用户名: 密码: 验证码:
草坪遗传改良基因资源的发掘及草坪型高羊茅抗逆基因工程的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶片衰老是一个高度有序的调控过程,涉及到复杂的基因调控和多种生理生化特征的变化。我们以黑暗为选择因子,从经快中子诱变的拟南芥Columbia型M_2代种子中,筛选获得了耐受黑暗胁迫的突变体,将其中一株生长发育延迟而莲座叶早衰的突变体,命名为fnb45(fast neutron b45)。
     fnb45的突变造成了植株在形态、生长、发育等方面的变异,具有一因多效性。表型上,fnb45的子叶小而薄;莲座叶边缘为锯齿型,早期叶色灰绿,伴随着生长发育,叶片逐渐变为紫色,衰老死亡;植株顶端优势明显,结实率低,种子不饱满。另外,fnb45的发芽率较低(42.7%),萌发速率慢(8天左右);幼苗成活率仅30.1%;幼苗生长缓慢,20天左右才长出第一片真叶,营养生长期长,开花延迟(77天左右),植株寿限延长(4个月)。
     遗传分析表明,fnb45是核遗传、单基因隐性突变位点。利用图位克隆的方法,fnb45被定位于第3条染色体长臂的两个分子标记T16K5和F3A4-1之间约50Kb的区间内,是一个新的调控拟南芥叶片衰老的遗传位点。
     我们研究了fnb45对外源激素、糖源和活性氧的响应,发现其对外源IAA、ABA、高浓度糖(蔗糖、葡萄糖)和PQ较敏感。同时,fnb45的突变还造成了营养生长阶段,植株体内的游离IAA、ABA、可溶性糖和花青素含量的急剧增加,破坏了细胞内的氧化还原平衡,导致活性氧清除系统中的SOD和CAT的活性增强,诱导细胞进入凋亡。高温(29℃)可诱导fnb45下胚轴伸长,但与Col野生型之间无明显差异,表明fnb45对IAA的敏感性是自身基因突变诱导的间接反应。
     我们检测了衰老和氧化胁迫相关基因的表达,发现突变体中ACS4,GD的表达水平上调,GS基因的表达下降。
     我们推测,fnb45位于叶片衰老调控途径的上游,该突变导致下游众多信号转导途径被改变,造成植株发育延迟、叶片早衰。更直接的证据还有待于基因的克隆和进一步的分析。
Leaf senescence is a highly regulated progress that involves orderly,sequential changes in cellular physiology,biochemistry and gene expression.To screen stay-green mutants from mutagenized Arabidopsis seedlings(Col),mutants showing higher survivability under darkness stress were obtained.One of the mutants,which showed slow growth and premature rosette leaves,were named fnb45(fast neutron b 45).
     The mutant exhibited a pleiotropic phenotype,including small and thin cotyledons,slight opened hooks in etiolated seedlings,premature rosette leaves, increased apical dominance,decreased seeds.In addition,fnb45 showed delayed seed germination process(8 days) and reduced seed germination rate(42.7%),reduced plant stature,delayed flowering time(77 days) and prolonged lifespan of inflorescences(4 months).
     Genetic analysis showed the mutation was single recessive and mapped to the middle of chromosomeⅢ.Fine mapping results showed the mutation was located in a region of 50kb between T16K5 and F3A4-1,a novel locus involved in the regulation of leaf senescence in Arabidopsis.
     Compared with the wild type,fnb45 was hypersensitive to the exogenous IAA, ABA,high concentration of sugars and PQ.Also there were a 8-fold increase in free IAA level and an 4-fold increase in ABA level in the mutant.The increased endogenous level of IAA in fnb45 plants is probably indirectly affected by the FNB45 mutation.Sucrose metabolism and/or signal transduction were also found being altered,inducing increased levels of anthocyanin.And the activities of SOD and CAT in seedlings were higher than wild type.
     When checking the expression pattern of several senescence and oxidative stress related genes,we found that ACS4,GD,GS have apparent changes in expression.
引文
Bachem C, Hoeven R, de Bruijn S, et al., Visualisation of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development[J]. Plant J, 1996, 9, 745-753
    
    Binyamin L, Falah M, Portnoy V, et al., The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum[J]. Planta, 2001, 212, 591-597
    
    Blanc G, Barakat A, Guyot R, et al., Extensive duplication and reshuffling in the Arabidopsis genome[J]. Plant Cell, 2000, 12, 1093-1101
    
    Bleecker AB and Patterson SE. Last exit: senescence, abscission and meristem arrest in Arabidopsis[J]. Plant Cell, 1997, 1169-1179
    
    Borrell A, Hammer G and van Oosterom E. Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling[J]. Ann ApplBiol, 2001, 138, 91-95
    
    Boyes DC, Zayed AM, Ascenzi R, et al., Growth stage based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants[J]. Plant Cell, 2001, 13,1499-1510
    
    Buchanan-Wollaston V. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus[J]. Plant Physiol, 1994, 105, 839-846
    
    Buchanan-Wollaston V. The molecular biology of leaf senescence[J]. J Exp Bot, 1997, 48,181-199
    
    Buchanan-WoIIaston V and Ainsworth C. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation[J]. Plant Mol Biol, 1997, 33, 821-834.
    
