用户名: 密码: 验证码:
应用实时荧光定量方法研究实验用小型猪细胞色素P450的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过采用T-A克隆技术构建出猪CYP1A1、2A19、2D25、2E1、3A29和β-actin基因的重组质粒作为定量标准品,建立一套适合于研究猪CYPs mRNA表达水平的实时荧光定量方法,并以猪体内最为重要的药物代谢关键酶基因CYP3A29为基础,以商品猪——荣昌猪为对照,对4-6月龄的巴马香猪、贵州小型猪肝脏表达水平进行定量,初步筛选与人肝CYP3A4 mRNA水平接近的实验用小型猪品系。然后进一步对该品系小型猪初生、断奶、性成熟、体成熟以及2周年的肝脏表达水平进行定量,筛选到该品系猪与人肝CYP3A4 mRNA水平接近年龄段。最后,对筛选到的特定小型猪CYP1A1、2A19、2D25、2E1、3A29 mRNA表达的组织分布、以及人CYP3A4的典型诱导剂——利福平对其肝脏CYP3A29 mRNA表达的诱导作用进行研究,并将结果与报道的人CYPs mRNA对应情况进行比较,获得的主要结果如下:
     1.建立了适用于定量猪CYPs mRNA表达水平的TaqMan方法。PCR反应总体积为10μL,各成分终浓度为:Buffer,1×;Mg2+,5.5 mmol/L;dNTP mix,0.8 mmol/L;上、下游引物,各0.3μmol/L;rTaq,0.2 U/μL;探针0.1μmol/L;模板,1μL。PCR热循环条件为94℃5 min→40 cycles(94℃15 s→60℃45 s→读板)。所建立的TaqMan方法定量范围较广、扩增效率较高、重复性较好。
     2.4-6月龄巴马香猪、贵州小型猪、荣昌猪肝脏CYP3A29 mRNA平均表达水平分别为35.36±14.69、21.48±11.87和38.87±20.11,与人肝对应酶CYP3A4水平接近。从转录水平表明,以上3种猪均可用作人CYP 3A4所代谢药物的安全性评价实验模型。
     3.巴马香猪CYP3A29 mRNA主要在肝脏中表达,其水平在初生到断奶、断奶到性成熟阶段均有显著增加,至性成熟及体成熟时其值分别为16.7243908±8.17834582和29.76705722±18.73595974,与人肝CYP3A4水平接近。从转录水平表明,性成熟及体成熟巴马香猪均可用作人CYP 3A4所代谢药物的安全性评价动物模型。
     4.体成熟巴马香猪CYP1A1、2A19、2D25、2E1 mRNA水平均以肝脏最高,其值分别为13.24145753±9.166365249、134.5902182±68.02425634、33.43790049±43.12612521和162.783024±208.8879079,均与人肝对应酶CYP1A2、2A6、2D6、2E1水平差异较大。从转录水平表明,体成熟巴马香猪不是人CYP1A2、2A6、2D6以及2E1所代谢药物安全性评价的理想实验模型。
     5.利福平能够显著增加体成熟巴马香猪肝脏CYP3A29 mRNA的表达,其水平提高了7.71倍,而对CYP1A1、2A19、2D25、2E1 mRNA表达无影响。从诱导的层次表明,体成熟巴马香猪可用作人CYP 3A4所代谢药物的安全性评价动物模型。
According to cloning standards and screening TaqMan PCR system, quantitativereal-time RT-PCR method suitable for studying expression revels of CYPs mRNA wasestablished and used to evaluate the feasibility of experimental miniature pigs' livers usingas model of security estimate of drug by quantitation expression livers of CYP3A29 mRNAin livers of 4-6 months old Bama miniature pigs, Guizhou miniature pigs and Rongchangpigs. Then, CYP3A29 mRNA in livers of 0, 40, 120, 180 and 720 days old experimentalminiature pigs seclected according to screening 3 breeds of pigs were quantitated, and theages during which the expression levels of CYP3A29 mRNA in experimental miniaturepigs'livers are close to that of CYP3A4 in human livers. Tissue distribution of CYP1A1,2A19, 2D25, 2E1 and 3A29 mRNA expression, and the effect of rifampicin on CYP3A29mRNA of livers were studied with these screening experimental miniature pigs. Thefollowing was concluded after comparing these results to that of human counterpartdocumented:
     1. Real-time RT-PCR method for quantitation expression levels of CYPs mRNA inpigs was established. Total volume of PCR was 10μL, including 1×Buffer、5.5 mmol/LMg~(2+)、0.8 mmol/L dNTP mix、0.3μmol/L each primer、0.2 U/μL rTaq、0.1μmol/L probeand 1μL template. PCR was conducted by 94℃5 min→40 cycles(94℃15 s→60℃45s→read panel). This method had good properties of broad rang of quantitation, highefficiency of amplification and good repetition of determination.
     2. The average expression levels of CYP3A29 mRNA in livers of 4-6 months old ofBama miniature pigs, Guizhou miniature pigs and Rongchong pigs were 35.36±14.69、 21.48±11.87 and 38.87±20.11, respectively. These values were close to that of humanlivers' CYP3A4 that was the conterpart of pig's CYP3A29 in human body. This resultindicated transcriptionally that 4-6 months old of Bama miniature pigs, Guizhou miniaturepigs and Rongchong pigs were all suitable for experimental model of security estimate ofdrug metabolismed by human CYP3A4.
     3. liver had the highest level of CYP3A29 mRNA than the other tissues in Bamaminiature pigs. There were remarkable increase of CYP3A29 mRNA levels in Bamaminiature pigs' livers from 1-40 days and 40-120 days. The average expression levels ofCYP3A29 mRNA in livers of 120 days(sexual mature) and 180 days(bodily mature) old ofBama miniature pigs were 16.7243908±8.17834582 and 29.76705722±18.73595974,respectively. These values were close to that of human livers' CYP3A4. These resultsindicated transcriptionally that sexual mature and bodily mature of Bama miniature pigswere all suitable for animal model of security estimate of drug metabolismed by humanCYP3A4.
     4. liver had the highest level of CYP1A1, 2A19, 2D25 and 2E1 mRNA than the othertissues in bodily mature of Bama miniature pigs. The average expression levels were13.24145753±9.166365249, 134.5902182±68.02425634, 33.43790049±43.12612521 and162.783024±208.8879079, respectively. These values were quite large different from thatof human livers' CYP1A2, 2A6, 2D6 and 2E1 that was the counterparts of pig's CYP1A1,2A19, 2D25 and 2E1 in human body. These results indicated transcriptionally that bodilymature of Bama miniature pigs were not idea animal models of security estimate of drugsmetabolismed by human CYP1A2, 2A6, 2D6 or 2E1.
