用户名: 密码: 验证码:
基于活动轮廓模型的肺结节分割方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今世界许多国家中,肺癌是导致人类死亡的主要原因之一。临床证明,早期发现与诊断肺癌可以显著地提高患者的生存机率。在早期阶段,肺癌以肺结节的形式表现出来。肺结节的形状和大小变化是良恶性诊断的主要依据。精确地分割肺结节是获取这些信息的先决条件,因此肺结节精确分割是发现与诊断肺癌的关键技术。随着医学影像设备的发展,计算机辅助诊断(Computer-Aided Diagnosis, CAD)系统得到了迅速的发展。在现有肺结节检测CAD系统中,主要的研究对象是孤立性的肺结节,而缺乏对磨玻璃(Ground Glass Opacity, GGO)肺结节和血管粘连(Juxta-vascular, JV)肺结节的研究。研究表明,与孤立性肺结节相比,GGO肺结节很有可能表现为恶性结节。除此之外,大量的肺结节表现为JV肺结节。因此,本论文将GGO肺结节和JV肺结节作为研究对象。近年来,活动轮廓模型(Active Contour Model, ACM)已经广泛运用在肺图像分割领域,主要是存在以下两个原因:(1)活动轮廓模型很容易现实数字化计算;(2)活动轮廓模型可以获取平滑和封闭的分割结果。
     为了精确分割GGO肺结节和JV肺结节,本文提出了几种改进的活动轮廓模型,并对这些模型进行了深入的研究。本论文的主要研究内容和创新点描述如下:
     首先,提出了基于模糊速度的活动轮廓模型的肺结节分割方法。目前基于边界的活动轮廓模型的肺结节分割方法和基于区域的活动轮廓模型的肺结节分割方法,存在边界泄漏问题。对此,本文提出基于模糊速度函数的活动轮廓模型(Fuzzy Speed-basedActiveContour Model, FSACM)的肺结节分割方法。该活动轮廓模型能够精确分割GGO肺结节(具有模糊边界)和JV肺结节(肺结节与血管之间具有相似的亮度值)。首先,结合亮度特征和局部形状特征构造二维向量,并且根据该二维向量计算三个模糊速度函数。其次,将模糊速度函数引入到活动轮廓模型中,使得在肺结节的边界处,这些模糊速度函数等于零,轮廓曲线停止演变,从而完成肺结节的精确分割。
     其次,提出基于后验概率和小波能量的活动轮廓模型的磨玻璃型肺结节的分割方法。由于GGO肺结节具有模糊的边界、低对比度和亮度非均匀等特征,所以使用局部区域的活动轮廓模型很难分割该类型结节。为了精确分割GGO肺结节,提出了基于后验概率和小波能量的活动轮廓模型(Active Contour Model Based on Posterior Probabilityand Wavelet Energy, ACMPPWE)。首先,将小波能量引入到活动轮廓模型的中。因为小波能量增强肺结节与背景之间的对比度,并且在曲线演变的过程中考虑到局部区域信息,所以该活动轮廓模型能够精确分割低对比度和亮度非均匀的磨玻璃型肺结节。其次,基于后验概率的速度函数引入到活动轮廓模型的规则项中。在磨玻璃型的边界处,曲线进化的速度函数等于零,所以该活动轮廓模型能够分割具有模糊边界的磨玻璃型肺结节。最后,根据后验概率,可以获取轮廓曲线演变的初始轮廓。由于获取的初始轮廓位于真实分割目标边界的附近,所以轮廓曲线演变可以获得全局最小能量。
     再次,提出基于局部与全局隶属的活动轮廓模型的磨玻璃型肺结节的分割方法。为了精确分割GGO肺结节,提出了另外一种活动轮廓模型,即基于局部与全局隶属的活动轮廓模型(Active Contour Model Based on Local and Global Membership, ACMLG)。首先,采用全局隶属度计算边界停止函数。由于在磨玻璃型肺结节边界处,边界停止函数等于零,所以该活动轮廓模型能够精确分割具有模糊边界的磨玻璃型肺结节。其次,采用局部隶属度计算轮廓模型的数据项。由于局部隶属度可以增强肺结节与背景之间的对比度,并且考虑到局部区域信息,所以该活动轮廓模型可以精确分割低对比度和亮度非均匀的磨玻璃型肺结节。最后,根据全局隶属,可以获取轮廓曲线演变的初始轮廓。由于获取的初始轮廓位于真实分割目标边界的附近,所以轮廓曲线演变可以获得全局最小能量。
     最后,提出基于模糊速度和贝叶斯距离的活动轮廓模型的血管粘连型肺结节的分割方法。由于JV肺结节通常具有亮度非均匀性,并且肺结节与血管之间具有相似的亮度值,所以局部区域活动轮廓模型和基于形状的活动轮廓模型不能精确分割该类肺结节。针对JV肺结节的分割,提出基于模糊速度和贝叶斯距离的活动轮廓模型(Active ContourModel Based on Fuzzy Speed and Bhattachary Distance, ACMFSBD)。首先,基于模糊速度的边界停止函数引入到轮廓模型的规则项中。由于在JV肺结节与血管粘连处,边界停止函数等于零,所以该活动轮廓模型能够精确分割JV肺结节;其次,根据亮度和形状信息联合的贝叶斯距离计算活动轮廓模型的数据项。由于该贝叶斯距离可以增强JV肺结节与血管之间的对比度,并且考虑到局部区域信息,所以该活动轮廓模型可以精确分割亮度非均匀的JV肺结节。
