用户名: 密码: 验证码:
多重PCR及微卫星标记技术用于深部病原真菌感染的快速诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深部真菌感染的发病率随着免疫受损人群的不断增多呈逐渐上升趋势,已经成为院内感染死亡的主要原因之一。近年来病原菌也发生了菌谱演变,临床上不断出现新型的真菌感染。因此,快速、敏感、特异地鉴定病原菌对于临床真菌感染的诊断和治疗具有重要的意义。
     本研究根据真菌翻译延伸因子序列设计种、属特异性引物,或根据全基因组序列设计微卫星引物,以复合PCR、微卫星技术,探讨病原真菌的快速、敏感、特异的鉴定、诊断技术。
     利用翻译延伸因子基因属特异引物组合(念珠菌属、曲霉属、隐球菌属组合或曲霉属、毛霉属、镰刀菌属组合),进行多重PCR均扩增获得属特异性条带。且多重PCR反应可检测出100fg的真菌DNA。因而具有很好的特异性和敏感性。用属特异引物与白色念珠菌种特异引物组合,可获得白色念珠菌种特异条带(537bp)。
     根据基因库中已公布的真菌全基因序列设计了四种单一微卫星核心序列引物,利用正交设计优化了反应体系。对烟曲霉可扩增出2~5条带,分子量约在360~1960bp之间。不同引物对烟曲霉的扩增结果有明显差异,而同一种引物可获得清晰的特异性带型。这四种引物对烟曲霉的鉴定均具有种特异性。实验具有良好的重复性和稳定性。
     通过本研究建立了主要病原真菌的快速、敏感、特异的鉴定、诊断技术,为临床真菌感染的诊治、预防、流行病学、疾病发生发展规律等研究提供有力的科学依据和技术支撑。
The frequency of invasive opportunistic fungal infections has risen worldwide as a consequence of the rising number of immunocompromised hosts. The varieties and distributions of pathomycete have also changed greatly. Although The predominant cause of fungal infections in hospitalized patients remain, several non-albicans Candida spp. Aspergillus, Mucor, Fusarium, Penicillium, Paecilomyces by opportunistically invasive mycotic infection apparently increases. Therefore, it is important for clinicians to identify the species responsible for the infection. It is quite necessary to find some new diagnostic methods for it.
     The aim of this study is to aim to establish a kind of molecular diagnosis assay that could detect and identify the species of pathogenic fungi inducing systemic fungal infectiom accurately, specifically, rapidly and sensitively.
     Microsatellite is also named as short tandem repeats (STR) or Simple sequence repeats (SSR). The technology of SSR utilizes microsatellite as a primer to amply by PCR, then identifies based on the feature of lanes. It not only owns stability of DNA fingerprint, but also has the high performance and convenience of RADP. As a result, there are some significance for identify and diagnosis of pathogenic fungi.
     chapter one: This paper (chapter one) was to describes a new assay based on TEFla multiplex PCR amplification for direct detection and identification of fungi in clinical specimens. Establish there kinds of specificity primer groups, to detect the major clinical pathogenic fungi respectively.
     species-specific primers to identify 44 species of pathogenic fungi inducing deep fungal infection, thus establishing the method of detection and identification. The first result of prime group from multiplex PCR shows that the amplification lengths of Candida, Aspergillus, Cryptococcus are 233bp, 374bp, 147bp respectively. The second result of primer group from multiplex PCR shows that the amplification lengths of Aspergillus, Fusarium, Mucor are 374bp, 131bp, 562bp respectively. The genus universal primers did not amplify any other fungal DNA tested, and PCR was able to detect the presence of as few as 100 fg DNA of fungus. M-PCR could detect and identify the species of pathogenic fungi inducing systemic fungal infectiom accurately, specifically, rapidly and sensitively.
     Because Candida albicans remains the most common fungal pathogen, the multiplex PCR method was developed to identify the Candida albicans first from fungal pathogens. The fungal TEF1a gene is multicopy and highly conserved, there are variable regions in it. The sequences of species-specific primers come from variable regions. Candida albicans DNA was amplified with universal fungal primers and specific Candida albicans primers in one reaction tube. Two amplified products were obtained, 233 bp (product of genus universal primers) and 537bp (product of specific primers).
     The method was tested against conventional identification on 36 different clinical samples from patients with suspected fungal infections. The results agreed with those of culture and phenotyping for all but 2 speciment, including Candida, Aspergillus, Cryptococcus, 36, 7, 1 respectively. The results of 2 speciment disagreed with those of culture. Candida albicans DNA was amplified with genus universal fungal primers and specific Candida albicans primers in one reaction tube.
     Species identification time was reduced to 1 day with the multiplex PCR. Multiplex PCR assay provides a novel approach for identifying fungi and potential application value in the early diagnosis.
     chapter two: This study utilized SSR as a primer for PCR and built a method of detecting and identifying SSR of Aspergillus DNA, which has the features of speediness, specific, sensitiveness and preciseness.
     According to the publicized entire gene order of Aspergillus in gene bank, we analyzed and compared with other fungi DNA by software for example BLAST, DNAStar etc. Drawing assistance with computer designing software (Tandem Repeats Finder 3.21), we designed 4 kinds of single primers - 2 kinds of four nucleotides, 1 kind of five nucleotides, and 1 kind of six nucleotides - for PCR reaction to analyze the conservation and specificity. PCR reaction conditions were optimized with orthogonal design from 4 kinds of factors such as Taq DNA, template DNA, dNTP, and primer, at the same time defined the annealing temperature and the cycle numbers.
     This study makes use of SSR-PCR, amplifies DNAs of the major disease fungus (Candida, Aspergillus, Fusarium), for the purpose that observe diversities of PCR fingerprint and relationships between genotypes and traditional phenotypes. As the electropherograms show, the most results have 2 to 5 bands, molecular masses between 360to 1960bp. Different primers give rise to apparent diversity. However, the same primer owns the common bands.
     After 4 kinds of primers amplifying, Aspergillus show different bands. Comparing different Aspergillus from several sources, there is the duplicate band for certain primer. The results unchanged while repeating experiments. Such nice stability makes statistical result credible, and lead to accumulate the comparability among different genera of fungi. In that, we gain a conclusion that Aspergillus can be distinguished by SSR-PCR, and these 4 kinds of primers are recommendable.
     What is stated above, this study provides a significance that is for survey of deep fungal epidemiologic and prevention, on the basis of studying disease fungus genealogical classification, applying microsatellite mark and multiplex PCR technology to analyze the sequences of microsatellite DNA in fungal genome.
引文
[1] 吴绍熙,廖万清,郭宁如,等.中国致病真菌10年动态流行病学研究[J]. 临床皮肤科杂志,1999,28(1):1-5.
    [2] 温海,廖万清.真菌病的研究展望[J].中华皮肤科杂志, 2002,35(5):334-336.
    [3] 陈世平.医院真菌感染及研究进展[J].中国感染控制杂志, 2003,2(4):241-245.
    [4] 李若瑜,李东明,余进,等.真菌病与真菌病研究近况[J].北京大学学报(医学版),2002,34(5):559-563.
    [5] 李若瑜,王端礼.深入开展医学真菌临床科研工作[J].中华皮肤科杂志, 2002,35(5):331-333.
    [6] 李若瑜,李东明,余进,等.分子生物学技术在病原真菌鉴定和真菌感染诊断中的应用[J].北京大学学报(医学版)2004,36(5):536-539.
    [7] Verwerj PE, Figueroa J, Van BJ, et al. Clinical applications of non-culture based methods for the diagnosis and management of opportunistic and endemic mycoses[J]. Medical Mycology, 2000,38:161-171.
    [8] Reiss E, Obayashi T, Orle K, et al. Non-culture based diagnosis tests for mycotic infections[J]. Medical Mycology, 2000,38:147-159.
    [9] Gottfredsson M, Cox GM, Perfect JR. Molecular methods for epidemiological and diagnostic studies of fungal infections[J]. Pathology, 1998,30:405-418.
    [10] Hermoss MR, Grondons Ea, Iturriaga EA, et al. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied and Environmental Microbiology, 2000, 66:1890-1898
    [11] Ashburner M, Drosophila: A Laboratory Handbook [M]. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1989. Swanson CP. Cytogenetics and Karl Sax [J]. Genetics. 1988,119(1):5-7.
    [12] Swanson CP. Cytogenetics and Karl Sax [J]. Genetics. 1988,119(1):5-7.
    
