offshore South African divergent basin[J].AAPG Studies in Geology,1995,41:1~184
    [195] 王英民,刘豪,王媛,等.准噶尔盆地侏罗系非构造圈闭的勘探前景[J].石油与天然气地质,2002,23(1):44~47
    [196] Biddle K T, Wielchowshy C C.Hydrocarbon traps [A] In:Magoon L B, Dow W G,eds.The petroleum system-from source to trap[C].AAPG Memoir,1994,60:219~235
    [197] Einsele G.Sedimentary basins-evolution,facies and sediment budget[M].s.l:Springer,2000,792
    [198] Dula W F Jr.Geometric models of lisric normal faults and rollover folds [J].AAPG Bulletin,1991,75(10):1609~1625
    [199] Shaw H,Hock S C,Sitohong E P.Extensional fault-bend folding and synrift depositon,an example from the central Sumutra Basin,Indonesia [J].AAPG Bulletin, 1997,81(3):367~379
    [200] Xue Liangqing,Galloway W E.High-resolution depositional framework of the Paleocene middle Wilcox strata,Texas coastal plain [J].AAPG Bulletin,1995,79(2):205~230
    [201] Galloway W E.Siliciclastic slope and base-of-slope depositional systems:component facies,stratigraphic architecture and classification [J].AAPG Bulletin,1998,82(4):569~595
    [202] Brown L F Jr, Bemspm J M,Brink G J,e al. Sequence stratigraphy in Offshore South African divergent basin[J].AAPG Studies in Geology,1995,41:1~184
    [203] 姜秀芳,宗国洪,等.断裂坡折带低位扇成因及成藏特征[J].石油与天然气地质,2002,23(2):143~144
    [204] 隋风贵,李训海,朱明.箕状断陷盆地陡坡带砂砾岩扇体油藏研究——以东营凹陷北带为例[A].中国隐蔽油气藏[C].北京:地质出版社,1998,67~77
    [205] 宗国洪,冯有良,刘承华,等.同沉积断裂带砂砾岩隐蔽油藏研究——以东营凹陷胜北断裂带为例[J].石油实验地质,2003,25(3):274~284
    [206] 孔凡仙.东营凹陷北带砂砾岩扇体勘探技术与实践[J].石油学报,2000,21(5):27~31
    [207] 王永诗,姜素华,秦永霞.斜坡带油气成藏特征与勘探方法——以济阳坳陷为例[A].胜利油区勘探开发论文集[C].北京:地质出版社,1999,34~39
    [208] 潘元林,宗国洪,郭玉新,等.济阳断陷湖盆层序地层学及砂砾岩油气藏群[J].石油学报,2003,24(3):16~23
    [209] 张善文,王英民,李群.应用坡折带理论寻找隐蔽油气藏[J].石油勘探与开发,2003,30(3):5~7
    [210] 朱筱敏,王贵文,马立驰,等.内蒙古东部陆西凹陷中北部上侏罗统层序地层格架及体系域特征分析[J].古地理学报,2002,4(3):33~39
    [211] 杨道庆,赵追,贾曙光.东庄次凹边缘断层坡折带对油气成藏的作用[J].大庆石油地质与开发,2002,21(3):14~16
    [212] 魏魁生,崔旱云,叶淑芬,等.琼东南盆地高精度层序地层学研究[J].地球科学,2001,26(1):59~66
    [213] 肖军,王华,陆永潮,等.琼东南盆地构造坡折带特征及其对沉积的控制作用[J].海洋地质与第四纪地质,2003,23(3):55~63
    [214] 王英民.坡折带——岩性地层油气藏勘探的重要领域[A].见中国石油勘探与生产分公司主编.岩性地层油气藏勘探理论与实践[C].北京:石油工业出版社,2005.468~516
    [215] Dolson J C,Bahorich,Mike S,et al.Exploring for stratigraphic traps[M],2003
    [216] 谯汉生,王明明.渤海盆地隐蔽油气藏[J].地学前缘,2000,7(4):497~506
    [217] 李丕龙,庞雄奇.隐蔽油气藏形成机理与勘探实践[M].北京:石油工业出版社,2004
    [218] 李祥权,崔丽静,陈少平.隐蔽油气藏勘探回顾与展望[J].2005,12(1):30~34.
    [219] 胡见义,黄第藩.中国陆相石油地质理论基础[M].北京:石油工业出版社,1991
    [220] 吴崇筠.中国含油气盆地沉积学[M].北京:石油工业出版社,1993
    [221] 张厚福,方朝亮,高先志.石油地质学[M].北京:石油工业出版社,1999
    [222] 谯汉生,纪友亮,姜在兴.中国东部大陆裂谷与油气[M].北京:石油工业出版社,1999,53~60
    [223] 薛叔浩,刘雯林,薛良清,等.湖盆沉积地质与油气勘探[M].北京:石油工业出版社,2002.