     5. The average expression levels of CYP3A29 mRNA in livers of bodily mature ofBama miniature pigs icreased remarkablely treated with rifampicin, and the value was 7.71times of that of untreated bodily mature of Bama miniature pigs. Expression levels ofCYP1A2, 2A6, 2D6 and 2E1 mRNA were all not affected by treatition of rifampicin. Thisresult indicated induciablely that bodily mature of Bama miniature pigs were all suitablefor experimental model of security estimate of drug metabolismed by human CYP3A4.
引文
[1] 王爱德,郭亚芬,李柏,胡传活,魏泓.巴马香猪血液生化指标.上海实验动物科学,2001,21(1):8-12.
    [2] 王爱德,郭亚芬,李柏,胡传活,魏泓.巴马香猪血液生理指标.上海实验动物科学,2001,21(2):75-78.
    [3] 冷建军,董家鸿,韩本立,郑树国,郑萍.巴马香猪肝脏应用解剖学观察.消化外科,2004,3(3):181-184.
    [4] 陈丙波,王传广,周建华,魏泓,王爱德,甘世祥.广西巴马小型猪和贵州小型香猪的DNA指纹分析.第三军医大学学报,2003,25(7):620-622.
    [5] 商海涛,牛荣,魏泓,黄中波,甘世祥,王爱德,曾养志.三品系小型猪35个微卫星基因座的遗传学研究.遗传,2001,23(1):17-20.
    [6] 吴丰春,魏泓,甘世祥,王爱德.巴马小型猪与贵州小型香猪遗传多样性的RAPD分析.实验生物学报,2001,34(2):115-119.
    [7] 吴丰春,魏泓,王爱德.AFLP技术用于巴马小型猪遗传多样性的研究.中国实验动物学杂志,2002,12(4):207-209.
    [8] Li J, Liu Y, Zhang JW, Wei H, Ying L. Characterization of hepatic drug-metabolizing activities of Bama miniature pigs (Sus Scrofa Dodmestica): Comparison with human enzyme analogs. Comp Med, 2006, 56(4): 269-273.
    [9] 李健,刘勇,张江伟,魏泓,杨凌.贵州小型香猪与人五种CYP酶活性的比较.中国比较医学杂志,2006,16(3):157—161.
    [10] Nowakowski-Gashaw I, Mrozikiewicz P M, Roots I, Brockmoller J. Rapid quantification of CYP3A4 expression in human leukocytes by real-time reverse transcription-PCR. Clin Chem, 2002, 48(2): 366-370.
    [11] Bogaards JJ, Bertrand M, Jackson P, Oudshoorn MJ, Weaver RJ, van Bladeren PJ, Walther B. Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica, 2000, 30(12): 1131-1152.
    [12] Olsen AK, Hansen KT, Friis C. Pig hepatocytes as an in vitro model to study the regulation of human CYP3A4: pre-diction of drug-drug interactions with 17a-ethynylestradiol. Chem Biol Interact, 1997, 107(1-2): 93-108.
    [13] Cholerton S, Daly AK, Idle JR. The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci, 1992, 13(12): 434-439.
    [14] Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther, 1994, 270(1): 414-423.
    [15] Anzenbacher P, Soucek P, Anzenbacherova E, Gut I, Hruby K, Svoboda Z, Kvetina J. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples. Drug Metab Dispos, 1998, 26(1): 56-59.
    [16] Jurima-Romet M, Casley WL, Leblanc CA, Nowakowska M. Evidence for the catalysis of dextromethorphan O-demethylation by a CYP2D6-like enzyme in pig Liver. Toxicology in Vitro, 2000, 14(3): 253-263.
    [17] Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med,2002, 6(2): 189-198.
    [18] Soucek P, Zuber R, Anzenbacherova E, Anzenbacher P, Guengerich FP. Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs. BMC Pharmacol, 2001, 1: 11. (http://www.biomedcentral.com/ 1471-2210/1/11).
    [19] Bowen WP, Carey JE, Miah A, McMurray HF, Munday PW, James RS, Coleman RA, Brown AM. Measurement of cytochrome P450 gene induction in human hepatocytes using quantitative real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos, 2000, 28(7): 781-788.
    [20] Girault I, Rougier N, Chesne C, Lidereau R, Beaune P, Bieche I, de Waziers I. Simultaneous measurement of 23 isoforms from the human cytochrome P450 families 1 to 3 by quantitative reverse transcriptase-polymerase chain reaction. DrugMetab Dispos, 2005, 33(12): 1803-1810.
    [21] Yengi LG, Xiang Q, Pan J, Scatina J, Kao J, Ball SE, Fruncillo R, Ferron G, Roland Wolf C. Quantitation of cytochrome P450 mRNA levels in human skin. Anal Biochem, 2003,316(1): 103-110.
    [22] Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi, 2003., 123(5):369-375.
    [23] Hukkanen J, Vaisanen T, Lassila A, Piipari R, Anttila S, Pelkonen O, Raunio H, Hakkola J. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther, 2003, 304(2): 745-752.
    [24] Pan J, Xiang Q, Renwick AB, Price RJ, Ball SE, Kao J, Scatina JA, Lake BG. Use of a quantitative real-time reverse transcription-polymerase chain reaction method to study the induction of CYP1A, CYP2B and CYP4A forms in precision-cut rat liver slices. Xenobiotica, 2002, 32(9): 739-747.
    [25] 北京大学生命科学学院编写组.生命科学导论.北京,高等教育出版社,2000.
    [26] 杨佳荟,沈茜.TaqMan实时荧光定量逆转录聚合酶链反应检测新型趋化因子巨噬细胞炎症蛋白—2γ mRNA表达水平.中华检验医学杂志,2003,26(5):290-292.
    [27] Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol, 2000, 25(2): 169-193.
    [28] 张丁,杨雁琪.lalpha,25(OH)2维生素D3对OPA、RANKL在人牙周膜细胞中表达影响的RT—PCR半定量研究.现代口腔医学杂志,2002,16(6):481-484.
    [29] 范吴强,蔡卫民.2型糖尿病肾病患者外周血单个核细胞TGF—β1 mRNA转录的定量研究.中华内分泌代谢杂志,2001,17(6):341-343.
    [30] 王延华,景强.Pierre.PCR理论与技术.北京,科学出版社,2005.
    [31] 黄留玉主编.PCR最新技术原理、方法及应用.北京,化学工业出版社,2005,159-169.
    [32] 梅英,刘长安.定量PCR的研究进展.国外医学临床生物化学与检验学分册,2004,25:(1):23-27.