    Butt A, Mousley C, Morris K, et al., Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae[J]. Plant J, 1998, 16, 209-221
    
    Chandlee JM. Current molecular understanding of the genetically programmed process of leaf senescence[J]. Physiologia Plantarum, 2001, 113, 1-8
    
    Chen LFO, Hwang JY, Charng YY, et al., Transformation of broccoli (Brassica oleracea var italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest retardation[J]. Mol Breed, 2001, 7, 243-257
    
    Chen W, Provart N, Glazebrook J, et al., Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J].Plant Cell, 2002, 14, 559-574
    
    Chung BC, Lee SY, Oh SA, et al., The promoter activity of sen1, a senescence associated gene of Arabidopsis is repressed by sugars[J]. J Plant Physiol, 1997, 151, 339-345
    Clough SJ and Bent AF. Floral dip: a simplified method for Agrobacterium-medicted transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16, 152-156
    
    Dai N, Schaffer A, Petreikiov M, et al., Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence[J]. Plant Cell, 1999,11, 1253-1266
    
    Davies KM and Grierson D. Identification of cDNA clones for tomato (Lycopersicon esculentum mill) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene[J]. Planta, 1989, 179, 73-80
    
    del Rio L, Pastori GM, Palma JM, et al., The activated oxygen role of peroxisomes in senescence[J]. Plant Physiol, 1998, 116, 1195-1200
    
    Delorme VGR, McCabe PF, Kim DJ and Leaver CJ. A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber[J]. Plant Physiol, 2000, 123, 917-927
    
    Drake R, John I, Farrell A, et al., Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence[J]. Plant Mol Biol, 1996, 30, 755-767
    
    Drew MC, He CJ and Morgan, PW. Programmed cell death and aerenchyma formation in roots[J]. Trends Plant Sci, 2000, 5, 123-127
    
    Finnemann J and Schjoerring JK. Post-translocational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction[J]. Plant J, 2000, 24,171-181
    
    Fujiki Y, Sato T, Ito M and Watanabe A. Isolation and characterisation of cDNAclones fror the Elb and E2 subunits of the branched-chain a-ketoacid dehydrogenase complex in Arabidopsis[J].J Biol Chem, 2000, 275, 6007-6013
    
    Fujiki Y, Yoshikawa Y, Sato T, et al., Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars[J]. Physiologia Plantarum, 2001, 111,345-352
    
    Fukuda H. Xylogenesis: initiation, progression, and cell death[J]. Annu Rev PI Physiol Plant Mol Biol, 1996, 47, 299-325
    
    Gan S and Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin[J]. Science, 1995, 270, 1966-1967
    
    Gan S and Amasino RM. Making sense of senescence[J]. Plant Physiol, 1997, 113, 313-319
    
    Godiard L, Sauviac L, Dalbin N, et al., CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death[J]. FEBS Lett, 1998, 438,245-249
    Graham IA and Eastmond PJ. Pathways of straight and branched chain fatty acid catabolism in higher plants[J]. Prog Lipid Res, 2002, 41, 156-181
    
    Graham IA, Leaver CJ and Smith SM. Induction of malate synthase gene expression in senescent and detached organs of cucumber[J]. Plant Cell, 1992, 4, 349-357
    
    Grbic V and Bleecker AB. Ethylene regulates the timing of leaf senescence in Arabidopsis[J].Plant J, 1995, 8, 595-602
    
    Guiamet JJ and Giannibelli MC. Nuclear and cytoplasmic 'stay-green' mutations of soybean alter the loss of leaf soluble proteins during senescence[J]. Physiol Plant, 1996, 96, 655-661
    
    Guiamet JJ, Schwartz E, Pichersky E and Nooden LD. Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean[J]. Plant Phys, 1991, 96, 227-231
    
    Hajouj T, Michelis R and Gepstein S. Cloning and characterization of a receptor-like protein kinase gene associated with senescence[J]. Plant Phyisol, 2000, 124, 1305-1314
    
    Hanfrey C, Fife M and Buchanan-Wollaston V. Leaf Senescence in Brassica napus:expression of genes encoding pathogenesisrelated proteins[J]. Plant Mol Biol, 1996, 30, 597-609
    
    He Y and Gan S. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis[J]. Plant Cell, 2002, 14, 805-815
    
    He Y, Fukushige H, Hildebrande DF and Gan S. Evidence supporting a role for jasmonic acid in Arabidopsis leaf senescence[J]. Plant Phys, 2002, 128, 876-884
    
    He Y, Tang W, Swain JD, et al.. Networking senescence-regulating pathways by using Arabidopsis enhanced trap lines[J]. Plant Physiol, 2001, 126, 707-716
    
    Hensel LL, Grbic V, Baumgarten DA and Bleecker AB. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis[J].Plant Cell, 1993, 5, 553-564
    
    Henzi MX, Christey MC and McNeil DL. Morphological characterisation and agronomic evaluation of transgenic broccoli (Brassica oleracea L var italica) containing an antisense ACC oxidase gene[J]. Euphytica, 2000, 113, 9-18
    
    Himelblau E and Amasino RM. Delivering copper within plant cells[J]. Curr Opin Plant Biol, 2000, 3, 205-210
    
    Himelblau E and Amasino RM. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence[J]. J Plant Physiol, 2001, 158, 1317-1323
    
    Hinder B, Schellenberg M, Rodoni S, et al., How plants dispose of chlorophyll catabolites Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles[J]. J Biol Chem, 1996, 271, 27233-27236
    Hinderhofer K and Zentgraf U. Identification of a transcription factor specifically expressed at the onset of leaf senescence[J]. Planta, 2001, 213, 469-473
    
    Hong Y, Wang TW, Hudak KA, et al., An ethylene-induced cDNA encoding a lipase expressed at the onset of senescence[J]. Proc Natl Acad Sci USA, 2000, 97, 8717-8722
    
    Hortensteiner S and Feller U. Nitrogen metabolism and remobilization during senescence[J]. JExpBot, 2002, 53, 927-937
    
    Hortensteiner S, Wuthrich KL, Matile P, et al., The key step in chlorophyll breakdown in higher plants Cleavage of pheophorbide a macrocycle by a monooxygenase[J]. J Biol Chem,1998, 271, 15335-15339
    
    Huber DJ. Postharvest senescence: An introduction to the symposium[J]. Hortscience, 1987,22, 853-859
    
