用户名: 密码: 验证码:
纳米层状二氧化锰的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
润滑油添加剂是一种具有良好的减摩抗磨性能和较高的承载能力得以及对摩擦副表面有良好的修复性能的材料。纳米粒子因其具有的一些特殊性质而作为润滑油添加剂能明显提高基础油的摩擦学性能。超级电容器是近年来出现的一种介于传统电容器与电池之间的新概念能力储存容器,因为具有高功率、能量密度和长循环寿命等优点,在移动通信、消费电子、电动汽车、航空航天和国防等领域有广阔的应用,在世界范围内引起了极大的关注。
     本文利用反歧化反应:强氧化剂KMnO4氧化MnCl2与碱溶液反应产生悬浮物。通过水热合成法和液相沉淀法两种制备工艺制备了纳米Mn02,考察了水热合成法制备工艺中的反应物、水热温度、水热时间与表面修饰剂处理对产物的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)等手段对样品的结构及形貌进行了表征,发现水热合成法和液相沉淀法制备的纳米MnO2主要成分为金红石结构的δ-MnO2———钠水锰矿(Syn.Birnessite)Nao.58Mn204·1.5H2O、KMn2O4·1.4H2O。
     本文利用沉降实验、四球摩擦磨损实验等摩擦学测试方法,通过金相显微镜和SEM等分析手段对钢-钢摩擦副表面进行分析,研究了MnO2纳米粒子作为润滑油添加剂添加到液体石蜡中的摩擦学性能和作用机理。结果表明,Mn02纳米粒子的加入对润滑油的承载能力无明显影响,但是它却能在一定程度上降低摩擦副的磨斑直径,具有较好减摩性能。经过表面修饰剂改性过后的Mn02,摩擦性能都比没有改性Mn02的好。其中在润滑油中经过酸改性过后陈化的MnO2纳米粒子浓度达到0.1%时,磨斑直径下降值最大,从670.3μm下降到441.7μm;在润滑油中SDS改性后水热制备Mn02纳米粒子浓度达到0.75%时,摩擦系数从0.0073下降到0.0058。
     通过循环伏安法等电化学测试方法以及BET比表面分析等研究手段研究了层状二氧化锰的微观结构对其电化学电容量的影响。通过循环伏安测试表明Mn02电极材料在Na2SO4溶液中具有优异的电容特性,陈化后酸改性制备的MnO2电极,在5mV/s的扫速下其比电容达到了263.6F/g。比电容最小的水热后酸改性制备Mn02电极,在5mV/s的扫速下其比电容也达到了203.9F/g。研究结果表明,比电容量随着吸附孔平均直径的增大而增大。
Oil additive is a kind of material with good antiwear properties, high load-carrying capacity and self-repair of the worn surface. Nanoparticles because of its special nature can improve the oil tribological properties as oil additives. The supercapacitors is a new storage containers whose capability between traditional capacitor and battery capacity. It contains high-power, energy density and long cycle life. The promising application of supercapacitors in the fields such as mobile telecommnication, consumer electronics, electric cehicle, aviation and national defense, has been attention through out the world.
     Strong oxidant KMnO4 was used to effect the MnCl2 and alkali solution's suspended solids in the redox reaction. Nanometer layered MnO2 was prepared by using hydrothermal method and liquid precipitation method. The effects of reactants, temperature, time and surface chemical treatments on products were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the crystal structure and morphology of nanoparticles. It was found that the main phase of as synthesized powder was rutile structure ofδ-MnO2—Syn.Birnessite Na0.58Mn204·1.5H2O, KMn2O4·1.4H2O.
     Sedimentation experiment and four-ball wear testing were used to investigate the tribology properties. And optical microscopy and SEM were used to observed the surface of steel-steel friction pair. The results show that MnO2 nanoparticles had no effect on the carrying capacity of lubricating oil. But it can reduce the wear scar diameter and has good antiwear ability. The modified MnO2 have better tribological properties. When the concentration of MnO2 nanoparticles which was modified by H2SO4 and prepared by aging, is 0.1%, the wear scar diameter decline largest and decreases from 670.3μm to 441.7μm. When the concentration of MnO2 nanoparticles which is modified by SDS and prepared by hydrothermal synthesis, is 0.75%, friction coefficient decreases from 0.0073 to 0.0058.