    [224] 王良忱,张金亮.沉积环境和沉积相.北京:石油工业出版社,1996.
    [225] 赵澄林.沉积学原理[M].北京:石油工业出版社,2001.
    [226] 姜在兴.沉积学[M].北京:石油工业出版社,2003,1~540
    [227] 于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2002,1~352
    [228] 袁选俊.湖盆砂体类型及其沉积特征与含油性[A].见中国石油勘探与生产分公司主编.岩性地层油气藏勘探理论与实践[C].北京:石油工业出版社,2005.72~127
    [229] 吴崇筠.湖盆砂体类型[J].沉积学报.1986,4(4):1~24
    [230] 吴崇筠.对国外浊流沉积和扇三角洲沉积研究的评述[A].见:中国石油学会石油地质委员会编译.国外浊积岩和扇三角洲研究[M].北京:石油工业出版社,1986,1~19
    [231] Middleton G V,Hampton M A.Sediment gravity flow:mechanics of flow and deposition[A] In:Middleton G V, Bouma A H,eds,Turbidites and deep-water sedimentation[C].Soc.Economic Paleontologists Mineralogists,Pacific Section,Short Course Notes,1973,1~38
    [232] Middleton G,Hampton M A.Subaqueous sediment transport and deposition by sediment gravity flows [A].Stanley D J, ed.Marine Sediment Transport and Environmental Management[C].New York:Wiley,1976,197~218
    [233] 吴崇筠,李纯菊,刘国华,等.断陷盆地中的浊积岩[A].见:中国石油学会石油质委员会,主编.碎屑岩沉积相研究[C].北京,石油工业出版社, 1988, p 1~37
    [234] Forel F A.Les ravines sous-lacustres des fleuves glaciarees A cad. Sci Paris CT Rend,1885,101:725~758
    [235] Daly R.A.Origin of submarine“Canyons”[J]. Am.Jour.Sci.,5th series,1936,31:401~420.
    [236] Kuenen Ph H.Experiments in connection with Daly’s hypothesis on the formation of submarine canyons[J].Leidsche Geol.Meded.,1937,8:327~335
    [237] Stetson H C,Smith N D.The sediments of the continental shelf of the eastern coast ofthe United States.Mass.Inst.Technology and woods Hole Oceanogr.Inst.,Papers in Phys[J].Oceamogr.And Meterol.,1938(5):48
    [238] Johnson D.The origin of submarine canyons[J].Columbia Univ.Press,New York,1939
    [239] Kuenen Ph H,Migliorini C I.Turbidity currents as a cause of graded bedding[J].Jour.,Geology,1950,58:41~127
    [240] Bouma A H.Sedimentology of some flysch deposits[M].Amsterdam,Elsevier Pub.,1962,168
    [241] Walker R G.Turbidite sedimentary structures and their relationship to proximal and distal depositional environments,Journal of Sedimentary Petrology.1967,Vol.37
    [242] Mutti E,Ricci Lucchi F.Le torbiditi dell Appennino settrentrionale:introduzione all analisidi facies.Soc.Geol Ltali-ana,Mem.1972,11:161~199
    [243] Lowe D R.Sediment gravity flows:their classification and some problems of application to natural flows and deposits[J].Soc.Econ.Paleontol.Min.Spec.Pub,1979,27:75~82
    [244] Lowe D R.Sediment gravity flows,Ⅱ.Depositional modelswith special reference to the deposits of the high-density turbidity currents[J].J.Sedim.Petrol.,1982,52:279~297
    [245] Walker R G.Deep-water sandstone facies and ancient submarine fans:models for exploration for stratigraphic traps.Bull.Am.Ass.Petril.Geol.,1978,62:932~966