    [13] Grodzicker T, Anderson C, Sharp PA, et al. Conditional lethal mutants of adenovirus 2-simian virus 40 hybrids. I. Host range mutants of Ad2+ND1 [J]. J Virol. 1974,13(6): 1237-44.
    [14] Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet. 1980,32(3):314-31.
    [15] Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes [J]. Proc Natl Acad Sci U S A. 1982,79(21 ):6465-9.
    
    [16] Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res. 1990,18(22):6531-5.
    [17] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Res. 1990,18(24):7213-8.
    [18] Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project [J]. Science. 1991,252(5013):1651-6.
    [19] Zabeau, M. and Vos, P. (1993) European Patent Application, publication no: EP 0534858.
    [20] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genomics. 1994,20(2): 176-83.
    [21] Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression [J]. Science. 1995,270(5235):484-7.
    [22] Taillon-Miller P, Gu Z, Li Q, et al. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms [J]. Genome Res. 1998,8(7):748-54.
    [23] Quiros CF, Grellet F, Sadowski J, Suzuki T, Li G, et al. Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI-Rps2-Ckl chromosomal segment and related regions [J]. Genetics. 2001,157(3):1321-30.
    
    [24] Hu J, Vick BA, et al. Target region amplification polymorphism: a novel marker technique for plant genetyping [J]. Plant Mol Biol Rep, 2003,21:289-294.
    
    [25] Dieffenbach CW, et al. PCR 技术实验指南[M]. 1998. Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res. 1990,18(22):6531-5.
    
    [26] Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res. 1990,18(22):6531-5.
    [27] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res. 1990,18(24):7213-8.
    
    [28] Boora KS, Frederiksen RA, Magill CW. A molecular marker that segregates with sorghum leaf blight resistance in one cross is maternally inherited in another[J]. Mol Gen Genet. 1999,261(2):317-22.
    [29] Wilks M,Tabaqchali S. Typing of Clostridium difficile by polymerase chain reaction with an arbitrary primer[J]. J Hosp Infect. 1994,28(3):231 -4.
    [30] Caetano-Anolles G, Bassam BJ, Gresshoff PM. Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides[J]. Mol Gen Genet. 1992,235(2-3): 157-65.
    [31] Rohwedel J, Weichenhan D, Meier C, et al. Different modes of hypervariability in (GATA)n simple sequence repeat loci[J]. Insect Mol Biol. 1993,2(1):49-58.
    [32] Bulat SA, Lubeck M, Alekhina IA, et al. Identification of a universally primed-PCR-derived sequence-characterized amplified region marker for an antagonistic strain of Clonostachys rosea and development of a strain-specific PCR detection assay[J]. Appl Environ Microbiol. 2000,66(11):4758-63.
    [33] Calderwood SB, Baker MA, Carroll PA, et al.Use of cleaved amplified polymorphic sequences to distinguish strains of Staphylococcus epidermidis[J]. J Clin Microbiol. 1996,34(11):2860-5.
    [34] Bhattacharya E, Dandin SB, Ranade SA. Single primer amplification reaction methods reveal exotic and indigenous mulberry varieties are similarly diverse[J]. J Biosci. 2005,30(5):669-77.
    [35] Burtscher MM, Kollner KE, Sommer R, et al. Development of a novel amplified fragment length polymorphism (AFLP) typing method for enterococci isolates from cattle faeces and evaluation of the single versus pooled faecal sampling approach[J]. J Microbiol Methods. 2006,67(2):281-93.
    [36] Schnell RJ, Olano CT, Kuhn DN. Detection of avocado sunblotch viroid variants using fluorescent single-strand conformation polymorphism analysis[J]. Electrophoresis. 2001,22(3):427-32.
    [37] Miyata I, Eto Y, Kamijo T, et al. Screening for mutations in the GH-1 gene by dideoxy fingerprinting (ddF) [J]. Endocr J. 1999,46 Suppl:S71-4.
    [38] Schmalzing D, Belenky A, Novotny MA, et al. Microchip electrophoresis: a method for high-speed SNP detection[J]. Nucleic Acids Res. 2000,28(9):E43 Nucleic Acids Res. 2000,28(9):E43.
    [39] Mehta PA, Sivaprakash K, Parani M, Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh[J]. Theor Appl Genet. 2005,110(3):416-24.
    