     The cyclic voltammetry (CV) testing and BET surface area analysis are used to invest the impact of layered manganese dioxide's microstructure on the electrochemical capacitance. The CV testing shows that the MnO2 electrode material's capacitance in the Na2SO4 solution has excellent capacitance characteristics. The discharge capacity of the MnO2 electrode which is prepared by aging and modified by H2SO4, is 263.6 F/g when the scan speed is 5mV/s. Even the lowest discharge capacity of MnO2 which is prepared by hydrothermal synthesis and modified by H2SO4, is 203.9 F/g at 5mV/s scan speed. The results show that capacitance data shows that the discharge capacity of MnO2 increases with the average adsorption pore diameter.
引文
[1]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J].电池.2004,34(6):411-414.
    [2]夏熙,二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(2)[J],电池,2004,34(6):415-417.
    [3]Giovanoll R. Geology and Geochemistry of Manganese[M]. Budapest Akademia Kiado,1980.
    [4]K. V. Kordeseh,夏熙等译.电池组第一卷,二氧化锰[M].轻工业出版社,1981.
    [5]KOMABA S, KUMAGAIN, CHIBA S. Synthesis of layered MnO2 by calcination of KMnO4 for rechargeable lithium battery cathode[M]. Electrochimica Acta,2000,46:31—37.
    [6]VITINS G, WEST K, Lithium Intercalation into Layered LiMnO2[J]. J. Electrochem soc, 1997,144:587—592.
    [7]TABUCHI M, ADO K, KOBAYASHI H, et al. Synthesis of LiMnO2 With α-NaMnO2-Type Structure by a Mixed-Alkaline Hydrothermal Reaction[J]. J Electrochem Soc,1998,145 (49):99-103.
    [8]RONGJI C, CHIRAYIL T, ZAVALIJ P, et al. The hydrothermal synthesis of sodium manganese oxide and a lithium vanadium oxide[J]. Solid State Ionics,1996,140 (7):86—88.
    [9]YANG J Y, YANG X E, HE Z L, et al. Advance in the studies of Pb adsorption and desorption insoils[J]. Ecology and Enironment,2005,14(1):102—107.
    [10]朱丽珺,宰德欣,柴家觉等.水热法合成δ-MnO2及其对重金属Pb2+的吸附作用[J].安全与环境学报2007,4(7):20-23.
    [11]RENUKA R, RAMAMURTHY S. An investigation on layered birnessitetype manganese oxides for battery applications[J]. J PowerSources.2000,91 (87):144-152.
    [12]杨顺毅,王先友,魏建良等.Na-Mn-O正极材料的合成及电化学性能[J].物理化学学报,2008,24(9):1669-1674.
    [13]MCKENZIE R M. The synthesis of birnessite, cryptomelane and some otheroxides and hydroxides of manganese[J]. Mineral Mag,1971,38(296):493—503.
    [14]TAKAYUKI shoji, TUKAKAZU Yammnoto. ChingJng and discharging behavior of zinc manganese dioxide galvanie cells using Zinc sulfateelectrolyte [J]. J of Electroanalytical chemistry, 1993,362:153—157.
    [15]李清文,张波,舒东.酸法合成改性a-δ-MnO2电极可充性研究[J].电池,1993,5(23):203-205.
    [16]SHEN Y, ZERGM R P, DEGUZNMN R, et al. Manganese Oxide Octahedral mgleeular Sieves:Preparation Characterization and applieations[J]. Science,1993,260:511—515.
    [17]GDDEN D C,CHEN C C,DIXON J B. Synthesis of Todomkite[J]. Science,1986,231:717 —719.
    [18]杨勇,舒东,余海等.大隧道结构锂锰氧化物电极材料研究[J].电源技术,1997,5(21):190-192.
    [19]PARK S H, YOON C S, KANG S G, et al. Synthesis andstructural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method[J]. Electrochim Acta,2004, (49):557—563.
    [20]杨玉娟,桑林,黄成德.层状纳米Mn02的液相合成及其电容性能[J].应用化学,2008,4(25):473-475.
    [21]XIAO D S, CHUN L M, LI Z, et al. A facile method to prepare layeredmanganese oxides with large interplanar spacing[J]. Materials research Bulletin,2002,37:331—341.