    [246] Stow D A.Deep clastic seas[A].In: Reading H Ged. Sedimentary environments and facies.2nd ed[C].Oxford:Blackwell Scientific Publications.1986,399~444
    [247] Shanmugam G,Moiola R J.Eeinterpretation of depoditional processes in a classic flysch sequence (Pennsylvanian Jackfork Grop),Ouachita Mountains[J].Arkansas and Oklahoma.AAPG,1995,79:672~695
    [248] Shanmugam G.High-density turbidity current:are they sandy debris flows? [J].Journal of sedimentary research,1996,66(1):2~10
    [249] Shanmugam G.The Bouma sequence and the turbidite mind set-Earth[J].Seviews,1997,42:201~229
    [250] Shanmugam G.50 Years of the turbidite paradigm(1950s-1990s):Deep-water processes and facies models-a critical perspective[J].Marine and Petroleum Geology, 2000,17:285~342
    [251] 李继亮,陈昌明,高文学,等.我国几个地区浊积岩系的特征[J].地质科学,1978,(1):26~44
    [252] 方爱民,李继亮,候泉林.浊流及相关重力流沉积研究综述[J].地质评论,1998,44(3):270~280
    [253] 赖婉琦,顾家裕.渤海湾含油气盆地中的浊积岩[J].沉积学报,1980,(17):799~801
    [254] 高振中,段太忠.湘西黔东寒武纪深水碳酸盐重力沉积[J].沉积学报,1985,3(3):7~22
    [255] 姜在兴,赵澄林.一种沿深水箕状谷纵向搬运的重力流沉积[J].石油实验地质,1988,10(2):106~116
    [256] 高延新,吴崇筠.辽河盆地大湾河油层湖底扇沉积特征[J].沉积学报,1985,3(4):83~94
    [257] 孟庆任.陕西紫阳芭蕉口志留纪浊积岩的研究[J].沉积学报,1991,9(1):35~43
    [258] 雷怀玉,邹伟宏,王连军,等.岔西地区浊积岩的发现及其油气勘探意义[J].沉积学报,1999,17(1):89~94
    [259] 丁桔红,湖盆浊积砂体及类型研究[J].华南地质与矿产,2007,3:6~11
    [260] Bouma A H, Normark W K and Barnes N E.,Deep sea fans and related turbidite sequences: New York, Springer-Verlag, 1985,351
    [260] Stow D A V,Piper D J W. Deepwater fine grained sediments: Facies models [A]. In: Stow D A V,Piper D J W.eds.Fine grained sediments:deepwater processes and facies[C].Geological Society Special Publication,1984,15:611~646
    [261] Schlager W,Chermak A.Sediment facies of platform-basin transition,Tonge of the Ocean,Bahamas.In:Doyle L J and Pikey O H,eds.Geology of Continental Slopes,Spec.Publ.Soc.Econ.Paleont.Miner.27,1979
    [262] 刘立,曹林,徐开志.深水浊积体系的成因类型及其与海(湖)平面升降的关系[J].世界地质,1989,4(3)
    [263] Reading H G,Richards M.Tubidite systems in deep water basin margins classification by grain size and feeder system.AAPG Bulletin,1994,78(5):752~822
    [264] 何起祥,刘招君,王东坡,等.湖泊相浊积岩的主要特征及其地质意义[J].沉积学报,1984,2(4):33~46
    [265] 刘招君,王东坡,何起祥.攀西地区上三叠统湖泊相浊积岩特征及其地质意义[A].见张云湘主编.中国攀西裂谷文集[C].北京:地质出版社,1985:298~306.
    [266] 刘招君.湖泊水下扇沉积特征及影响因素——以伊通盆地莫里青断陷双阳组为例[J].沉积学报,2003.21(1):148~154
    [267] 刘宪斌,万晓樵,林金逞,等.陆相浊流沉积体系与油气[J].地球学报,2003,24(1):61~66
    [268] 方勇,邓宏文,王红亮,等.东营三角洲高频层序特征与岩性圈闭分布[J].中国海上油气(地质),2003,17(3):160~163
    [269] 李丕龙.陆相断陷盆地沉积体系与油气分布[M].北京:石油工业出版社,2003,12,1~165
    [270] 彭勇民,黄捍东,罗群,等.泌阳凹陷毕店地区核三段湖底扇与重力流沉积[J].岩石矿物学杂志,2008,27(1):32~38