    [33] 林玲,高锦声.定量PCR技术的研究进展.国外医学遗传学分册,1999,22:(3):116—120.
    [34] 杨朝国,刘蓉.核酸的分子水平定量方法学.四川省卫生干部管理学院学报,1997,16(3):167—168.
    [35] 叶巍,方筠.竞争性核酸定量检测技术研究进展.中国国境卫生检疫杂志,2003,26(1):51-52.
    [36] Rodriguez-Antona C, Jover R, Gomez-Lechon MJ, Castell JV. Quantitative RT-PCR measurement of human cytochrome P-450s: application to drug induction studies. Arch Biochem Biophys, 2000, 376(1): 109-116.
    [37] 陆利民,李海雁,汪蓉,姚泰.采用单碱基突变模板作为内对照对组织中mRNA水平进行PCR定量.生理学报,1997,49(2):235-240.
    [38] 刘陶文.定量PCR技术.国外医学临床生物化学与检验学分册,1998,19:(1):15-17.
    [39] Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology, 1993, 11(9): 1026-1030.
    [40] Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched PrObe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl, 1995, 4(6): 357-362.
    [41] Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 1996, 14(3): 303-308.
    [42] Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 1997, 22(1): 130-138.
    [43] Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques, 1997, 22(1): 176-181.
    [44] 欧阳志荃.实时荧光定量PCR技术的原理及应用.天为时代核酸系列讲座(第三军医大学),2005-05-16.
    [45] 樊绮诗.定量PCR中常用的参照系统.诊断学理论与实践,2003,2(3):178-180.
    [46] 王频佳.Real-time PCR检测弓形虫方法学的建立及初步应用.[学位论文].重庆,重庆医科大学,2006.
    [47] 刘向国,谢国明.荧光定量PCR仪技术及其在医学中的应用.医疗卫生装备,2002,5:37-39.
    [48] Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green Ⅰ monitoring during amplification. Biotechniques, 1998, 24(6): 954-962.
    [49] Bonnet G, Tyagi S, Libchaber A, Kramer FR. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci U S A, 1999, 96(11): 6171-6176.
    [50] Karge WH 3rd, Schaefer EJ, Ordovas JM. Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method. Methods Mol Biol, 1998, 110: 43-61.
    [51] Foss DL, Baarsch MJ, Murtaugh MP. Regulation of hypoxanthine phosphoribosyltransferase, glyceraldehyde-3-phosphate dehydrogenase and beta-actin mRNA expression in porcine immune cells and tissues. Anim Biotechnol, 1998, 9(1): 67-78.
    [52] Bustin SA, McKay IA. The product of the primary response gene BRF1 inhibits the interaction between 14-3-3 proteins and cRaf-1 in the yeast trihybrid system. DNA Cell Biol, 1999, 18(8): 653-661.
    [53] Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res, 1996, 6(10): 986-994.
    [54] Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG. Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region Ⅲ standards. Cancer Res, 1998, 58(17): 3957-3964.
    [55] Zhang J, Desai M, Ozanne SE, Doherty C, Hales CN, Byrne CD. Two variants of quantitative reverse transcriptase PCR used to show differential expression of alpha-, beta- and gamma-fibrinogen genes in rat liver lobes. Biochem J, 1997, 321(Pt 3): 769-775.
    [56] 蔡卫民,张银娣.药物代谢酶的分子遗传学.中国药理学通报,1999,15(6):491-496.
    [57] Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996, 6(1): 1-42.
    [58] David Nelson. Cytochrome P450s in humans. http://drnelson.utmem.edu/homepage.html, 2000-11-24.
    [59] 骆文香,张银娣.药物代谢中的肝细胞色素P450.药学进展,1999,23(1):27-32.
    [60] 戴军,陆伦根,曾民德,李继强,华静,茅益民.肝细胞色素P4502E1在实验性肝纤维化组织中的表达.肝脏,2000,5(1):16-17.
    [61] Ortiz de Montellano PR. Cytochrome P450, New York, Plenum Press, 1995.
    [62] Anzenbacher P, Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci, 2001, 58(5-6): 737-747.
    [63] Rodrigues AD, Wong SL. Application of human liver microsomes in metabolism-based drug-drug interactions. Adv Pharmacol, 1997, 43: 65-101.
    [64] Ferrini JB, Pichard L, Domergue J, Maurel P. Long-term primary cultures of adult human hepatocytes. Chem Biol Interact, 1997, 107(1-2): 31-45.
    [65] Reinach B, de Sousa G, Dostert P, Ings R, Gugenheim J, Rahmani R. Comparative effects of rifabutin and rifampicin on cytochromes P450 and UDP-glucuronosyl-transferases expression in fresh and cryopreserved human hepatocytes. Chem Biol Interact, 1999, 121(1): 37-48.
    [66] Yoshitomi S, ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol In Vitro, 2001, 15(3): 245-256.
    [67] Ferrero JL, Brendel K. Liver slices as a model in drug metabolism. Adv Pharmacol, 1997, 43: 131-169.
    [68] Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet, 1998, 5(5): 361-390.
    [69] Crespi CL, Miller VP. The use of heterologously expressed drug metabolizing enzymes-state of the art and prospects for the future. Pharmacol Ther, 1999; 84(2): 121-131.
    [70] Crespi C. L., Penman B. W. Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug-drug interactions. Adv Pharmacol, 1997, 43: 171-188.
    [71] Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Greenblatt D.J. Human cytochromes P450 mediating phenacetin O-deethylation in vitro: validation of the high affinity component as an index of CYP1A2 activity. J Pharm Sci, 1998, 87(12): 1502-1507.
    [72] Miles JS, McLaren AW, Forrester LM, Glancey MJ, Lang MA, Wolf CR. Identification of the human liver cytochrome P-450 responsible for coumarin 7-hydroxylase activity. Biochern J, 1990, 267(2): 365-371.
    [73] Bort R, Mace K, Boobis A, Gomez-Lechon MJ, Pfeifer A, Castell J. Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharrnacol, 1999, 58(5): 787-796.
    [74] Jones DR, Gorski JC, Hamman MA, Hall SD. Quantification of dextromethophan and metabolites: a dual phenotypic marker for cytochrome P450 3A4/5 and 2D6 activity. J Chromatogr B, 1996, 678(1): 105-111.
    [75] Kim RB, O'Shea D. Interindividual variability of chlorzoxazone 6-hydroxylation in men and women and its relationship to CYP2E1 genetic polymorphisms. Clin Pharmacol Ther, 1995, 57(6): 645-655.
    [76] Waxman DJ, Attisano C, Guengerich FP, Lapenson DP. Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys, 1988, 263(2): 424-436.
    [77] 宋振玉,刘耕陶.当代药理学.北京,北京医科大学中国协和医科大学联合出版社,1994,74.