    Ishida H, Anzawa D, Kokubun N, et al., Direct evidence for non-enzymatic fragmentation of chloroplastic glutamine synthetase by a reactive oxygen species[J]. Plant Cell Environ, 2002, 25,625-631
    
    Ishida H , Makino A and Mae T. Fragmentation of the large subunit of ribulose-l,5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329[J]. J Biol Chem, 1999, 274, 5222-5226
    
    John CF, Morris K, Jordan BR, et al., Ultraviolet-B exposure leads to upregulation of senescenceassociated genes in Arabidopsis thaliana[J]. J ExpBot, 2001, 52, 1367-1373
    
    Jones AM. Programme cell death in development and defense[J]. Plant Physiol, 2001, 125,94-97
    
    Jordi W, Schapendonk A, Davelaar E, et al., Increased cytokinin levels in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence,photosynthesis and N partitioning[J]. Plant Cell Environ, 2000, 23, 279-289
    
    Kamachi K, Yamaya T, Hayakawa T, et al., Changes in cytosolic glutamine synthetase polypeptide and its mRNA in a leaf blade of rice plants during natural senescence[J]. Plant Physiol, 1992, 98, 1323-1329
    
    Karima M, Inze D and Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation[J]. Trends Plant Sci, 2002, 7, 193-195
    
    King GA, Woollard DC, Irving DE and Borst WM. Physiological changes in asparagus tips after harvest[J]. Physiol Plant, 1990, 80, 393-400
    
    Kleber-Janke T and Krupinska K. Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions[J]. Planta, 1997, 203, 332-340
    Kohler C,Merkle T,Roby D and Neuhaus,G.Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programme cell death[J].Planta,2001,213,327-332
    Lee RH and Chen SCG.Programme cell death during rice leaf senescence is noapoptotic[J].New Phytologist,2002,155,25-32
    Liljegren SJ,Ditta GS,Eshed HY,et al.,SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J].Nature,2000,404,766-770
    Lohman KN,Gan S,John MC,and Amasino RM.Molecular analysis of natural leaf senescence in Arabidopsis thaliana[J].Physiol Plant,1994,92,322-328
    Mach JM,Castillo A,Hoogstraten R and Greenberg JT.The Arabidopsis accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms[J].Proc Natl Acad Sci,USA,2001,98,771-776
    Majeran W,Wollmann FA and Vallon O.Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b6f complex[J].Plant Cell,2000,12,137-149
    Masferrer A,Arto M,Manzano D,et al,Overexpression of Arabidopsis thaliana farnesyl diphosphate synthases(FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels[J].Plant J,2002,30,123-132
    Matile P,H(o|¨)rtensteiner S and Thomas H.Chlorophyll Degradation[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50,67-95
    McCabe MS,Garratt LC,Schepers F,et al,Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce[J].Plant Physio,2001,127,505-516
    McLaughlin JC and Smith SM.Metabolic regulation of glyoxylate-cycle enzyme synthesis in detached cucumber cotyledons and protoplasts[J].Planta,1994,195,22-28
    Miller JD,Arteca RN and Pell EJ.Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis[J].Plant Physiol,1999,120,1015-1023
    Mira H,Martinez N and Penarrubia L.Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper,senescence and ozone[J].Planta,2002,214,939-946
    Morel J and Dangl J.The hypersensitive response and the induction of cell death in plants[J].Cell Death Differ,1997,4,671-683
    Morris K A-H,Mackerness S,Page T,et al,Salicylic acid has a role in regulating gene expression during leaf senescence[J].Plant J,2000,23,677-685
    Nakabayashi K,Ito M,Kiyosue T,et al.,Identification of clp genes expressed in senescing Arabidopsis leaves[J].Plant Cell Physio,1999,40,504-514
    Nam HG.The molecular genetic analysis of leaf senescence[J].Curr Opin Biotechnol,1997,8, 200-207
    Noh YS and Amasino R.Identification of a promoter region responsible for the senescence-specific expression of SAG12[J].Plant Mol Biol,1999,41,181-194
    Nooden LD.The phenomena of senescence and aging[M].In:Senescence and Aging in Plants (Nooden LD and Leopold AC,eds),San Diego:Academic Press,1988,1-50
    Nooden LD,Guiamet JJ and John I.Senescence mechanisms[J].Physiol Plant,1997,101,746-753
    Nooden LD and Penney JP.Correlative controls of senescence and plant death in Arabidopsis thaliana(Brassicaceae)[J].J Exp Bot,2001,52,2151-2159
    Obregon P,Martin R,Sanz A and Catresana C.Activation of defence-related genes during senescence:a correlation between gene expression and cellular damage[J].Plant Mol Biol,2001,46,67-77
    Oh SA,Park JH,Lee GI,et al.,Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana[J].Plant J,1997,12,527-535
    Ono K,Nishi Y,Watanabe A and Terashima,I.Possible mechanisms of adaptive leaf senescence[J].Plant Biol,2001,3,234-243
    Ori N,Juarez MT,Jackson D,et al.,Leaf senescence is delayed in tobacco plants expressing the maize homobox gene knotted1 under the control of a senescence-activated promoter[J].Plant Cell,1999,11,1073-1080
    Page T,Griffiths G and Buchanan-Wollaston V.Molecular and biochemical characterisation of post harvest senescence in broccoli[J].Plant Physiol,2001,125,718-727
    Park JH,Oh SA,KJm YH,et al.,Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis[J].Plant Mol Biol,1998,37,445-454
    Parthier B.Jasmonates:hormonal regulators or stress factors in leaf senescence[J].J Plant Growth Regul,1990,9,445-454
    Paterson AH,Lan TH,Amasino R,et al.,Brassica genomics:a complement to,and early beneficiary of,the Arabidopsis sequence[J].Genome Biol,2001,2,10111-10113Perez-Amador MA,Abler ML,de Rocher EJ,et al.,Identification of BFN1,a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis[J].Plant Physiol,2000,122,169-180
    Pic E,de la Serve BT,Tardieu F and Turc O.Leaf senescence induced by mild water deficit follows the same sequence of macroscopic,biochemical,and molecular events as monocarpic senescence in pea[J].Plant Physiol,2002,128,236-246
    Picton S,Barton SL,Bouzayen M,et al.,Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene[J].Plant J,1993,3,469-481
    Pogson BJ,Downs CG and Davies KM.Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest[J].Plant Physiol,1995,108,651-657
    Portlier D,Gan S,Amasino RM,Roby D,et al.,Markers for hypersensitive response and senescence show distinct patterns of expression[J].Plant Mol Biol,1999,39,1243-1255
    Quirino BF,Noh YS,Himbelblau E and Amasino RM.Molecular aspects of leaf senescence[J].Trends Plant Sci,2000,5,278-282
    Quirino BF,Normanly J and Amasino RM.Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes[J].Plant Mol Biol,1999,40,267-278
    Quirino BF,Reiter WD and Amasino RD.One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated[J].Plant Mol Biol,2001,46,447-457
    Rao MV and Davis KR.The physiology of ozone induced cell death[J].Planta,2001,213,682-690
    Robatzek S and Somissich IE.A new member of the Arabidopsis WRKY transcription factor family,At WRKY6,is associated with both senescence-and defence-related processes[J].Plant J,2001,28,123-133
    Robatzek S and Somssich IE.Targets of At WRKY6 regulation during plant senescence and pathogen defense[J].Genes Dev,2002,16,1139-1149
    Rolland F,Moore B and Sheen J.Sugar sensing and signalling in plants[J].Plant Cell Suppl,2002,14,S185-S205
    Roulin S and Feller U.Light-independent degradation of stromal proteins in intact chloroplasts isolated from Pisum sativum L leaves:requirement for divalent cations[J].Planta,1998,205,297-304
    Ryu SB and Wang X.Expression of phospholipase D during castor bean leaf senescence[J].Plant Physiol,1995,108,713-719
    Sakurai N,Hayakawa T,Nakamura T and Yamaya T.Changes in the cellular localization of cytosolic glutamine synthetase protein in vascular bundles of rice leaves at various stages of development[J].Planta,1996,200,306-311
    Shaniklin J,Dewitt ND and Flanagan JM.The stroma of higher plant plastids contain ClpP and ClpC,functional homologs of Escherichia coli ClpP and ClpA:an archetypal two-component ATP-dependent protease[J]. Plant Cell, 1995, 7, 1713-1722
    