    [271] 王旭丽,周江羽,马良,等.伊通盆地岔路河断陷重力流沉积特征及油气勘探意义[J].石油实验地质,2008,30(1):26~31
    [272] 张春生,刘忠保,施冬,等.涌流型浊流形成及发展的实验模拟[J].沉积学报,2002,20(4):112~119
    [273] 鄢继华,陈世悦,宋国奇,等.三角洲前缘滑塌浊积岩形成过程初探[J].沉积学报,2004,22(4):573~578
    [274] 张关龙,陈世悦,鄢继华,等.三角洲前缘滑塌浊积体形成过程模拟[J].沉积学报,2006,24(1):50~55
    [275] 操应长,刘晖.湖盆三角洲沉积坡度带特征及其与滑塌浊积岩分布关系的初步探讨[J].地质论评,2007,53(4):454~459
    [276] 李趁义.东营三角洲滑塌浊积岩形成机制与高频基准面旋回控砂模式研究[D].中国地质大学(北京)博士学位论文,2005,34~58
    [277] 刘忠保,龚文平,王新海,等.洪水型浊流砂体形成及分布的沉积模拟实验[J].石油与天然气地质,2008,29(1):26~30
    [278] Ben-Arrahamz.Development of asymmetric basins along continental transform fault [J].In:Ziegler P A(ed).Geodynamics of rifting, 1992,215:209~220
    [279] 任建业,张青林.东营凹陷中央背斜隆起带形成机制分析[J].大地构造与成矿学,2004,28(3):254~262
    [280] 李思田.断陷盆地分析与煤聚集规律[M].北京:地质出版社,1988,56~70
    [281] 郑照福,于恩影.依兰-伊通地堑断裂北段地震活动的某些特征探讨[J].东北地震研究,2006,22(1):26~31
    [282] 陈发景,赵海玲,陈绍年.中国东部中、新生代伸展盆地构造特征及地球动力学背景[J].地球科学,1996,21(3):357~365
    [283] 杨宝俊,张梅生,王璞珺.中国油气区——地质与地球物理解析[M].北京:科学出版社,2003
    [284] 范梦书.舒兰煤田古新世新安村组孢粉组合[J].东北煤炭技术,1995,(3):13~18
    [285] 池秋鄂,龚福华.层序地层学基础与应用[M].北京:石油工业出版社,2001
    [286] 熊宪政.黑龙江嘉荫地区古新世乌云组植物化石[J].古生物学报,1985,24(5):571~575
    [287] 张一勇.中国早第三系孢粉植物群纲要[J].古生物学报,1995,34(2):212~227
    [288] 孙革,全成,孙春林,等.黑龙江嘉荫乌云组地层划分及时代的新认识[J].吉林大学学报(地球科学版),2005,35(2):137~142
    [289] 田在艺,张庆春.中国含油气沉积盆地论[M].北京:石油工业出版社,1996
    [290] 王伟涛.古近纪汤原断陷对物源区隆升史的沉积响应[D].吉林大学硕士学位论文,2007,42~57
    [291] 何起祥.沉积岩和沉积矿床[M].北京:地质出版社,1978,1~394
    [292] 马正.应用自然电位测井曲线解释沉积环境[J].石油与天然气地质,1982,3(1)
    [293] 马正.油气测井地质学[M].武汉:中国地质大学出版社,1994
    [294] Nemec W and Steel R J.What is a fan delta and how do we recognize it? Fan deltas: Sedimentology and Tectonic Settings,eds. Nemec W and Steel R.J.,1988
    [295] Bouma A H,Moore G T,Coleman J M.eds.,Framework, facies, and oil-trapping characteristics of the upper continental margin:Tulsa,OK,American Association of Petroleum Geologists,Studies in Geology 7,1978,326
    [296] 杨建国,孔惠,赵传本.鸡西盆地鸡西群古气候研究[A].见朱宗浩,等主编.中国含油气盆地孢粉学论文集[C].北京:石油工业出版社,2000.152~156
    [297] Harris W K.Tertiary non-marine dinoflagellate cyst assemblages form Australia.Spec. Publ. Geol. Soc. Aust.,1973,4:159~166
    [298] Backhouse J.Palynological studies of Late Jurassic and Early Cretaceous sediments,Perth Basin,western Australia. Geological Survey of Western Australia,Bulletin, 1988,135:1~233
    [299] 茅绍智,余静贤.陆相沟鞭藻的起源和演化及其生油意义[J].地球科学,1990,16(3):283~290
    [300] 徐金鲤,祝幼华.微体浮游植物化石在古湖泊研究中的应用[A].见汪品先,刘传联主编.含油盆地古湖泊学研究方法[C].北京:海洋出版社,1993.177~191
    [301] 徐金鲤,潘昭仁,杨育梅,等.山东胜利油区早第三纪沟鞭藻类和疑源类[M].东营:石油大学出版社,1997
    [302] 赵澄林,朱平,陈方鸿.高邮凹陷高分辨率层序地层学及储层研究[M].北京:石油工业出版社,2001,1~165