Lung cancer is the leading casue of death in many countries of the world. The clinicalevidence verifies that early detection and diagnosis of lung cancer can significantly improvethe survival rate of patients. Pulmonary nodule is the representation form of early stage oflung cancer. A main factor in determining a nodules malignancy status is the change in thenodule size and shape information. Pricise nodule segmentation is a prerequisite for obtainingthe change in the nodule and shape information, so pricise nodule segmentation is criticalstage. With the development of medical imaging equipment, the computer-aided diagnosis(CAD) system has been rapid development. In the CAD system of pulmonary noduledetection, the researches are mainly aimed to solid pulmonary nodules, but without moreresearches on the research of ground glass opacity (GGO) pulmonary nodules andjuxta-vascular (JV) pulmonary nodules. Studies have shown that GGO pulmonary noduleshave higher risks of being malignant than solid pulmonary nodules. Additionally, JVpulmonary nodules account for the largest typology of lung nodules. So GGO pulmonarynodules and JV pulmonary nodules are research objects in this dissertation. Recently, theactive contour models have been extensively applied to lung image segmentation. There aretwo reasons:(1) the active contour models can be easily formulated;(2) the active contourmodels can provide smooth and closed contour as segmentation results.
     In this dissertation, to segment GGO pulmonary nodules and JV pulmonary nodules,some improved active contour models are proposed and those models are studied intensively.The main contents and innovation are as follows.
     Firstly, the fuzzy speed function-based active contour model for segmentation ofpulmonary nodules is proposed. At present, the segmentation algorithm of pulmonary nodulesusing the edge-based active contour model and the region-based active contour model maycause boundary leakage. In order to avoid this phenomenon, a new segmentation algorithm ofpulmonary nodules using active contour model based on fuzzy speed function is proposed.This active contour model can accurately segment GGO pulmonary nodules, which havefuzzy boundary, and JV pulmonary nodules, which have the similar intensity as vessel. First,the two-dimensional vectors, which use gray feature and local shape feature, are constructedand three fuzzy speed functions are calculated using those two-dimensional vectors. Second,the three fuzzy speed functions are incorporated into the active contour model. At theboundary of pulmonary nodules, the three fuzzy speed functions equal to zero and theevolution of the contour curve stops, so that the accurate segmentation of pulmonary nodules in completed.