    [40] Wang L, Yokoyama K, Miyaji M, et al. The identification and phylogenetic relationship of pathogenic species of Aspergillus based on the mitochondrial cytochrome b gene[J]. Med Mycol. 1998,36(3): 153-64.
    [41] Wang L, Yokoyama K, Miyaji M, et al. Mitochondrial cytochrome b gene analysis of Aspergillus fumigatus and related species[J]. J Clin Microbiol. 2000,38(4):1352-8.
    [42] Watson JD, Gilman M, Witkowski J, et al. Mitochondrial DNA as a molecular clock. 1991, 446-447.
    [43] In J. D. Watson, M. Gilman, J. Witkowski, and M. Zoller(ed), Recombinant DNA. 2nd ed. W. H. Freeman & Co, New York, N. Y. Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochrome b gene of mammals[J]. J Mol Evol. 1991,32(2):128-44.
    [44] Knutsen AK, Torp M, Holst-Jensen A. et al. Phylogenetic analyses of the Fusarium poae, Fusarium sporotrichioides and Fusarium langsethiae species complex based on partial sequences of the translation elongation factor-1 alpha gene[J]. Int J Food Microbiol. 2004,95(3):287-95.
    [45] Tanabe Y, Saikawa M, Watanabe MM et al. Molecular phylogeny of Zygomyeota based on EF-la and RPB1 sequences: limitations and utility of alternative markers to rDNA. Molecular Phylogenetics and Evolution[J]. 2004,30:438-449.
    [46] 陈建中,戴剑,章镇,等.黄羽扁豆翻译延伸因子2的序列分析[J].中国农业科学,2002,35(1):102-105.
    [47] Lehmann PF, Lin D, Lasker BA. Genotypic identification and characterization of species and strains within the genus Candida by using random amplified polymorphic DNA[J]. J Clin Microbiol. 1992,30(12):3249-54.
    [48] 李冬梅,王端礼,李若瑜,等.随机扩增多态性对白念珠菌分型的估价[J].真菌学报,1995,14(2):123-129.
    [49] Bostock A, Khattak MN, Matthews R, et al. Comparison of PCR fingerprinting, by random amplification of polymorphic DNA, with other molecular typing methods for Candida albicans[J]. J Gen Microbiol. 1993, 139(9):2179-84.
    [50] Steffan P, Vazquez JA, Boikov D, et al. Identification of Candida species by randomly amplified polymorphic DNA fingerprinting of colony lysates[J]. J Clin Microbiol. 1997,35(8):2031-9.
    [51] Wawer C, Ruggeberg H, Meyer G, et al. A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments[J]. Nucleic Acids Res. 1995,11;23(23):4928-9.
    [52] Loudon KW, Burnie JP, Coke AP, et al. Application of polymerase chain reaction to fingerprinting Aspergillus fumigatus by random amplification of polymorphic DNA[J]. J Clin Microbiol. 1993,31(5): 1117-21.
    [53] Zimmerman RL, Montone KT, Fogt F, et al. Ultra fast identification of Aspergillus species in pulmonary cytology specimens by in situ hybridization[J]. Int J Mol Med. 2000,5(4):427-9.
    [54] Crowhurst RN, Hawthorne BT, Rikkerink EH, Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA[J]. Curt Genet. 1991,20(5):391-6.
    [55] Iram S,Ahmad I. Analysis of variation in Alternaria alternata by pathogenicity and RAPD study[J]. Pol J Microbiol. 2005,54(1): 13-9.
    [56] Meyer W, Mitchell TG, Freedman EZ, et al. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans[J]. J Clin Microbiol. 1993,31(9):2274-80.
    [57]冯义国,肖生祥,谭升顺等.应用AP-PCR进行真菌菌型鉴定的方法建立[J].中国皮肤性病学杂志,2000,14(3):157-158.
    [58] Li KN, Rouse DI, German TL. The generation of specific DNA primers using random amplified polymorphie DNA and its application to Verticillium dahliae [J]. Mycol. Res, 1999,103(11): 1361-1368.
    [59] Hermosa MR, Grondona I, Diaz-Minguez JM, et al. Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens [J]. Curr Genet. 2001,38(6):343-50.
    [60] 吴学谦,李海波,魏海龙,等.SCAR分子标记技术在香菇菌株鉴定上的应用研究[J].菌物学报,2005,24(2):259-266.
    [61] Scherer S, Stevens DA. Application of DNA typing methods to epidemiology and taxonomy of Candida species [J]. J Clin Microbiol. 1987,25(4):675-9.
    [62] Vazquez JA, Beckley A, Sobel JD, et al. Comparison of restriction enzyme analysis and pulsed-field gradient gel electrophoresis as typing systems for Candida albicans [J]. J Clin Microbiol. 1991,29(5):962-7.
    [63] Reagan DR, Pfaller MA, Hollis RJ, et al. Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe [J]. J Clin Microbiol. 1990,28(12):2733-8.