    [78] Lasker JM, Wester MR, Aramsombatdee E, et al. Characterization of CYP2C19 and CYP2C9 from human liver: Respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys, 1998, 353(1): 16-28.
    [79] 黄林清,杨志勇.肝细胞色素P450与药物代谢的研究进展.中国药房,2001,12(6);372-373.
    [80] Hakkola J, Tanaka E, Pelkonen O. Developmental expression of cytochrome P450 enzymes in human liver. Pharmacol Toxicol, 1998, 829(2): 209-219.
    [81] 舒炎,周宏灏.细胞色素P450药物氧化代谢酶的遗传药理学进展.见:王永铭,苏定冯.药理学进展.北京,科学出版社,2000,19-31.
    [82] Yamano S, Tatsuno J, Gonzalez FJ. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry, 1990, 29(5): 1322-1329.
    [83] Yun CH, Shimada T, Guengerich FP. Purification and characterization of human liver microsomal cytochrome P-450 2A6. Mol Pharmacol, 1991, 40(5), 679-685.
    [84] Maenpaa J, Rane A, Raunio H, Honkakoski P, Pelkonen O. Cytochrome P450 isoforms in human fetal tissues related to phenobarbital-inducible forms in the mouse. Biochem Pharmacol, 1993, 45(4): 899-907.
    [85] Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev, 1995, 27(3): 397-417.
    [86] Okino ST, Quattrochi LC, Pendurthi UR, McBride OW, Yukey RH. Characterization of multiple human cytochrome P-450 1 cDNAs. The chromosomal localization of the gene and evidence for alternate RNA splicing. J Biol Chem, 1987, 262(33): 16072-16079.
    [87] Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry, 1991, 30(13): 3247-3255.
    [88] 周宏灏.分子遗传药理学.哈尔滨,黑龙江科学技术出版社,1999,224-251.
    [89] Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev, 1997, 29(1-2): 413-480.
    [90] Roberts BJ, Song BJ, Soh Y, Park SS, Shoaf SE. Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1. J Biol Chem, 1995, 270(50): 29632-29635.
    [91] Vieira I, Sonnier M, Cresteil T. Developmental expression of CYP2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur J Biochem, 1996, 238(2): 476-483.
    [92] Wrighton SA, Thomas PE, Molowa DT, Haniu M, Shively JE, Maines SL, Watkins PB, Parker G, Mendez-Picon G, Levin W. Characterization of ethanol-inducible human liver N-nitrosodimethylamine demethylase. Biochemistry, 1986, 25(22): 6731-6735.
    [93] Imaoka S, Yamada T, Hiroi T, Hayashi K, Sakaki T, Yabusaki Y, Funae Y. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat. Biochem Pharmacol, 1996, 51(8): 1041-1050.
    [94] Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol, 1998, 38: 389-430.
    
    [95] Stephenson PU, Bonnesen C, Bjeldanes LF, Vang O. Modulation of cytochrome P4501A1 activity by ascorbigen in murine hepatoma cells. Biochem Pharmacol, 1999, 58(7): 1145-1153.
    [96] Ramachandran V, Kostrubsky VE, Komoroski BJ, Zhang S, Dorko K, Esplen JE, Strom SC, Venkataramanan R. Troglitazone increases cytochrome P-450 3A protein and activity in primary cultures of human hepatocytes. Drug Metab Dispos, 1999,27(10): 1194-1199.
    [97] Olesen OV, Linnet K. Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology, 1999, 59(6): 298-309.
    [98] Kharasch ED, Hankins DC, Taraday JK. Single-dose methoxsalen effects on human cytochrome P-450 2A6 activity. Drug Metab Dispos, 2000, 28(1): 28-33.
    [99] Palamanda J, Feng WW, Lin CC, Nomeir AA. Stimulation of tolbutamide hydroxylation by acetone and acetonitrile in human liver microsomes and in a cytochrome P-450 2C9-reconstituted system. Drug Metab Dispos, 2000, 28(1): 38-43.
    [100] Burchell B, Nebert DW, Nelson DR, Bock KW, Iyanagi T, Jansen PL, Lancet D, Mulder GJ, Chowdhury JR, Siest G, et al. The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence. DNA Cell Biol, 1991,10(7):487-494.
    [101] Wooster R, Sutherland L, Ebner T, Clarke D, Da Cruz e Silva O, Burchell B. Cloning and stable expression of a new member of the human liver phenol/bilirubin: UDP-glucuronosyltransferase cDNA family. Biochem J, 1991, 278(Pt 2): 465-469.
    [102] Guillemette C, Ritter JK, Auyeung DJ, Kessler FK, Housman DE. Structural heterogeneity at the UDP-glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7 gene. Pharmacogenetics, 2000, 10(7): 629-644.
    [103] Forsman T, Lautala P, Lundstrom K, Monastyrskaia K, Ouzzine M, Burchell B, Taskinen J, Ulmanen I. Production of human UDP-glucuronosyltransferases 1A6 and 1A9 using the Semliki Forest virus expression system. Life Sci, 2000, 67(20): 2473-2484.
    
    [104] Monaghan G, Clarke DJ, Povey S, See CG, Boxer M, Burchell B. Isolation of a human YAC contig encompassing a cluster of UGT2 genes and its regional localization to chromosome 4q13. Genomics, 1994, 23(2): 496-499.
    [105] Levesque E, Yurgeon D, Carrier JS, Montminy V, Beaulieu M, Belanger A. Isolation and characterization of the UGT2B28 cDNA encoding a novel human steroid conjugating UDP-glucuronosyltransferase. Biochemistry, 200!, 40(13): 3869-3881.
    [106] Turgeon D, Carrier JS, Levesque E, Beatty BG, Belanger A, Hum DW. Isolation and characterization of the human UGT2B15 gene, localized within a cluster of UGT2B genes and pseudogenes on chromosome 4. J Mol Biol, 2000, 295(3): 489-504.
    [107] Radominska-Pandya A, Czemik PJ, Little JM, Battaglia E, Mackenzie PI. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev, 1999, 31(4): 817-899.
    [108] Mulder GJ. Pharmacological effects of drug conjugates: is morphine 6-glucuronide an exception? Trends Pharmacol Sci, 1992, 13(8): 302-304.
    [109] Gueraud F, Paris A. Glucuronidation: a dual control. Gen Pharmacol, 1998, 31(5): 683-688.
    [110] Bock KW, Gschaidmeier H, Heel H, Lehmkoster T, Munzel PA, Bock-Hennig BS. Functions and transcriptional regulation of PAH-inducible human UDP-glucuronosyltransferases. Drug Metab Rev, 1999, 31(2): 411-422.