    Shikanai T, Shimizu K, Ueda K, et al., The chloroplast clpP gene, encoding for a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco[J].Plant Cell Physiol, 2001, 42, 264-273
    
    Smart CM. Gene expression during leaf senescence[J]. New Phytol, 1994, 126, 419-448
    
    Smart CM, Hosken SE, Thomas H, et al., The timing of maize leaf senescence and characterisation of senescence-related cDNAs[J]. Physiologia Plantarum, 1995, 93, 673-682
    
    Stessman D, Miller A, Spalding M and Rodermel S. Regulation of photosynthesis during Arabidopsis leaf development in continuous light[J]. Photosynthesis Res, 2002, 72, 27-37
    
    Stintzi A and Browse J. The Arabidopsis male sterile mutant opr3, lacks 12-oxophytodienoic acid reductase required for jasmonate synthesis[J]. Proc Natl Acad Sci USA, 2000, 97, 10625-10630
    
    Surplus SL, Jordan BR, Murphy AM, et al., Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins[J]. Plant Cell Environ, 1998,21, 685-694
    
    Takamiya KI, Tsuchiya T and Ohta H. Degradation pathway( s) of chlorophyll: what has gene cloning revealed[J]. Trends Plant Sci, 2000, 10, 426-431
    
    Taylor CB, Bariola PA, Delcardayre SB, et al., RNS2 - a senescence-associated RNAse of Arabidopsis that diverged from the sRNAses before speciation[J]. Proc Natl Acad Sci USA,1993, 90, 5118-5122
    
    Thomas H. Sid a Mendelian locus controlling thylakoid disassembly in senescing leaves of Festuca pratensis[J]. TheorAppl Gen, 1987, 73, 551-555
    
    Thomas H and Donnison I. Back from the brink: plant senescence and its reversibility[M]. In:Programmed Cell Death in Animals and Plants (Bryant, J A, Hughes, S G and Garland, J M,eds), Oxford: Bios, 2000, 149-162
    
    Thomas H and Howarth CJ. Five ways to stay green[J]. J Exp Bot, 2000, 5, 329-337
    
    Thomas H and Stoddart J. Leaf Senescence[J]. Annu Rev Plant Physiol, 1980, 31, 83-111
    
    Thomas H, Ougham HJ and Davies TGE. Leaf senescence in a nonyellowing mutant of Festuca-pratensis - transcripts and translation products[J]. J Plant Physiol, 1992, 139, 403-412
    
    Thomas H, Schellenberg M, Vicentini F and Matile P. Gregor Mendel's green and yellow pea seeds[J]. BotActa, 1996, 109, 3-4
    
    Thompson J, Taylor C and Wang TW. Altered membrane lipase expression delays leaf senescence[J]. Biochem Soc Trans, 2000, 28, 775-777
    Thompson JE, Froese CD, Madey E, et al., Lipid metabolism during plant senescence[J].Prog Lipid Res, 1998, 37, 119-141
    
    Tommasini R, Vogt E, Fromenteau M, et al., An ABC transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity[J]. Plant J, 1998, 13,773-780
    
    Tsuchiya T, Ohta H, Okawa K, et al., Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate[J].Proc Nad Acad Sci USA, 1999, 96, 15362-15367
    
    Turner JG, Ellis C and Devoto A. The Jasmonate signal pathway[J]. Plant Cell Suppl, 2002,14, S153-S164
    