    [64] Kusaba M, Tsuge T. Nuclear Ribosomal DNA Variation and Pathogenic Specialization in Alternaria Fungi Known To Produce Host-Specific Toxins[J]. Appl Environ Microbiol. 1994,60(9):3055-3062.
    [65] Jasalavich CA, Ostrofsky A, Jellison J. Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA [J]. Appl Environ Microbiol. 2000,66(11):4725-34.
    [66] Castle A J, Horgen PA, Anderson JB. Restriction fragment length polymorphisms in the mushrooms Agaricus brunnescens and Agaricus bitorquis[J]. Appl Environ Microbiol. 1987,53(4):816-22.
    [67] Kerrigan RW, Royer JC, Baller LM, et al. Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus[J]. Genetics. 1993Feb; 133(2):225-36.
    [68] 刘学敏,赵骞,曲金玲,等.运用随机扩增多态性标记检测中国东北大豆灰斑病菌菌株遗传变异[J].植物病理学报,1998,28(1):43-48.
    [69] 廉翠红,金礼吉,刘晓明,等.申克孢子丝菌随机扩增DNA多态性研究[J].中华皮肤科杂志.2001,34(5):355-357.
    [70] Whisson SC, Drenth A, Maclean D J, et al. Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes[J]. Curr Genet. 1994,27(1):77-82.
    [71] Van der Lee T, De Witte I, Drenth A, et al. AFLP Linkage Map of the Oomycete Phytophthora infestans[J]. Fungal Genet Biol. 1997, 21(3):278-91.
    [72] Redecker D, Szaro TM, Bowman RJ, et al. Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions[J]. Mol Ecol. 2001,10(4): 1025-34.
    [73] Sonnenberg AS, de Groot PW, Schaap PJ, et al. Isolation of expressed sequence tags of Agaricus bisporus and their assignment to chromosomes[J]. Appl Environ Microbiol. 1996,62(12):4542-7.
    [74] Haynes KA,Westemeng TJ, Fell JW, et al. Rapid detection and identification of pathogenic fungi by polymerase chain reaction amplification of large subunit ribosomal DNA[J]. J Med Vet Mycol. 1995,33(5):319-25.
    [75] Maiwald M, Kappe R, Sonntag HG Rapid presumptive identification of medically relevant yeasts to the species level by polymerase chain reaction and restriction enzyme analysis[J]. J Med Vet Mycol. 1994,32(2): 115-22.
    [76] Kappe R, Fauser C, Okeke CN, et al. Universal fungus-specific primer systems and group-specific hybridization oligonucleotides for 18S rDNA [J]. Mycoses. 1996,39(1-2):25-30.
    [77] Willis CM, Stephens CJ, Wilkinson JD. Selective expression of immune-associated surface antigens by keratinocytes in irritant contact dermatitis [J]. J Invest Dermatol. 1991,96(4):505-11.
    [78] Makimura K, Murayama SY, Yamaguchi H. Specific detection of Aspergillus and Penicillium species from respiratory specimens by polymerase chain reaction(PCR) [J]. Jpn J Med Sci Biol. 1994, 47(3): 141-56.
    [79] Williams DW, Wilson MJ, Lewis MA, et al. Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA[J]. J Clin Microbiol. 1995,33(9):2476-9.
    [80] Van Burik JA, Myerson D, Schreckhise RW, et al. Panfungal PCR assay for detection of fungal infection in human blood specimens[J]. J Clin Microbiol. 1998,36(5):1169-75.
    [81] Hopfer RL, Walden P, Setterquist S, et al. Detection and differentiation of fungi in clinical specimens using polymerase chain reaction(PCR) amplification and restriction enzyme analysis[J]. J Med Vet Mycol. 1993;31(1):65-75.
    [82] Jackson CJ, Barton RC, Evans EG.et al. Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions[J]. J Clin Microbiol. 1999,37(4):931-6.
    [83] 陈建魁,牟兆钦,尹秀云,等.PCR-RFLP方法检测医学重要真菌的临床应用研究[J].军事医学科学院院刊,2002,26(3):206-208.
    [84] Botelho AR, Planta RJ. Specific identification of Candida albicans by hybridization with oligonucleotides derived from ribosomal DNA internal spacers[J]. Yeast. 1994,10(6):709-17.
    [85] Fujita S, Lasker BA, Lott TJ, et al. Microtitration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species in blood[J]. J Clin Microbiol. 1995,33(4):962-7.
    [86] Turenne CY, Sanche SE, Hoban DJ, et al. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system[J]. J Clin Microbiol. 1999,37(6): 1846-51.
    [87] Henry T, Iwen PC, Hinrichs SH. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2 [J]. J Clin Microbiol. 2000,38(4):1510-5.
    