    [303] Maruyama S, Seno T.Orogeny and relative plate motions: example of the Japanese Islands[J].Tectonophysics,1986,127(3-4):305~329
    [304] Maruyama S,Isozaki Y,Kimura Gand,Terabayashi M C.Paleogeographic maps of the Japanese Islands:plate tectonic systhesis form 750Ma to the present[J].Island arc, 1997,6:121~142
    [305] 朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块的响应[J].地质科学,2004,39(1):36~49
    [306] 郭福祥.中国及邻区中新生代大型大陆扩张盆地及其造山作用[J].桂林工学院学报,2000,20(4):338~343
    [307] 孙加鹏,张兴洲,杨宝俊.中国东部中新生代盆地成因及其地球动力学[J].世界地质,1997,16(3):1~6
    [308] Yasumoto Magara,Shoichi Nambu,Kohken Utosawa.Biochemical and physical properties of an activated sludge on settling characteristics[J].Water Research,1976,10:71-77
    [309] 牟中海,陈志勇,陆廷清,等.柴达木盆地北缘中生界剥蚀厚度恢复[J].石油勘探与开发,2000,27(1):35~37
    [310] 刘景彦,林畅松,喻岳钰,等.用声波测井资料计算剥蚀量的方法改进[J].石油实验地质,2000,22(4):302~305
    [311] 牟中海,唐勇,崔炳富,等.塔西南地区地层剥蚀厚度恢复研究[J].石油学报,2002,23(1):40~43
    [312] 胡圣标,汪集晠,张容燕.利用镜质体反射率数据估算地层剥蚀厚度[J].石油勘探与开发,1999,(4):42~45
    [313] 王玮,周祖翼,于鹏.镜质体反射率与最高温度及其附近温度变化率的关系——几种镜质体反射率计算模型的比较[J].地球物理学报,2005,48(6):1376~1382
    [314] 刘国臣,金之钧,李京昌.沉积盆地沉积-剥蚀过程定量研究的一种新方法——盆地波动分析应用之一[J].石油学报,1999,13(3):23~30
    [315] 王毅,金之钧.沉积盆地中恢复地层剥蚀量的新方法[J].地球科学进展,1999,14(5):482~485
    [316] 张一伟,李京昌,金之钧,等.原型盆地剥蚀量计算的新方法——波动分析法[J].石油与天然气地质,2000,21(1):88~91
    [317] Dow W G.Kerogern studies and geological interpretations[J].Journal of Geochemical Exploration,1977,7(1):79~99
    [318] Jervey M T.Siliciclastic sequence development in foreland basins with examples from the Western Canada Foreland Basin.In:R W Macqueen and D A Leckie Foreland basin and fold belts.AAPG Memoir,1989,55:47~80
    (1)陈道阔,等.依舒地堑北部中新生代地层划分对比研究,1992 年;
    (2)陈章明,等.依舒地堑区带评价及油气藏预测,1992 年;
    (3)万传彪,等.外围东部盆地群中新生代地层划分与对比研究,2001 年;
    (4)翟培民,等.依兰-伊通地堑方正-汤原断陷几个石油地质问题的讨论,1985 年;
    (5)王始波,等.汤原断陷构造特征研究,1990 年;
    (6)苏景龙,等.依-舒地堑汤原断陷北部石油地质特征研究,1991 年;
    (7)李泰明,等.汤原断陷盆地模拟研究,1991 年;
    (8)陈章明,等.汤原断陷北部断裂形成机制及断层封闭性研究,1995 年;
    (9)孙德君,等.汤原断陷沉积相及储层特征研究,1996 年;
    (10)苏景龙,等.汤原断陷吉祥屯-龙王庙地区构造圈闭特征及含油气性,1992 年;
    (11)陈章明,等.汤原断陷烃原岩评价及气藏类型分析,1993 年;
    (12)王平在,等.汤原断陷烃原岩生烃潜力研究,1994 年;
    (13)汪振英,等.汤原断陷有机地球化学研究,1995 年;
    (14)罗群,等.汤原断陷断裂特征与成盆、沉积、圈闭及含油性关系,1996 年;
    (15)谢春临,等.汤原断陷吉祥屯互助村构造气藏描述,1996 年;
    (16)刘文龙,等.外围盆地评价优选及勘探部署研究,2003 年;
    (17)李忠权,等.大庆探区外围盆地含油气性评价与优选,2003 年;
    (18)张宝权,等.依舒地堑地震精细解释及勘探目标优选,2004 年;
    (19)刘招君,等.依舒地堑地层层序划分与对比研究,2004 年;
    (20)刘招君,等.大庆探区外围中新生代断陷盆地群演化与油气远景,2006 年;
    (21)刘招君,等.汤原断陷新安村组-达连河组细分层沉积相研究,2007 年;
    (22)胡少华,等.外围盆地等 T0地层格架及速度场建立,2007 年;
    (23)杨波,等.汤原断陷三维地震资料连片精细解释及勘探目标优选,2007 年;
    (24)刘招君,等.伊通地堑莫里青断陷双阳组沉积微相研究,2001 年;
    (25)刘招君,等.伊通盆地莫里青断陷储层评价,2003 年;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700