    Vicentini F, Hortensteiner S, Schellenberg M, et al., Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a staygreen genotype of Festuca pratensis Huds[J]. New phytologist, 1995, 129, 247-252
    
    Vision TJ, Brown DG and Tanksley SD. The origins of genome duplication in Arabidopsis[J].Science, 2000, 290, 2114-2117
    
    Wang KLC, Li H and Ecker JR. Ethylene biosynthesis and signaling networks[J]. Plant Cell Suppl, 2002, 14, S131-S151
    
    Wang TW, Lu L, Wang D and Thompson JE. Isolation and characterisation of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato[J]. J Biol Chem, 2001, 276, 17541-17549
    
    Weaver LM, Gan S, Quirino B and Amasino RM. A comparison of the expression patterns of several senescenceassociated genes in response to stress and hormone treatment[J]. Plant Mol Biol, 1998, 37, 455-469
    
    Wesley SV, Helkliwell CA, Smith NA, et al., Construct design for efficient, effective and high-throughput gene silencing in plants[J]. Plant J, 2001, 27, 581-590
    
    Wingler A, van Schawen A, Leegood RC, et al., Regulation of leaf senescence by cytokinin,sugars, and light[J]. Plant Physiol, 1998, 116, 329-335
    
    Woo HR, Chung KM, Park JH, et al., ORE9, an F-box protein that regulates leaf senescence in Arabidopsis[J]. Plant Cell, 2001, 13, 1779-1790
    
    Xiao W, Sheen J and Jang JC. The role of hexokinase in plant sugar signal transduction and growth and development[J]. Plant Mol Biol, 2000, 44, 451-461
    
    Xie, DX, Feys, BF, James S, et al., COI1: an Arabidopsis gene required for jasmonateregulated defense and fertility[J]. Science, 1998, 280, 1091-1094
    
    Yamada K, Matsushima R, Nishimura M and Hara-Nishimura I. A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves[J].Plant Physiol,2001,127,1626-1634
    Yang SH,Berberich T,Sano H and Kusano T.Specific association of transcripts of tbzF and tbz17,tobacco genes encoding basic region leucine zipper-type transcriptional activators,with guard cells of senescing leaves and/or flowers[J].Plant Physiol,2001,127,23-32
    Yang T and Poovaiah BW.An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death[J].J Biol Chem,2000,275,38467-38473
    Ye Z,Rodriguez R,Tran A,et al.,The developmental transition to flowering repressed ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana[J].Plant Sci,2000,158,115-127
    Yoshida S,Ito M,Nishida I and Watanabe,A.Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana[J].Plant Cell Physiol,2001,42,170-178
    Yoshida S,Ito M,Nishida I and Watanabe,A.Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsisthaliana[J].Plant J,2002,29,427-437
    Zavaleta-Mancera HA,Thomas BJ,Thomas H and Scott IM.Regreening of senescent Nicotiana leaves Ⅱ Redifferentiation of plastids[J].J Exp Bot,1999,50,1683-1689
    Zhang J,can Toai T,Huynh L and Priszner J.Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production[J].Mol Breed,2000,6,135-144
    Zhou JM,Trifa Y,Silva H,et al.,NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid[J].Mol Plant-Microbe Interact,2000,13,191-202
    Zhu T and Wang X.(2000) Large-scale profiling of the Arabidopsis transcriptome[J].Plant Physiol,2000,124,1472-1476
    Zubko E,Adams,CJ,Machaekova I,et al.,Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants[J].Plant J,2002,29,797-808 in Mesembry anthemum crystallinum [J]. Plant J, 2000, 24: 511-522
    
    Chen S. Guo B, He S, et al,. Cloning and characterization of the Na~+/H~+-antiport genes from Triticum aestivum [J]. ActaBot Sin, 2002, 44: 1203-1208
    
    Cheng NH, Pittman JK, Zhu JK, Hirschi KD. The protein kinase SOS2 activates the Arabidopsis H~+/Ca~(2+) antiporter CAX1 to integrate calcium transport and salt tolerance [J]. J BiolChem, 2004, 279: 2922-2926
    
    Chinnusamy V, Ohta M, Kanrar S, et al,. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J]. Genes Dev, 2003, 17: 1043-1054
    
    Cho M J, Ha C D, Lemaux P G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues [J]. Plant Cell Rep,2000, 19 : 1084-1089
    
    Cho M J, Jiang W, Lemaux P G. Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism [J]. Plant Sci, 1998, 138: 229-244
    
    Cho M Jt Jiang W, Lemaux P G. High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures [J]. Plant Sci, 1999, 148: 9-17
    
    Choi DW, Rodriguez EM, Close TJ. Barley CbO gene identification, expression pattern, and map location [J]. Plant Physiol, 2002, 129: 1781-1787
    
    Conger B V, Carabia J V, Lowe K W. Comparison of 2, 4-D and 2, 4, 5-T on callus induction and growth in three Gramineae species [J]. Environ Exp Bot, 1978, 18: 163-168
    
    Dahleen L S, Eizenga G C. Meiotic and isozymic characterization of plants regenerated from euploid and selfed monosomic tall fescue embryos [J]. Theor Appl Genet, 1990, 79: 39-44
    
    Dale P J. Meristem tip culture in Lolium, Festuca, Phleum, and Dactylis [J]. Plant Sci, 1977,9 : 333-338
    
    Dale P J, Dalton S J. Immature inflorescence culture in Lolium, Festuca, Phloem, and Dactylis [J]. ZPflanzenphysiol, 1983, 111: 39-45
    
    Dalton S J. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb.,Lolium perenne L. and L. multiflorum LAM [J]. Plant Cell Tiss Org, 1988a, 12 : 137-140
    
    Dalton S J. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb.(tall fescue) and Lolium perenne L. (perennial ryegrass) [J]. J Plant Physiol, 1988b, 132 :170-175
    