    
    [88] Abliz P, Fukushima K, Takizawa K, et al. Specific oligonucleotide primers for identification of Hortaea werneckii, a causative agent of tinea nigra [J]. Diagn Microbiol Infect Dis. 2003,46(2):89-93.
    [89] Reiss E,Morrison CJ. Nonculture methods for diagnosis of disseminated candidiasis [J]. Clin Microbiol Rev. 1993,6(4):311-23.
    [90] Fan M, Chen LC, Ragan MA, et al. The 5S rRNA and the rRNA intergenic spacer of the two varieties of Cryptococcus neoformans [J]. J Med Vet Mycol. 1995,33(4):215-21.
    [91] Carlotti A, Chaib F, Couble A, et al. Rapid identification and fingerprinting of Candida krusei by PCR-based amplification of the species-specific repetitive polymorphic sequence CKRS-1 [J]. J Clin Microbiol. 1997,35(6): 1337-43.
    [92] Hong SG, Liu D, Pryor BM. Restriction mapping of the IGS region in Alternaria spp. reveals variable and conserved domains [J]. Mycol Res. 2005,109(Pt 1):87-95.
    [93] LoBuglio KF, Taylor JW. Phylogeny and PCR identification of the human pathogenic fungus Penicillium marneffei [J]. J Clin Microbiol. 1995, 33(1):85-9.
    [94] Radford SA, Johnson EM, Leeming JP, et al. Molecular epidemiological study of Aspergillus fumigatus in a bone marrow transplantation unit by PCR amplification of ribosomal intergenic spacer sequences[J]. J Clin Microbiol. 1998,36(5): 1294-9.
    [95] Biswas SK, Yokoyama K, Wang L, e t al .Typing of Candida albicans isolates by sequence analysis of the cytochrome b gene and differentiation from Candida stellatoidea[J]. J Clin Microbiol. 2001,39(4):1600-3.
    