     Secondly, the segmentation of GGO pulmonary nodules using active contour modelbased on posterior probability and wavelet energy is proposed. Due to the fuzzy boundary,low contrast and intensity inhomogeneity of GGO pulmonary nodules, it’s really hard toaccurately segment them with the local region-based active contour models. To accuratlysegment GGO pulmonary nodules, a novel active contour model based on posteriorprobability and wavelet energy is proposed. First, the wavelet energy is incorporated into theactive contour model. The wavelet energy can enhance the dissimilarity between pulmonarynodule with background, and the local region information is considered, so the proposedactive contour model can segment low contrast GGO pulmonary nodules and those withintensity inhomogeneity. Second, the speed function based on posterior probability isincorporated into the active contour model. At the boundary of GGO pulmonary nodules, thespeed function of evolution equals to zero, so the active contour model can segment GGOpulmonary nodules with fuzzy boundary. Third, the initial contour is set near the boundary ofthe GGO pulmonary nodules using posterior probability, so the evolution curve may obtain aglobal minimum.
     Thirdly, the segmentation of GGO pulmonary nodules using active contour model basedon based on local and global membership is proposed. In order to segment GGO pulmonarynodules, another novel active contour model based on local and global membership isproposed. First, an edge stopping function based on the global membership is formulated. Theedge stopping function equals to zero at the boundary of GGO pulmonary nodules, so theproposed active contour model can accurately segment GGO pulmonary nodules with fuzzyboundary. Second, the data compoment of active contour model is calculated by using localmembership. The local membership can enhance the dissimilarity between pulmonary nodulewith background, and the local region information is considered, so the proposed activecontour model can segment low contrast GGO pulmonary nodules and those with intensityinhomogeneity. Third, the initial contour is set near the boundary of the GGO pulmonarynodules using global membership, so the evolution curve may obtain a global minimum.
     Finally, the juxta-vascular pulmonary nodules segmentation using active contour modelbased on fuzzy speed function and Bahattachary distance is proposed. Because of similarintensity in adjacent regions and intensity inhomogeneity, JV pulmonary nodules are notaccurately segmented by using the local region-based active contour models and theshape-based active contour models. For JV pulmonary nodules segmentation, a novel activecontour model based on fuzzy speed function and Bahattachary distance is proposed. First, the edge stopping function base on the fuzzy speed is incorporated into the regularizationcomponent of active contour model. The edge stopping function equals to zero at the placebetween JV pulmonary nodules and vessel, so the proposed active contour model canaccurately segment JV pulmonary nodules. Second, the data component of tha active contourmodel is formulated according to the shape-intensity joint Bhattacharya distance. TheBhattacharya distance can enhance the dissimilarity between JV pulmonary nodules andvessels, and the local region information is considered, so the proposed active contour modelcan segment JV pulmonary nodules with intensity inhomogeneity.
引文
[1]陈万青,张思维,邹小农.中国肺癌发病死亡的估计和流行趋势研究[J].中国肺癌杂志,2010,13(5):488-493
    [2]罗述谦,周果宏.医学图像处理与分析[M].第二版.北京:科学出版,2003
    [3] Hounsfield G. N.. Computerized transverse axial scanning (tomography): Part1.Description of system[J]. British Journal of Radiology,1973,46(552):1016-1022
    [4]孙申申.基于CT影像的肺结节检测与分割方法研究[D].东北大学博士毕业论文.东北:东北大学,2009
    [5] Pal N. R., Pal S. K.. A review on image segmentation techniques[J]. Pattern recognition,1993,26(9):1277-1294
    [6]章毓晋.图像工程[M].第二版.北京:清华大学出版社,2005