    Dalton S J, Bettany A J E, Timms E, Morris P. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue ( Festuca arundinacea Schreb.) [J]. Plant Sci, 1995, 108 : 63-70
    
    Dalton S J, Bettany A J E, Timms E, Morris P. Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures [J]. Plant Sci, 1998, 132: 31-43
    
    Dubouzet JG, Sakuma Y, Ito Y, et al,. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression [J]. Plant J, 2003, 33: 751-763
    
    Eizenga G C. Cytogenetic and isozymic characterization of anther-panicle culture derived tall fescue aneuploids [J]. Euphytica, 1987, 36: 175-179
    
    Eizenga G C, Dahleen L S. Callus production, regeneration and evalution of plants from cultured inflorescence of tall fescue ( Festuca arundinacea Schreb.) [J]. Plant Cell Tiss Org,1990, 22 : 7-15
    
    Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings[J].Plant Cell , 2002, 14(suppl.): S15-S45
    
    Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor[J]. Plant Cell , 2000, 12: 599-609
    
    Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14: 1675-1690
    
    Francia E, Rizza F, Cattivelli L, et al,. Two loci on chromosome 5H determine low-temperature tolerance in a 'Nure' (winter) x 'Tremois' (spring) barley map[J]. Theor Appl Genet, 2004, 108:670-680
    
    Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na1/H1 exchanger gene in Oryza sativa[J]. Biochim Biophys Acta, 1999, 1446: 149-155
    
    Gao MJ, Allard G, Byass L, et al,. Regulation and characterization of four CBF transcription factors from Brassica napus[J]. Plant Mol Biol, 2002, 49: 459-471
    
    Gaxiola RA, Li J, Undurraga S, et al,. Drought- and salt-tolerant plants result from overexpression of the AVP1 H1-pump[J]. Proc Natl Acad Sci USA, 2001, 98: 11444-11449
    
    Gaxiola RA, Rao R, Sherman A, et al,. The Arabidopsis thaliana proton transporters, AtNhxl and Avp1, can function in cation detoxification in yeast[J]. Proc Natl Acad Sci USA, 1999, 96:1480-1485
    
    Gilmour SJ, Sebolt AM, Salazar MP, et al,. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J].Plant Physiol, 2000, 124: 1854-1865
    
    Gilmour SJ, Zarka DG, Stockinger EJ, et al,. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in coldinduced COR gene expression[J]. Plant J, 1998, 16: 433-442
    
    Ha S B, Wu F S, Thome T K. Transgenic turf-type tall fescue ( Festuca arundinacea Schreb.) plants regenerated from protoplasts[J]. Plant Cell Rep, 1992, 11 : 601-604
    
    Haake V, Cook D, Riechmann JL, et al,. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002, 130: 639-648
    
    Hamada A, Shono M, Xia T, et al,. Isolation and characterization of a Na1/H1 antiporter gene from the halophyte Atriplex gmelini[J]. Plant Mol Biol, 2001, 46: 35-42
    
    Himmelbach A, Hoffmann T, Leube M, et al,. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis[J]. EMBO J, 2002,21: 3029-3038
    
    Himmelbach A, Yang Y, Grill E. Relay and control of abscisic acid signaling[J]. Curr Opin Plant Biol, 2003, 6: 470-479
    
    HsiehTH, Lee JT, Charng YY. Chan MT. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J]. Plant Physiol, 2002b, 130: 618-626
    
    Hsieh TH , Lee JT , Yang PT , et al,. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J]. Plant Physiol, 2002a, 129: 1086-1094
    
    Jaglo KR, Kleff S, Amundsen KL, et al,. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiol, 2001, 127: 910-917
    
    Jaglo-Ottosen KR, Gilmour SJ. Zarka DG, et al,. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 1998, 280: 104-106
    
    Johannesson H, Wang Y, Hanson J, Engstrom P. The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings[J]. Plant Mol Biol, 2003, 51: 719-729
    
    Kagaya Y, Ohmiya K, Hattori T. RAVI, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Res, 1999, 27: 470-478
    
    Kang JY, Choi HI, Im MY, Kim SY. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J]. Plant Cell, 2002, 14: 343-357
    
    Kasperbauer M J, Buckner R C, Bush L P. Tissue culture of annual ryegrass x tall fescue F1 hybrids: callus establishment and plant regeneration[J]. Crop Sci, 1979, 19: 457-460
    
    Kasperbauer M J, Buckner R C, Springer W D. Haploid plants by anther-panicle culture of tall fescue[J]. CropSci, 1980, 20 : 103-107
    Kasuga M, Liu Q, Miura S, et al,. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol, 1999, 17: 287-291
    
    Kaul K. Potential biotechnological approaches[J]. In: Kasperbauer M J ed[J]. Biotechnology in Tall Fescue Improvement[J]. Boca Raton FL: CRC Press, 13-23
    
    Kim JC, Lee SH, Cheong YH, et al,. A novel cold-inducible zinc finger protein from soybean,SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant J, 2001, 25: 247-259
    
    Knight H, Veale EL, Warren GJ, Knight MR The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif[J]. Plant Cell,1999, 11: 875-886
    
    Kuai B K, Dalton S J, Bettany A J E, Morris P. Regeneration of fertile transgenic tall fescue plants with a stable highly expressed foreign gene[J]. Plant Cell Tiss Org, 1999, 58 : 149-154
    
    Kuai B K, Morris P. The physiological state of suspension cultured cells affects the expression of the B-glucuronidase gene following transformation of tall fescue (Festuca arundinacea) protoplasts[J]. Plant Sci, 1995, 110: 235-247
    
    Kuai B Kt Morris P. Screening for stable transformants and stability of B-glucuronidase gene expression in suspension cultured cells of tall fescue (Festuca arundinacea)[J]. Plant Cell Rep,1996, 15 : 804-808
    