    [96] Burgener-Kairuz P, Zuber JP, Jaunin P, et al. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment [J]. J Clin Microbiol. 1994,32(8): 1902-7.
    
    [97] Miyakawa Y, Mabuchi T. Characterization of a species-specific DNA fragment originating from the Candida albicans mitochondrial genome [J]. J Med Vet Mycol. 1994,32(1):71-5.
    
    [98] Ishizaki H, Kawasaki M, Mochizuki T, et al. [Environmental Isolates of Sporothrix schenckii in China] [J]. Nippon Ishinkin Gakkai Zasshi. 2002, 43(4):257-60.
    
    [99] Richard GF, Hennequin C, Thierry A, et al. Trinucleotide repeats and other microsatellites in yeasts [J]. Res Microbiol. 1999,150:589-602.
    
    [100]Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis [J]. Genome Res. 2000;10(7):967-981.
    
    [101]Bart-Delabesse E, Sarfati J, Debeaupuis JP. Comparison of restriction fragment length polymorphism, microsatellite length polymorphism, and random amplification of polymorphic DNA analyses for fingerprinting Aspergillus fumigatus isolates [J]. J Clin Microbiol. 2001,39(7):2683-2686.
    
    [102]Rosehart K, Richards M. H, Bidochka M.J. Microsatellite analysis of environmental and clinical isolates of the opportunistic fungal pathogen Aspergillus fumigatus [J]. J. Med. Microbiol. 2002,51:1128-1134.
    
    [103] Valdes A M, Slatkin M, Freimert N B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited [J]. Genetics. 1993,133:737-749.
    