    [111] Brierley CH, Burchell B. Human UDP-glucuronosyl transferases: chemical defence, jaundice and gene therapy. Bioessays, 1993, 15(11): 749-754.
    [112] Zhang HJ, Zhu XG, Ye YJ. Gender-related differences in the activity of hepatic bilirubin UGT of C57BL/6J mice. J B Med Uni, 1999, 31(1): 65-70.
    [113] Haberkorn V, Heydel JM, Mounie J, Artur Y, Goudonnet H. Influence of vitamin A status on the regulation of uridine (5'-)diphosphate-glucuronosyltransferase(UGT) 1A1 and UGT1A6 expression by L-triiodothyronine. Br J Nutr, 2001, 85(3): 289-297.
    [114] Li YQ, Prentice DA, Howard ML, Mashford ML, Wilson JS, Desmond PV. Alcohol up-regulates UDP-glucuronosyltransferase mRNA expression in rat liver and in primary rat hepatocyte culture. Life Sci, 2000, 66(7): 575-584.
    [115] 庞战军,陈媛,周玫.谷胱甘肽硫转移酶基因表达的调控.生物化学与生物物理进展,1997,24(5):401-405.
    [116] Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol, 1995, 30(6): 445-600.
    [117] Seidegard J, Ekstrom G. The role of human glutathione transferases and epoxide hydrulases in the metabolism of xenobiotices. Environ Health Perspect, 1997, 105(suppl 4): 791-799.
    [118] Lee SH, DeJong J.Microsomal GST-I : Microsomal GST-I: genomic organization, expression, and alternative splicing of the human gene. Biochim Biophys Acta, 1999,1446(3): 389-396.
    [119] Toba G, Ohsako T, Miyata N, Ohtsuka T, Seong KH, Aigaki T. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics, 1999, 151(2): 725-737.
    [120] Penrose JF. LTC4 synthase. Enzymology, biochemistry, and molecular characterization. Clin Rev Allergy Immunol, 1999, 17(1-2): 133-152.
    [121] Toba G, Aigaki T. Disruption of the microsomal glutathione S-transferase-like gene reduces life span of Drosophila melanogaster. Gene, 2000, 253(2): 179-187.
    [122] Andersson C, Mosialou E, Weinander R, Morgenstern R. Enzymology of microsomal glutathione S-transferase. Adv Pharmacol, 1994, 27: 19-35.
    [123] Peng RX, Wang H, Wang YS, Fu LS, Ding H. Glutathione-related enzyme activities in human fetal adrenal, liver, and kidney. Acta Pharmacologica Sinica, 1998,19(2): 167-171.
    [124] Jakobsson PJ, Mancini JA, Riendeau D, Ford-Hutchinson AW. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J Biol Chem, 1997, 272(36): 22934-22939.
    [125] Kelner MJ, Bagnell RD, Montoya MA, Estes LA, Forsberg L, Morgenstern R. Structural organization of the microsomal glutathione S-transferase gene (MGSTl) on chromosome 12p 13.1-13.2. Identification of the correct promoter region and demonstration of transcriptional regulation in response to oxidative stress. J Biol Chem, 2000, 275(17): 13000-13006.
    [126] Svensson R, Rinaldi R, Swedmark S, Morgenstern R. Reactivity of cysteine-49 and its influence on the activation of microsomal glutathione transferase 1:evidence for subunit interaction. Biochemistry, 2000, 39(49): 15144-15149.
    [127] Sies H, Dafre AL, Ji Y, Akerboom TP. Protein S-thiolation and redox regulation of membrane-bound glutathione transferase. Chem Biol Interact, 1998, 111-185.
    [128] Scoggan KA, Jakobsson PJ, Ford-Hutchinson AW. Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes. J Biol Chem, 1997,272(15): 10182-10187.
    [129] Yonamine M, Aniya Y, Yokomakura T, Koyama T, Nagamine T, Nakanishi H. Acetaminophen-derived activation of liver microsomal glutathione S-transferase of rats. Jpn J Pharmacol, 1996, 72(2): 175-181.
    [130] 黎煌久,陈焕昭,吴惜贞,等.辅酶Q10对过量对乙酰氨基酚所致小鼠肝损伤的预防作用.中国药理学与毒理学杂志,1997,11(4):278-285.
    [131] Begleiter A, Mowat M, Israels LG, Johnston JB. Chlorambucil in chronic lymphocytic leukemia: mechanism of action. Leuk Lymphoma, 1996, 23(3-4): 187-201.
    [132] O'Brien M, Kruh GD, Tew KD. The influence of coordinate overexpression of glutathione phase Ⅱ detoxification gene products on drug resistance. J Pharmacol Exp Ther, 2000.294(2): 480-487.
    [133] 施畅,廖明阳.环磷酰胺与异环磷酰胺致肝毒性机制的比较.卫生毒理学杂志,2000,14(2):99-102.
    [134] Onderwater RC, Commandeur JN, Menge WM, Vermeulen NE Activation of microsomal glutathione S-transferase and inhibition of cytochrome P450 1A1 activity as a model system for detecting protein alkylation by thiourea-containing compounds in rat liver microsomes. Chem Res Toxicol, 1999, 12(5): 396-402.
    [135] 吴东方,彭仁,汪晖,等.氢化泼尼松的肝毒性机理研究.华西药学杂志,1998,13(1):7-9.
    [136] Ji Y, Akerboom TP, Sies H. Microsomal formation of S-nitrosoglutathione from organic nitrites: possible role of membrane-bound glutathione transferase. Biochem J, 1996, 313(Pt 2): 377-380.
    [137] Ji Y, Toader V, Bennett BM. Regulation of microsomal and cytosolic glutathione S-transferase activities by S-nitrosylation. Biochern Pharmacol, 2002, 63(8): 1397-1404.
    [138] 申兆菊,肖希龙,周宗灿,等.外源性一氧化氮对大鼠肝脏抗氧化物酶和药物代谢酶活性的影响.中国药理学与毒理学杂志,1999,(2):2519-2539.
    [139] Cooper DK, Gollackner B, Sachs DH. Will the pig solve the transplantation backlog? Annu Rev Med, 2002, 53:133-147.
    [140] Skaanild MT, Friis C. Cytochrome P450 sex differentces in minipigs and conventional pigs. Pharmacol Toxicol, 1999, 85: 174-180.
    [141] Skaanild MT, Friis C. Characterization of the P450 sytstem in Gottingen minipigs. Pharmacol Toxicol, 1997, 80(suppl 2): 28-33.
    [142] Monshouwer M, van't Klooster GAE, Nijmeijer SM, Witkamp RF, Miert ASJPAM. Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes. Toxicology in Vitro, 1998, 12(6): 715-723.