    [22]张剑锋,周志芳.摩擦磨损与抗磨技术[M].天津:天津科技翻译出版社,1993;
    [23]邵荷生,曲敬信,许小隶.摩擦与磨损[M].北京:煤炭工业出版社,1992;
    [24]高彩桥.摩擦金属学[M].哈尔滨:哈尔滨工业大学出版社,1988;
    [25]E.A.马尔钦柯.金属表面摩擦破坏实质[M].北京:国防工业出版社,1998;
    [26]J.霍林.摩擦学原理[M].北京:机械工业出版社,1989;
    [27]J.A.Leng and J.E.Davies. Examination of wear debris produced using a four-ball machine[J]. Tribology international,1989,22:137—142
    [28]夏延秋,丁律源,马先贵.纳米级金属粉改善润滑油的摩擦磨损性能研究[J].润滑油,1998,13(6):37-40
    [29]夏延秋等.纳米级铜粉改善润滑油抗磨性能的研究[J].润滑与密封,1998,(5):43-45
    [30]W. X. Ying et al. Wear,2000,242:202—206
    [31]乔玉林等.含纳米金刚石复合润滑油添加剂的摩擦学性能[J].石油炼制与化工,1999,30(3):12-15
    [32]Hu Z X, Dong J X. Study on antiwear and reducingfriction additive of nanometer titanium borate[J]. Wear,1998,216:87-90
    [33]Dong J X, Hu Z S, Chen G X. Controllable high-speedjournal bearings, lubricated with electro-rheological fluids[J]. Tribology International,1998,31(5):219—222
    [34]胡泽善等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J],摩擦学学报,2000,20(4):292-295
    [35]胡泽善,王亚光,曹兴进等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J],摩擦学学报,2001,20(4):292-295
    [36]黄伟九等.纳米Zr02作为润滑油添加剂的摩擦学性能研究[J].湘潭矿业学院学报,2001,16(4):28-31
    [37]程西云,邓小桅,曹兴进等.纳米硼酸镧添加剂的摩擦学性能研究[J].机械科学与技术,2001,20(3):438-439
    [38]张泽抚等.纳米氢氧化镧与ZDDP相互作用的研究[J].电子显微学报,2000,19(4):603-604
    [39]赵彦保,周静芳,张治军等.聚苯胺的合成及其摩擦学行为的研究[J].应用化学,1999,10(3):13-16
    [40]B.K.GUPTA and BHARAT BHUSHAN. Fullerene Particles as an Additive to Liquid Lubricants and Grease for Low Friction and Wear[J]. ADVANCE MATERIAL,1999(11):934—937
    [41]鲍登F P,泰伯D.固体的摩擦与润滑(续篇)[M].北京:机械工业出版社,1986.237.
    [42]周强,徐瑞清.石墨材料的润滑性能及其开发应用[J].新型碳材料,1997(9):11-16
    [43]徐泽儒.金属硫化物减摩材料的研究[J].河南冶金,1997,1(22):26-29
    [44]邱孙青等.碳酸钙纳米粒子润滑油添加剂的制备及其摩擦学性能的研究[J].润滑与密封,1999,(4):14-16
    [45]唐致远,徐国祥.电子导电聚合物在电化学电容器中的应用[J].化工进展.2002,21(9):652-659
    [46]Kwang Sun Ryu,Youngil Lee,Kyoo-Seung Han, et al. Electrochemical supercapacitor based on polyaniline doped with lithium salt and active carbon electrodes[J]. Solid State Ionics.2004:1—4
    [47]张丹丹,姚宗干.大容量高储能密度电化学电容器的进展[J].电子元件与材料.2000,19(1):34-37
    [48]Faggioli E,Rena P,Danel V,et al. Supercapacitors for the energy management of electric vehicles[J]. Power Sources,1999,84:261—269
    [49]田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术,2002,6(26):466-469
    [50]Bach.S,Pereira-Ramos,J.P,Baffier.N et al. Brinessite manganese dioxide synthesized via a sol-gel process.A new rechargeable cathodic material for lithium batteries. Electrochim Acta,1991,36(10):1595—1623
    [51]张玲、唐冬汗、熊奇.超级电容器极化电极材料的研究进展[J].重庆大学学报(自然科学版),2002,25(5):152-156
    [52]Taberna. P. L, Simon. P, Fauvarque. J. F. J. Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapcitors[J]. Electrochem. Soc.2003,150(3):292—300
    [53]Burke A F. Ultracapacitors:Why, how, and where is the technology. J Power Sources, 2000,9(1):37—50
    [54]Cottineau. T, Toupin. M, D Romain. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors [J]. J.Electrochem.Soc.2006,153(12):A2171—A2180
    [55]Naudin, E, Ho. H. A, Branchaud. S, Breau. L, Be'langer. D. Electrochemical Polymerization and Characterization of Poly(3-(4-fluorophenyl)thiophene) in Pure Ionic Liquids[J]. J.Phys. Chem. B, 2002,106 (41),10585.