    [104]Karaoglu H, Lee CM, Meyer W. Survey of simple sequence repeats in completed fungal genomes [J]. Mol Biol Evol. 2005,22(3):639-649.
    [105] Meyer W, Mitchell TG. Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans [J]. Electrophoresis. 1995,16(9): 1648-1656.
    [106] Passo C L, Pemice I, Gallo M, et al. Genetic relatedness and diversity of Cryptococcus neoformans strains in the Maltese Islands [J]. J. Clin. Microbiol. 1997,35:751-755.
    [107] 温海,廖万清,姚志荣.新生隐球菌随机扩增DNA指纹分型研究[J].中华皮肤科杂志.1998,31(5)295-297.
    [108] Groppe K, Boller T. PCR assay based on a microsatellite-containing locus for detection and quantification of Epichloe endophytes in grass tissue. Appl Environ Microbiol [J]. 1997,63(4):1543-1550.
    [109] Sandaltzopoulos R, Mitchelmore C, Bonte E,et al. Dual regulation of the Drosophila hsp26 promoter in vitro [J]. Nucleic Acids Res. 1995, 23(13):2479-2487.
    [110] Punt PJ, Dingemanse MA, Kuyvenhoven A. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase [J]. Gene, 1990,93(1): 101-109.
    [111] Chen Y, Roxby R. Identification of a functional CT-element in the Phytophthora infestans piyptl gene promoter [J]. Gene. 1997,198(1-2):159-164.
    [112] Young ET, Sloan JS, Van Riper K. Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae [J]. Genetics. 2000, 154(3):1053-1068.
    [113] Miret JJ, Pessoa-Brandao L, Lahue RS. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae [J]. Proc Natl Acad Sci U S A. 1998, 95(21): 12438-12443.
    [114]Bretagne S, Costa JM, Besmond C, et al. Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as the basis for a typing system [J]. J Clin Microbiol. 1997,35(7): 1777-1780.
    [115]Stephan F, Bah MS, Desterke C, et al. Molecular diversity and routes of colonization of Candida albicans in a surgical intensive care unit, as studied using microsatellite markers [J]. Clin Infect Dis. 2002,35(12):1477-1483.
    [116]Sampaio P, Gusmao L, Alves C, et al. Highly polymorphic microsatellite for identification of Candida albicans strains [J]. J Clin Microbiol. 2003, 41(2):552-557.
    [117]Foulet F, Nicolas N, Eloy O, et al. Microsatellite marker analysis as a typing system for Candida glabrata [J]. J Clin Microbiol. 2005,43(9):4574-4579.
    
    [118]Viscoli C, Girmenia C, Marinus A, et al. Candidemia in cancer patients: a prospective, multicenter surveillance study by the Invasive Fungal Infection Group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC) [J]. Clin Infect Dis. 1999,28(5): 1071-9.
    [119] Nielsen H, Stenderup J. Invasive Candida norvegensis infection in immunocompromised patients [J]. Scand J Infect Dis. 1996,28(3):311 -2.
    [120]Verduyn Lunel FM, Meis JF, Voss A. Nosocomial fungal infections: candidemia [J]. Diagn Microbiol Infect Dis. 1999 Jul;34(3):213-20.
    [121]Fridkin SK, Jarvis WR. Epidemiology of nosocomial fungal infections[J]. Clin Microbiol Rev. 1996,9(4):499-511.
    [122] Walsh TJ,Groll AH. Emerging fungal pathogens: evolving challenges to immunocompromised patients for the twenty-first century [J]. Transpl Infect Dis. 1999Dec;1(4):247-61.
    [123] Walsh TJ, Groll A, Hiemenz J, et al. Infections due to emerging and uncommon medically important fungal pathogens[J]. Clin Microbiol Infect. 2004Mar;10Suppl 1:48-66.
    [124] Christensson B, Sigmundsdottir G, Larsson L. D2arabinitol-a marker for invasive candidiasis[J]. Med Mycol, 1999,37:391-396.
    [125] Yeo SF, Zhang Y, Schafer D, et al. A rapid, automated enzymatic fluorometric assay for determination of D2arabinitol in serum[J]. J Clin Microbiol, 2000,38:1439-1443.
    [126] 王文君,任军,陈克飞,等.聚合酶链式反应技术的研究进展[J].江西农业大学学报,2000,22(4):599-604
    [127] 127杨国翠,李智涛,李振勇,等.多重 PCR-核酸探针杂交法同时检测沙眼衣原体、解脲脲原体和淋病奈瑟菌[J].临床检验杂志, 200220(4):21-23
    [128] Bu R, Sathiapalan RK, Ibrahim MM, et al. Monochrome Light Cycler PCR assay for detection and quantification of five common species of Candida and Aspergillus[J]. J Med Microbiol, 2005,54(3):243-248.
    [129] Esposto MC, Cogliati M, Tortorano AM, et al.Determination of Cryptococcus neoformans var. neoformans mating type by multiplex PCR[J]. Clin Microbiol Infect, 2004,10(12): 1092-1094.
    [130] 卢雪红,罗萍,崔英春,等.复合PCR检测老年人腹膜透出液中的金黄色葡萄球菌和白色念珠菌[J].中国老年学杂志,2003,23:586-587.
    [131] 牟兆钦,黄媛,陈建魁,等.复合PCR检测医学常见重要真菌的研究[J].中国人兽共患病杂志,2002,18(2):91-94.
    [132] Chryssanthou E, Andersson B, Petrini B, et al. Detection of Candida albicans DNA in serum by polymerase chain reaction. Scand J Infect Dis[J]. 1994, 26(4):479-85.
    [133] Burgener-Kairuz P, Zuber JP, Jaunin P, et al. Rapid detection and identification of Candida albicans and Torulopsis(Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase(L1A1) gene fragment[J]. J Clin Microbiol. 1994,32(8): 1902-7.
    [134] Holmes AR, Cannon RD, Shepherd MG, et al. Detection of Candida albicans and other yeasts in blood by PCR[J]. J Clin Microbiol. 1994,32(1 ):228-31.
    [135] Jordan JA. PCR identification of four medically important Candida species by using a single primer pair[J]. J Clin Microbiol. 1994,32(12):2962-7.
    [136] Kan VL. Polymerase chain reaction for the diagnosis of candidemia[J]. J Infect Dis. 1993,168(3):779-83.
    [137] Meyers JD. Fungal infections in bone marrow transplant patients[J]. Semin Oncol. 1990,17:10-3.
    [138]Sandhu GS, Kline BC, Stockman L, et al. Molecular probes for diagnosis of fungal infectionsfJ]. J Clin Microbiol. 1995,33(11):2913-9.
    [139]Iwen PC, Reed EC, Armitage JO, et al. Nosocomial invasive aspergillosis in lymphoma patients treated with bone marrow or peripheral stem cell transplants[J]. Infect Control Hosp Epidemiol. 1993,14(3):131-9.
    [140] Morrison VA, Haake RJ, Weisdorf DJ. Non-Candida fungal infections after bone marrow transplantation: risk factors and outcome[J]. Am J Med. 1994, 96(6):497-503.
    [141] Saugier-Veber P, Devergie A, Sulahian A, et al. Epidemiology and diagnosis of invasive pulmonary aspergillosis in bone marrow transplant patients: results of a 5 year retrospective study [J]. Bone Marrow Transplant. 1993, 12(2): 121-4.
    [142]Gamis AS, Gudnason T, Giebink GS, Disseminated infection with Fusarium in recipients of bone marrow transplants [J]. Rev Infect Dis. 1991, 13(6): 1077-88.
    [143]Bolwig GM, Bruder JT, Hearing P. Different binding site requirements for binding and activation for the bipartite enhancer factor EF-1A[J]. Nucleic Acids Res. 1992,20(24):6555-64.
    