    Kuhn JM, Schroeder JI. Impacts of altered RNA metabolism on abscisic acid signaling[J]. Curr Opin Plant Biol, 2003, 6: 463-469
    
    Laurie S, Feeney KA, Maathuis FJ, et al,. A role for HKTl in sodium uptake by wheat roots[J].Plant J, 2002, 32: 139-149
    
    Lee H, Guo Y, Ohta M, et al,. LOS2, a genetic locus required for cold-responsive gene transcription encodesa bi-functional enolase[J]. EMBO J, 2002, 21: 2692-2702
    
    Lee H, Xiong L, Gong Z, et al,. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleocytoplasmic partitioning[J]. Genes Dev, 2001, 15: 912-924
    
    Lee JT, Prasad V, Yang PT, et al,. Expression of Arabidopsis CBF1 regulated by an ABA/stress promoter in transgenic tomato confers stress tolerance without affecting yield[J]. Plant Cell Environ, 2003, 26: 1181-1190
    
    Liu J, Ishitani M, Halfter U, et al,. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. ProcNatl Acad Sci USA, 2000, 97: 3730-3734
    
    Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998,280: 1943-1945
    
    Liu Q, Kasuga M, Sakuma Y, et al,. Two transcription factors, DREB1 and DREB2, with an
    EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell,1998, 10: 1391-1406
    
    Lopez-Molina L, Mongrand S, Chua NH. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis[J]. Proc Natl Acad Sci USA, 2001, 98: 4782-4787
    
    Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation[J]. Genes Dev, 2003, 17: 410-418
    
    Lopez-Molina L, Mongrand S, McLachlin DT, et al,. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. Plant J, 2002, 32: 317-328
    
    Lowe K W, Conger B V. Root and shoot formation from callus cultures of tall fescue[J]. Crop Sci, 1979, 19: 397-400
    
    Maser P, Eckelman B, Vaidyanathan R, et al,. Altered shoot/root Nal distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Nal transporter AtHKT1[J].FEBS Lett, 2002, 531: 157-161
    
    Meissner R, Michael AJ. Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs[J]. Plant Mol Biol, 1997, 33:615-624
    
    Nakamura S, Lynch TJ, Finkelstein RR. Physical interactions between ABA response loci of Arabidopsis[J]. Plant J, 2001, 26: 627-635
    
    Nakashima K, Shinwari ZK, Sakuma Y, et al,. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression[J]. Plant Mol Biol, 2000, 42: 657-665
    
    Narusaka Y, Nakashima K, Shinwari ZK, et al,. Interaction between two cis-acting elements,ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses[J]. Plant J, 2003, 34: 137-148
    
    Ohta M, Hayashi Y, Nakashima A, et al,. Introduction of a Na1/H1 antiporter gene from Atriplex gmelini confers salt tolerance to rice[J]. FEBSLett, 2002, 532: 279-282
    
    Okamuro JK, Caster B, Villarroel R, et al,. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proc Natl Acad Sci USA, 1997, 94:7076-7081
    
    Owens CL, Thomashow MF, Hancock JF, Iezzoni AF. CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry[J]. J Am Soc Hortic Sci,2002, 127: 489-494
    Park J, Park C, Lee S, et al,. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J]. Plant Cell, 2001, 13: 1035-1046
    
    Pellegrineschi A, Ribaut JM, Trethowan R, et al,. Progress in the genetic engineering of wheat for water-limited conditions[J]. JIRCAS Working Report, 2002, 55-60
    
    Qiu QS. Guo Y, Quintero FJ, et al,. Regulation of vacuolar Na1/H1 exchange in Arabidopsis thaliana by the SOS pathway[J]. J Biol Chem, 2004, 279: 207-215
    
    Rajoelina S R, Alibert G, Planchon C. Continuous plant regeneration from established embryogenic cell suspension cultures of Italian ryegrass and tall fescue[J]. Plant Breeding, 1990,104: 265-271
    
    Reed J N, Conger B V. Meiotic analysis of tall fescue plants regenerated from callus cultures[J].Environ Exp Bot, 1985, 25 : 277-284
    
    Rose J B, Dun well J M, Sunderland N. Anther culture of Lolium temulentum, Festuca pretensis and Lolium x Festuca hybrids[J]. II [J]. Anther and pollen development in vivo and in vitro[J].Ann Bot, 60 : 213-214
    
    Rus A, Yokoi S, Sharkhuu A, et al,. AtHKTl is a salt tolerance determinant that controls Na(1) entry into plant roots[J]. Proc Natl Acad Sci USA, 2001, 98: 14150-14155
    
    Schachtman DP, Schroeder JI. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J]. Nature, 1994, 370: 655-658
    
    Shen Q, Ho TH. Functional dissection of an abscisic acid (ABA)- inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element[J]. Plant Cell, 1995, 7: 295-307
    
    ShenYG, Zhang WK, He SJ, et al,. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theor Appl Genet, 2003a, 106: 923-930
    
    Shen YG, Zhang WK, Yan DQ, et al,. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis[J]. Theor Appl Genet, 2003b, 107: 155-161
    
    Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na1/H1 antiporter[J]. Proc Natl Acad Sci USA, 2000, 97: 6896-6901
    
    Shi H, Lee BH, Wu SJ, Zhu JK. Overexpression of a plasma membrane Na1/H1 antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat Biotechnol, 2003, 21: 81-85
    
    Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Curr Opin Plant Biol, 2000, 3: 217-223
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr Opin Plant Biol, 2003, 6: 410-417
    
    Somerville C, Dangl J. Genomics: plant biology in 2010[J]. Science, 2000, 290: 2077-2078
    
    Somerville C, Koornneef M. A fortunate choice: the history of Arabidopsis as a model plant[J].Nat Rev Genet, 2002, 3: 883-889
    