    [56]Jones. J D, Wortham. E, Rozie're J. Manganese oxide nanocomposites:preparation and some electrochemical properties[J]. J. Phys. Chem. Solids 2004,65,235.
    [57]Lei. Y, Fournier. C, Pascal. J. L, Favier. F. Mesoporous carbon-manganese oxide composite as negative electrode material for supercapacitors [J]. Microporous and Mesoporous Materials,2008, 110(1):167—176
    [58]Devaraj. S, Munichandraiah. N. EQCM Investigation of the Electrodeposition of MnO2 and Its Capacitance Behavior[J]. Electrochem. Solid-State Lett 2009,12(9):21—25
    [59]Li. J, Wang. X, Huang. Q, Gamboa. S, Sebastian. P. L. J. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J]. Power Sources 2006, 158(1):784—788
    [60]Toupin. M, Brousse. T, Be'langer. D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor[J]. Chem. Mater.2004,16(16):3184—3190
    [61]Pang. S.-C, Anderson. M. A, Chapman. T. W. Novel Electrode Materials for Thin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide[J]. J. Electrochem. Soc.2000,147(2):444—450.
    [62]Ragupathy. P, Vasan. H. N, Munichandraiah. N. Synthesis and Characterization of Nano-MnO2 for Electrochemical Supercapacitor Studies[J]. J. Electrochem. Soc.2008,155(1):34—40
    [63]Brousse. T, Toupin. M, Dugas. R. Crystalline MnO2 as possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors[J]. J. Electrochem. Soc.2006,153(12):A2171— A2180
    [64]Chin. S. F, Pang. S. C, Anderson. M. A. Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Caoacitors[J]. J. Electrochem. Soc.2002,149(14):A379—A384
    [65]纪媛,刘江等.甘氨酸-硝酸盐法制备中温SOFC电解质及电极材料[J].高等学校化学学报,2002,23(1):1227-1230
    [66]常俊玲.高比表面积活性炭的制备及其在双电层电容器中的应用[硕士学位论文].湖南大学硕士学位论文,2004:6
    [67]徐如人,庞文琴.分子筛与多孔材料[M].北京:科学出版社,2004;
    [68]陆凡、陈诵英.超临界流体干燥法合成超微二氧化锡[J].应用化学,1994,11(5):68-70
    [69]宋桂明,周玉,白后善.纳米陶瓷粉体的制备技术及产业化[J].矿冶.2001,10(2):55-60:
    [70]李竞先,吴基球,鄢程.纳米颗粒的水热法制备[J].中国陶瓷,2002,38(5):36-39;
    [71]王秀峰,王永兰,金志浩.水热法制备纳米陶瓷粉体.稀有金属材料与工程[J].1995,24(4):1-6:
    [72]余忠清,赵秦生,张启修.溶胶-凝胶法制备超细气息球形氧化铝粉末[J].无机材料学报,1994,9(4):475-479:
    [73]丁安平,饶拴民.“纳米氧化铝”的用途和制备方法初探[J].有色冶炼,2001,30(3):6-9:
    [74]付高峰,毕诗文,孙旭东,等.超细氧化铝粉末制备技术[J].有色矿冶,2000,16(1):39-41:
    [75]Cheng Humin,Ma Jiming,Zhu Bin,etal. Reaction mechanisms in the formation of lead zirconate solid solution under hydrothermal conditions[J]. J Am Ceram Soc,1993,76:625—629;
    [76]邱关明.新型陶瓷[M].兵器工业部,1993,3:30-31;
    [77]徐明霞.高分子型表面活性剂在氧化锆粉末制备过程中的作用[J].无极材料学报,1990,5(1):49-51
    [78]毋伟等.超细粉体表面修饰[M].北京:化学工业出版社,2004;
    [79]高濂等.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003.12;
    [80]李凤生等.微纳米粉体制备与改性设备[M].北京:国防工业出版社,2004;
    [81]段维忠.亚微米石墨在润滑油中的分散行为研究[J].技术与研究,2006,6:46-48
    [82]Feng Dapeng, Liu weimin, Xue Qunji. The lubrication mechanism of cerium dithiomolybdate from room temperature to 600 ℃. Materials Science and Engineering A,2002,326(2):195—201