    [144] Curie C, Axelos M, Bardet C, Modular organization and development activity of an Arabidopsis thaliana EF-1 alpha gene promoter[J]. Mol Gen Genet. 1993,238(3):428-36.
    [145] Morelli JK, Shewmaker CK, Vayda ME. Biphasic Stimulation of Translational Activity Correlates with Induction of Translation Elongation Factor 1 Subunit [alpha] upon Wounding in Potato Tubers[J]. Plant Physiol. 1994,106(3):897-903.
    [146] Berberich T, Sugawara K, Harada M, et al. Molecular cloning, characterization and expression of an elongation factor 1 alpha gene in maize[J]. Plant Mol Biol. 1995,29(3):611-5.
    [147] Wong KC, Ho BS, Egglestone SI, et al. Duplex PCR system for simultaneous detection of Neisseria gonorrhoeae and Chlamydia trachomatis in clinical specimens. J Clin Pathol. 1995,48(2): 101-4.
    [148] Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright 2001 by Wiley-Liss, Inc. 1672-1675 ISBNS :0-471-37972-7(Paper):0-471-22390-5(Electronic).
    [149] 杨水云,李续娥,吴明宇,等.正交实验法在PCR反应条件优化中的应用[J].生物数学报,2005,20(2):202-206.
    [150] 陈祥,张勇,李国红,等.山羊RAPD反应条件的研究[J].贵州农业科学,2004(4):11-13.
    [151] 郭纯孝.计算化学[M].北京:化学工业出版社,2004.
    [152] 田义轲,王彩虹,张继澍,等.苹果基因组RAPD反应体系影响因子的优化[J].莱阳农学院学报,2003,20(3):157-161.
    [153] 冯富娟,王凤友,刘彤.红松ISSR-PCR实验系统影响因素[J].植物学通报,2004,21(3):326-331.
    [154] Samson RA, Gams W. The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium. Antonie Van Leeuwenhoek.1984;50(5-6):815-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700