    [143] Lu C, Li AP. Species comparison in P450 induction: effects of dexamethasone, omeprazole, and rifampin on P450 isoforms 1A and 3A in primary cultured hepatocytes from man, Sprague-Dawley rat, minipig, and beagle dog. Chem Biol Interact, 2001,134(3): 271-281.
    [144] Myers MJ, Farrell DE, Howard KD, Kawalek JC. Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine. Drug Metab Dispos, 2001,29(6): 908-915.
    [145] Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J, Wrighton SA; Pharmaceutical Research and Manufacturers of America (PhRMA) Drug Metabolism/Clinical Pharmacology Technical Working Group; FDA Center for Drug Evaluation and Research (CDER). The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. DrugMetab Dispos, 2003, 31(7): 815-832.
    [146] Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, Gonschior AK, Dralle H, Hackbarth I, Sewing KF. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos, 1995, 23(12): 1315-1324.
    [147] Clement B, Lomb R, Moller W. Isolation and characterization of the protein components of the liver microsomal O2-insensitive NADH-benzamidoxime reductase. J Biol Chem, 1997, 272(31): 19615-19620.
    [148] 细胞色素P450 网页. http://mhc.com/cytochromes/links 以及 http://drnelson.utmem.edu/cytochromeP450.html
    [149] Nissen PH, Wintero AK, Fredholm M. Mapping of porcine genes belonging to two different cytochrome P450 subfamilies. Anim Genet, 1998, 29(1): 7-11.
    [150] Anzenbacher P, Anzerbacherova E, Zuber R, Soucek P, Guengerich FP. Pig and minipig cytochromes P450. DrugMetab Dispos, 2002, 30(1): 100-102.
    [151] Jayyosi Z, Muc M, Erick J, Thomas PE, Kelley M. Catalytic and immunochemical characterization of cytochrome P450 isozyme induction in dog liver. Fundam Appl Toxicol, 1996, 31(1): 95-102.
    [152] Lankford SM, Bai SA, Goldstein JA. Cloning of canine cytochrome P450 2E1 cDNA: identification and characterization of two variant alleles. Drug Metab Dispos, 2000, 28(8): 981-986.
    
    [153] Fraser DJ, Feyereisen R, Harlow GR, Halpert JR. Isolation, heterologous expression and functional characterization of a novel cytochrome P450 3A enzyme from a canine liver cDNA library. J Pharmacol Exp Ther, 1997, 283(3): 1425-1432.
    [154] Ciaccio PJ, Halpert JR. Characterization of a phenobarbital-inducible dog liver cytochrome P450 structurally related to rat and human enzymes of the P450IIIA (steroid-inducible) gene subfamily. Arch Biochem Biophys, 1989, 271(2): 284-299.
    [155] Chauret N, Gauthier A, Martin J, Nicoll-Griffith DA. In vitro comparison of cytochrome P450-mediated metabolic activities in human, dog, cat, and horse. Drug Metab Dispos, 1997,25(10): 1130-1136.
    [156] Duignan DB, Sipes IG, Ciaccio PJ, Halpert JR. The metabolism of xenobiotics and endogenous compounds by the constitutive dog liver cytochrome P450 PBD-2. Arch Biochem Biophys, 1988, 267(1): 294-304.
    [157] Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact, 1997, 106(3): 161-182.
    [158] Sakamoto K, Kirita S, Baba T, Nakamura Y, Yamazoe Y, Kato R, Takanaka A, Matsubara T. A new cytochrome P450 form belonging to the CYP2D in dog liver microsomes: purification, cDNA cloning, and enzyme characterization. Arch Biochem Biophys, 1995, 319(2): 372-382.
    [159] Roussel F, Duignan DB, Lawton MP, Obach RS, Strick CA, Tweedie DJ. Expression and characterization of canine cytochrome P450 2D15. Arch Biochem Biophys, 1998, 357(1): 27-36.
    [160] Edwards RJ, Murray BP, Murray S, Schulz T, Neubert D, Gant TW, Thorgeirsson SS, Boobis AR, Davies DS. Contribution of CYP1A1 and CYP1A2 to the activation of heterocyclic amines in monkeys and human. Carcinogenesis, 1994, 15(5): 829-836.
    [161] Sharer JE, Shipley LA, Vandenbranden MR, Binkley SN, Wrighton SA. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. Drug Metab Dispos, 1995, 23(11): 1231-1241.
    [162] Komori M, Kikuchi O, Sakuma T, Funaki J, Kitada M, Kamataki T. Molecular cloning of monkey liver cytochrome P-450 cDNAs: similarity of the primary sequences to human cytochromes P-450. Biochim Biophys Acta, 1992, 1171(2): 141-146.
    [163] Guengerich FP. Human cytochrome P450 enzymes. in Cytochrome P450, New York, Plenum Press, 1995, 473-535.
    [164] Aleynik MK, Lieber CS. Dilinoleoylphosphatidylcholine decreases ethanol-induced cytochrome P4502E1. Biochem Biophys Res Commun, 2001, 288(4): 1047-1051.
    [165] Smith DA. Species differences in metabolism and pharmacokinetics: are we close to an understanding? Drug Metab Rev, 1991, 23(3-4): 355-373.
    [166] Nedelcheva V, Gut I. P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica, 1994, 24(12): 1151-1175.
    [167] Strobl GR, von Kruedener S, Stockigt J, Guengerich FP, Wolff T. Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies. J Med Chem, 1993, 36(9): 1136-1145.
    [168] Kobayashi K, Urashima K, Shimada N, Chiba K. Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat. Biochem Pharmacol, 2002, 63(5): 889-896.
    [169] Gonzalez FJ, Matsunaga T, Nagata K, Meyer UA, Nebert DW, Pastewka J, Kozak CA, Gillette J, Gelboin HV, Hardwick JP.Debrisoquine 4-hydroxylase: characterization of a new P450 gene subfamily, regulation, chromosomal mapping, and molecular analysis of the DA rat polymorphism. DNA, 1987, 6(2): 149-161.
    [170] Quattrochi LC, Vu T, Tukey RH. The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem, 1994, 269(9): 6949-6954.
    [171] Haugen DA, Coon MJ. Properties of electrophoretically homogeneous phenobarbital-inducible and beta-naphthoflavone-inducible forms of liver microsomal cytochrome P-450. J Biol Chem, 1976, 251(24): 7929-7939.
    [172] Ding XX, Pernecky SJ, Coon MJ. Purification and characterization of cytochrome P450 2E2 from hepatic microsomes of neonatal rabbits. Arch Biochern Biophys, 1991, 291(2): 270-276.