    [83]Nadezda M. Talijan, Dusan S. Trifunovic, Dejan D. TrifunoVic. The influence of different iron powders on the friction properties of sintered friction materials based on iron[J]. Materials Letters> 2000.469(5):255—260
    [84]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004.7
    [85]B.E.Conway.电化学超级电容器——科学原理及技术应用[M].北京:化学工业出版社,2005.6
    [86]Brousse. T, Taberna. P. L, Crosnier. O. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor[J]. J.Power Sources 2007,173(1):633—641.
    [87]Raymundo-Pinero. E, Khomenko. V, Frackowiak. E, Beguin. F. Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors[J]. J.Electrochem. Soc. 2005,152(1):A229—A235
    [88]Rodriguez-Reinoso. F, Molina-Sabio. M, Gonza'les. M. T. The use of steam and CO2 as activating agents in the preparation of activated carbons[J]. Carbon.1995,33(1):15—23.
    [89]Naicai Xu, Zong-Huai Liu, Xiangrong Ma. Controlled synthesis and characterization of layered manganese oxide nanostructures with different morphologies[J]. J Nanopart Res,2009, 11:1107—1115
    [90]Shi. H. Activated carbons and double layer capacitance[J]. Electrochim. Acta 1996,41(10): 1633—1639
    [91]Kuo. S. L, Wu. N. L. Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors[J]. J. Electrochem. Soc.2006,162(2):1317—1443
    [92]Tsuda, M, Arai. H, Nemoto. Y, Sakurai. Y. Electrode performance of romanechite for rechargeable lithium batteries[J]. J.Electrochem. Soc.2001,102(1-2),:135—138.
    [93]Ouassim Ghodbane, Jean-Louis Pascal, and Frederic Favier. Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors. ACS Applied Materials & Interfaces,2009,1(5):1130—1139
    [94]张莹,刘开宇,张小兰,张伟.廉价模板法制备介孔Mn02的电化学电容性质[J].电池工业,2009,14(1):26-30,37
    [97]Zhang D., Qi L., Ma J. Preparation of ZnS Nanorods by a Liquid Crystal Template[J]. Adv. Mate.,2002,246(2):413—416
    [96]Wang X, Li Y D, Rational synthetic strategy:from layered structure to MnO2 nanotubes[J]. Chem. Lett.2004,33:48—49
    [97]Wang X, Li Y D. Synthesis and formation mechanism of Manganese dioxide nanowires /nanorods[J]. Chem Eur J,2003,9:300—306.
    [98]V. Panic, T. Vidakovic. The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol[J]. lectrochimical Acta 2003,48:3805—3813
    [99]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(2)[J].电池.2006,36(1):37-40
    [100]小柴淳治,西泽茂郎.电解二氧化锰的晶体结构及其结构化学成本[J].徐国宪译.Battery Bimonthly(电池),1978,8(2):40-46.
    [101]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(3)[J].电池.2006,36(2):118-121
    [102]Odair P. Ferreira, Larissa Otubo, Ricardo Romano. One-Dimensional Nanostructures from Layered Manganese Oxide[J]. Crystal Growth & Design,2006,.6(2):601—605
    [103]Jiechao Ge, Linhai Zhuo, Fei Yang. One-Dimensional Hierarchical Layered KxMnO2 (x<0.3) Nanoarchitectures:Synthesis, Characterization, and Their Magnetic Properties[J]. J. Phys. Chem. B,2006,110:17854—17859

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700