    Spangenberg G, Valles M P, Wang Z Y, et al,. Asymmetric somatic hybridization between tall fescue ( Festuca arundinacea Schreb) and irradiated Italian ryegrass ( Lolium multiflorum Lam) protoplasts[J]. Theor Appl Genet, 1994b, 88: 509-519
    
    Spangenberg Gt Wang Z Y, Legris G, et al,. Intergeneric symmetric and asymmetric somatic hybridization in Festuca and Lolium [J]. Euphytica, 1995a, 85 : 235-245
    
    Spangenberg G, Wang Z Y, Nagel J, Potrykus I. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L)[J]. Plant Sci, 1994a, 97 : 83-94
    
    Spangenberg G, Wang Z Y, Wu X L, et al,. Transgenic tall fescue (Festuca arundinacea) and red fescue ( F[J]. rubra) plants from microprojectile bombardment of embryogenic suspension cells[J]. J Plant Physiol, 1995b, 145: 693-701
    
    Takamizo T, Spangenberg G, Suginobu K, Potrykus I. Intergeneric somatic hybridization in Gramineae: somatic hybrid plants between tall fescue (Festuca arundinacea Schreb) and Italian ryegrass (Lolium multiflorum Lam)[J]. Mol Gen Genet, 1991, 231: 1-6
    
    Takamizo T, Suginobu K, Ohsugi R. Plant regeneration from suspension culture derived protoplasts of tall fescue (Festuca arundinacea Schreb) of a single genotype[J]. Plant Sci, 1990,72 : 125-131
    
    Torello W A, Rufner R, Symington A G. The ontogeny of somatic embryos from long-term callus cultures of red fescue[J]. HortScience, 1985, 20 : 938-942
    
    Torello W A, Symington A G, Rufner R. Callus initiation, plant regeneration, and evidence of somatic embryogenesis in red fescue[J]. Crop Sci, 1984, 24 : 1037-1040
    
    Uno Y, Furihata T, Abe H, et al,. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proc Natl Acad Sci USA, 2000, 97: 11632-11637
    
    Vagujfalvi A, Galiba G, Cattivelli L, Dubcovsky J. The coldregulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A[J]. Mol Genet Genomics, 2003, 269: 60-67
    
    Valles M P, Wang Z Y, Montavon P, et al,. Analysis of genetic stability of plants regenerated from suspension cultures and protoplasts of meadow fescue ( Festuca pratensis Huds)[J]. Plant Cell Rep, 1993, 12: 101-106
    Vasil I K. Progress in the regeneration and genetic manipulation of cereal crops[J].Bio/Technology, 1998, 6 : 397-402
    
    Wang Z Y, Legris G, Nagel J, et al,. Cryopreservation of embryogenic cell suspensions in Festuca and Lolium species[J]. Plant Sci, 1994, 103 : 93-106
    
    Wang Z Y, Takamizo T, Iglesias V A, et al,. Transgenic plants of tall fescue ( Festuca arundinacea Schreb) obtained by direct gene transfer to protoplasts[J]. Bio/Technology, 1992,10 : 691-696
    
    Wang Z Y, Valles M P, Montavon P, et al,. Fertile plant regeneration from protoplasts of meadow fescue ( Festuca pratensis Huds)[J]. Plant Cell Rep, 1993, 12 : 95-100
    
    Wang ZY, YeXD, Nagel J, et al,. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue ( Festuca arundinacea Schreb[J].) plants[J]. Plant Cell Rep, 2001, 20 :213-219
    
    Warren G, McKown R, Marin A, Teutonico R. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana Heynh[J]. Plant Physiol, 1996, 111:1011-1019
    
    Withers L A. Cryopreservation of cultured plant cells and protoplasts[J]. In: Kartha K K ed[J].Cryopreservation of Plant Cells and Organs[J]. Boca Raton FL: CRC Press, 1985, 243-267
    
    Xia T, Apse MP, Aharon GS, Blumwald E. Identification and characterization of a NaCl-inducible vacuolar Na1/H1 antiporter in Beta vulgaris[J]. Physiol Plant, 2002, 116:206-212
    
    Xue GP. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature[J]. Plant J,2003, 33: 373-383
    
    Yamaguchi T, Apse MP, Shi H, Blumwald E. Topological analysis of a plant vacuolar Nal/Hl antiporter reveals a luminal C terminus that regulates antiporter cation selectivity[J]. Proc Natl Acad Sci USA, 2003, 100: 12510-12515
    
    Yamaguchi T, Fukada-Tanaka S, Inagaki Y, et al,. Genes encoding the vacuolar Na1/H1 exchanger and flower coloration[J]. Plant Cell Physiol, 2001, 42: 451-461
    
    Zaghmout OMF, Torello WA. Enhanced regeneration in long-term callus cultures of red fescue by pretreatment with activated charcoal[J]. HortScience, 1998, 23 : 615-616
    
    Zaghmout OMF, Torello WA. Somatic embryogenesis and plant regeneration from suspension cultures of red fescue[J]. Crop Sci, 1989, 29 : 815-817
    
    Zaghmout OMF, Torello WA. Restoration of regeneration potential of long-term cultures of red fescue (Festuca rubra L) by elevated sucrose levels[J]. Plant Cell Rep, 1992, 11 : 142-145
    Zarka DG, Vogel JT, Cook D, Thomashow MF. Cold induction of Arabidopsis CBF genes involves multiple ICE (Inducer of CBF Expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature[J]. Plant Physiol, 2003, 133: 910-918
    
    Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nat Biotechnol, 2001, 19: 765-768
    
    Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salttolerant Brassica plants:characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation[J]. Proc Natl Acad Sci USA, 2001, 98: 12832-12836
    
    Zhang S, Warkentin D. Sun B,et al,. Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize ( Zea mays L) [J]. Theor Appl Genet, 1996, 92 : 752-761
    
    Zhu JK. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53:247-273
    
    Zhu JK. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6:441-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700