    [173] Schwartz PS, Waxman DJ. Cyclophosphamide induces caspase 9-dependent apoptosis in 9L tumor cells. Mol Pharmacol, 2001, 60(6): 1268-1279.
    [174] Yamamoto Y,Ishizuka M, Takada A, Fujita S. Cloning, tissue distribution, and functional expression of two novel rabbit cytochrome P450 isozymes, CYP2D23 and CYP2D24. J Biochem(Tokyo), 1998, 124(3): 503-508.
    [175] 蔡刚,李闻捷,沈茜.实时逆转录-聚合酶链反应绝定量实验优化的研究.上海医学检验杂志,2003,18(6):343-346.
    [176] 于国龙,蒋玮莹.实时荧光定量PCR在医学遗传学方面的应用.国外医学遗传学分册,2003,26(3):125-129.
    [177] 林灼锋,李校坤,吴帆.实时定量聚合酶链反应的研究及应用.暨南大学学报(自然科学版),2002,23(5):116-122.
    [178] 蒲小蓉.Real-time PCR检测风疹病毒方法学的建立及初步应用.[学位论文].重庆,重庆医科大学,2006.
    [179] Shu Y, Cheng ZN, Liu ZQ, Wang LS, Zhu B, Huang SL, Ou-Yang DS, Zhou HH. Interindividual variations in levels and activities of cytochrome P-450 in liver microsomes of Chinese subjects. Acta Pharmacol Sin, 2001, 22(3): 283-288.
    [180] Forrester LM, Neal GE, Judah DJ, Glancey MJ, Wolf CR. Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B1 metabolism in human liver. Proc Natl Acad Sci USA, 1990, 87(21): 8306-8310.
    [181] George J, Byth K, Farrell GC. Age but not gender selectively affects expression of individual cytochrome P450 proteins in human liver. Biochem Pharmacol, 1995, 50(5): 727-730.
    [182] Sotaniemi EA, Arranto AJ, Pelkonen O, Pasanen M. Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin Pharmacol Ther, 1997, 61 (3): 331-339.
    [183] Bebia Z, Buch SC, Wilson JW, Frye RF, Romkes M, Cecchetti A, Chaves-Gnecco D, Branch RA. Bioequivalence revisited: influence of age and sex on CYP enzymes. Clin Pharrnacol Ther, 2004, 76(6): 618-627.
    [184] Takatori A, Akahori M, Kawamura S, Itagaki S, Yoshikawa Y. Localization and age-related changes in cytochrome P450 expression in APA hamster livers. Exp Anim, 2000, 49(3): 197-203.
    [185] Black VH, Barilla JR, Martin KO. Effects of age, adrenocorticotropin, and dexamethasone on a male-specific cytochrome P450 localized in the inner zone of the guinea pig adrenal. Endocrinology, 1989, 124(5): 2494-2498.
    [186] Kishi R, Sara F, Katakura Y, Wang RS, Nakajima T. Effects of pregnancy, age and sex in the metabolism of styrene in rat liver in relation to the regulation of cytochrome P450 enzymes. J Occup Health, 2005, 47(1): 49-55.
    [187] Lown KS, Kolars JC, Thummel KE, Barnett JL, Kunze KL, Wrighton SA, Watkins PB. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab Dispos, 1994, 22(6): 947-955.
    [188] Yamazoe Y, Shimada M, Murayama N, Kawano S, Kato R. The regulation by growth hormone of microsomal testosterone 6 beta-hydroxylase in male rat livers. J Biochem(Tokyo), 1986, 100(4): 1095-1097.
    [189] Shimada M, Murayama N, Yamazoe Y, Hashimoto H, Ishikawa H, Kato R. Age-and sex-related alterations of microsomal drug- and testosterone-oxidizing cytochrome P450 in Sprague-Dawley strain-derived dwarf rats. J Pharmacol Exp Ther, 1995, 275(2): 972-977.
    [190] Zaphiropoutos PG, Strom A, Robertson JA, Gustafsson JA. Structural and regulatory analysis of the male-specific rat liver cytochrome P-450 g: repression by continuous growth hormone administration. Mol Endocrinol, 1990, 4(1): 53-58.
    [191] Agrawal AK, Shapiro BH. Gender, age and dose effects of neonatally administered aspartate on the sexually dimorphic plasma growth hormone profiles regulating expression of therat sex-dependent hepatic CYP isoforms. Drug Metab Dispos, 1997, 25(11): 1249-1256.
    [192] Dhir RN, Dworakowski W, Shapiro BH. Middle-age alterations in the sexually dimorphic plasma growth hormone profiles: involvement of growth hormone-releasing factor and effects on cytochrome p450 expression. Drug Metab Dispos, 2002, 30(2): 141-147.
    [193] 贺全仁.人类细胞色素P450同工酶与药物代谢.中国临床药理学与治疗学杂志,1997,2(4):307-311.
    [194] Xu C, Li CY, Kong AN. Induction of phase Ⅰ, Ⅱ and Ⅲ drug metabolism/transport by xenobiotics. Arch Pharm Res, 2005, 28(3): 249-268.
    [195] 姚欣,钱元恕.肝外药物代谢酶的研究进展.国外医学药学分册,2003,30(2):97-101.
    [196] Park BK, Kitteringham NR, Pirmohamed M, Tucker GT. Relevance of induction of human drug-metabolizing enzymes: pharmacological and toxicological implications. Br J Clin Pharmacol, 1996, 41(6): 477-491.
    [197] Garcia M, Rager J, Wang Q, Strab R, Hidalgo IJ, Owen A, Li J. Cryopreserved human hepatocytes as alternative in vitro model for cytochrome p450 induction studies. In Vitro Cell Dev Biol Anim, 2003, 39(7): 283-287.
    [198] Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995, 35: 307-340.
    [199] Mattes WB, Li AP. Quantitative reverse transcriptase/PCR assay for the measurement of induction in cultured hepatocytes. Chem Biol Interact, 1997, 107(1-2): 47-61.
    [200] Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer. SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest, 1998, 102(5): 1016-1023.
    [201] Honkakoski P, Zelko I, Sueyoshi T and Negishi M. The nuclear orphan receptor CAR-retinoid X receptor heterodirner activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol, 1998, 18(10): 5652-5658.
    [202] Hosagrahara VP, Hansen LK, Remmel RP. Induction of the metabolism of midazolam by rifampin in cultured porcine hepatocytes: preliminary evidence for CYP3A isoforms in pigs. Drug Me tab Dispos, 1999, 27(12): 1512-1518.
    [203] Niemela O, Parkkila S, Pasanen M, Viitala K, Villanueva JA, Halsted CH. Induction of cytochrome P450 enzymes and generation of protein-aldehyde adducts are associated with sex-dependent sensitivity to alcohol-induced liver disease in micropigs. Hepatology, 1999, 30(4): 1011-1017.
    [204] Kocarek TA, Schuetz EG, Strom SC, Fisher RA, Guzelian PS. Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos, 1995, 23(3): 415-421.
    [205] Silva JM, Morin PE, Day SH, Kennedy BP, Payette P, Rushmore T, Yergey JA, Nicoll-Griffith DA. Refinement of an in vitro cell model for cytochrome P450 induction. Drug Metab Dispos, 1998, 26(5): 490-496.
    [206] Edwards RJ, Price RJ, Watts PS, Renwick AB, Tredger JM, Boobis AR, Lake BG. Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos, 2003, 31(3): 282-288.
    [207] Shiverick KT. In vivo and in vitro effects of beta-naphthoflavone on cytochrome P-450-dependent testosterone hydroxylase activities in liver microsomes. Drug Metab Dispos, 1981, 9(6): 545-550.
    [208] Marvasi L, Zaghini A, Gervasi PG, Vaccaro E, Chirulli V. Induction of Cytochrome P450 1A by beta-naphto-flavon within the Pig Liver and Central Nervous System. Vet Res Commun, 2006, 30(Suppl 1): 333-336.
    [209] Hahnemann B, Salonpaa P, Pasanen M, Maenpaa J, Honkakoski P, Juvonen R, Lang MA, Pelkonen O, Raunio H. Effect of pyrazole, cobalt and phenobarbital on mouse liver cytochrome P-450 2a-4/5 (Cyp2a-4/5) expression. Biochem J, 1992, 286(1): 289-294.
    [210] Poloyac SM, Tortorici MA, Przychodzin DI, Reynolds RB, Xie W, Frye RF, Zemaitis MA. The effect of isoniazid on CYP2E1- and CYP4A-mediated hydroxylation of arachidonic acid in the rat liver and kidney. Drug Metab Dispos, 2004, 32(7): 727-733.
    [211] Forkert PG, Redza ZM, Mangos S, Park SS, Tarn SP. Induction and regulation of CYP2E1 in murine liver after acute and chronic acetone administration. Drug Metab Dispos, 1994, 22(2): 248-253.
    [212] Villard PH, Seree E, Lacarelle B, Therene-Fenoglio MC, Barra Y, Attolini L, Bruguerole B, Durand A, Catalin J. Effect of cigarette smoke on hepatic and pulmonary cytochromes P450 in mouse: evidence for CYP2E1 induction in lung. Biochem Biophys Res Commun, 1994, 202(3): 1731-1737.
    [213] Kostrubsky VE, Strom SC, Wood SG, Wrighton SA, Sinclair PR, Sinclair JF. Ethanol and isopentanol increase CYP3A and CYP2E in primary cultures of human hepatocytes. Arch Biochem Biophys, 1995, 322(2): 516-520.
    [214] Kachula SO, Pentiuk OO. Effect of starvation and acetone on the enzyme systems of biotransformation and toxicity of xenobiotics--CYP2E1 substrates in rats. Ukr Biokhim Zh, 2004, 76(1): 114-122.
    [215] O'Shea D, Davis SN, Kim RB, Wilkinson GR. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Gin Pharmacol Ther, 1994, 56(4): 359-367.
    [216] Nishibe Y, Wakabayashi M, Harauchi T, Ohno K. Characterization of cytochrome P450 (CYP3A12) induction by rifampicin in dog liver. Xenobiotica, 1998, 28(6): 549-557.
    [217] Yokogawa K, Shimada T, Higashi Y, Itoh Y, Masue T, Ishizaki J, Asahi M, Miyamoto K. Modulation of mdrla and CYP3A gene expression in the intestine and liver as possible cause of changes in the cyclosporin A disposition kinetics by dexamethasone. Biochem Pharmacol, 2002, 63(4): 777-783.
    [218] Martin H, Sarsat JP, de Waziers I, Housset C, Balladur P, Beaune P, Albaladejo V, Lerche-Langrand C. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res, 2003, 20(4): 557-568.
    [219] Williams JA, Chenery RJ, Hawksworth GM. Induction of CYP3A enzymes in human and rat hepatocyte cultures. Biochem Soc Trans, 1994, 22(2): 131S.
    [220] Li AP, Maurel P, Gomez-Lechon MJ, Cheng LC, Jurima-Romet M. Preclinical evaluation of drug-drug interaction potential: present status of the application of primary human hepatocytes in the evaluation of cytochrome P450 induction. Chem Biol Interact, 1997, 107(1-2): 5-16.
    [221] Li AP, Reith MK, Rasmussen A, Gorski JC, Hall SD, Xu L, Kaminski DL, Cheng LK. Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine and rifabutin. Chem Biol Interact, 1997, 107(1-2): 17-30.
    [222] Lake BG, Ball SE, Renwick AB, Tredger JM, Kao J, Beamand JA, Price RJ. Induction of CYP3A isoforms in cultured precision-cut human liver slices. Xenobiotica, 1997,27(11): 1165-1173.
    [223] Rae JM, Johnson MD, Lippman ME, Flockhart DA. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther, 2001, 299(3): 849-857.
    [224] Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos, 2003, 31(4): 421-431.
    [225] Kafert-Kasting S, Alexandrova K, Barthold M, Laube B, Friedrich G, Arseniev L, Hengstler JG Enzyme induction in cryopreserved human hepatocyte cultures. Toxicology, 2006, 220(2-3): 117-125.
    [226] Goodwin B, Hodgson E, Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol, 1999, 56(6): 1329-1339.
    [227] Burk O, Koch I, Raucy J, Hustert E, Eichelbaum M, Brockmoller J, Zanger UM, Wojnowski L. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem, 2004, 279(37):38379-38385.
    [228] Savas U, Griffin KJ, Johnson EF. Molecular mechanisms of cytochrome P-450 induction by xenobiotics: An expanded role for nuclear hormone receptors. Mol Pharmacol, 1999, 56(5): 851-857.
    [229] Song X, Xie M, Zhang H, Li Y, Sachdeva K, Yan B. The pregnane X receptor binds to response elements in a genomic context-dependent manner, and PXR activator rifampicin selectively alters the binding among target genes. Drug Metab Dispos, 2004, 32(1): 35-42.
    [230] Hariparsad N, Nallani SC, Sane RS, Buckley DJ, Buckley AR, Desai PB. Induction of CYP3A4 by Efavirenz in Primary Human Hepatocytes: Comparison With Rifampin and Phenobarbital. J Clin Pharmacol, 2004, 44(11): 1273-1281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700