    [7]林瑶,田捷.医学图像分割方法综述[J].模式识别与人工智能,2002,15(2):192-204
    [8] Wei Y., Xu X. H., Jia T., et al. An optimal level sets method for lung nodules detection inCT images[A]. The Sixth International Conference on Intelligent Systems Design andApplications[C].2006,251-255
    [9] Cootes T. F., Wheeler G. V., Walker K. N., et al. View-based active appearance models[J].Image and Vision Computing,2002,20(9):657-664
    [10] Cootes T. F., Edwards G. J., Taylor C. J.. Active appearance models[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2001,23(6):681-685
    [11] Meng L., Zhao H.. Interactive lung segmentation algorithm for CT chest images based onLive-Wire model and snake model[A]. The International Conference on Electronic ComputerTechnology[C].2009,461-466
    [12] Vijaya K. V., Satyanarayana R.. Performance evaluation of edge detectors morphologybased ROI segmentation and nodule detection from DICOM lung images in the noisyenvironment[A]. The3rd International Conference on Advance Computing Conference(IACC)[C].2013,22-23
    [13] Armato S. G., Giger M. L., Moran C. J., et al. Computerized detection of pulmonarynodules on CT scans [J]. Radiographics,1999,19(5):1303-1311
    [14] Lin D. T., Yan C. R.. Lung nodules identification rules extraction with neural fuzzynetwork[A]. The9th International Conference on Neural Information Processing [C].2002,4:2049-2053
    [15] Gurcan M. N., Sahiner B., Petrick N., et al. Lung nodule detection on thoracic computedtomography images: preliminary evaluation of a computer-aided diagnosis system[J]. MedicalPhysics,2002,29:2552-2558
    [16] Ge Z., Sahiner B., Chan H. P., et al. Computer-aided detection of lung nodules: falsepositive reduction using a3D gradient field method and3D ellipsoid fitting[J]. MedicalPhysics,2005,32(8):2443-2454
    [17] Zhao B.. Automatic detection of small lung nodules on CT utilizing a local densitymaximum algorithm[J]. Journal of Applied Clinical Medical Physics,2003,4(3):248-260
    [18] El-Baz A., Farag A. A., Falk R., et al. A unified approach for detection, visualization, andidentification of lung abnormalities in chest spiral CT scans[A]. International CongressSeries[C].2003,1256:998-1004
    [19] Antonelli M., Lazzerini B., Marcelloni F.. Segmentation and reconstruction of the lungvolume in CT images[A]. Proceedings of the2005ACM symposium on Appliedcomputing[C].2005, l:255-259
    [20] Kostis W J, Reeves A P, Yankelevitz D F, et al. Three-dimensional segmentation andgrowth-rate estimation of small pulmonary nodules in helical CT images[J]. IEEETransactions on Medical Imaging,2003,22(10):1259-1274
    [21] Tachibana R, Kido S. Automatic segmentation of pulmonary nodules on CT images byuse of NCI lung image database consortium[A]. The processing SPIE of Medical Imaging[C],2006,61440M-1-61440M-9
    [22] Fetita C. I., Preteux F., Beigelman A. C., et al.3D automated lung nodule segmentationin HRCT[J]. Medical Image Computing and Computer-Assisted Intervention,2003,626-634
    [23] Santos A., Ramiro C., Desco M., et al. Automatic detection of cellular necrosis inepithelial cell cultures[A]. Medical Imaging2001[C].2001,4322:1836-1844
    [24] Dehmeshki J., Amin H., Valdivieso M., et al. Segmentation of pulmonary nodules inthoracic CT scans: a region growing approach[J]. IEEE Transactions on Medical Imaging,2008,27(4):467-480
    [25] Wang H., Zhang J., Wang L.. Segmentation of thoracic CT image based on FCMclustering[A].3rdInternational Conference on Advanced Computer Theory and Engineering(ICACTE)[C].2010, V3-405-V3-408
    [26] Nie S., Li L., Wang Y., et al. A segmentation method for sub-solid pulmonary nodulesbased on fuzzy c-means clustering[A].5th International Conference on BiomedicalEngineering and Informatics (BMEI)[C].2012,169-172
    [27] El-Baz A., Gimel'farb G., Falk R., et al. A new CAD system for early diagnosis ofdetected lung nodules[A]. IEEE International Conference on Image Processing[C].2007,2:II-461-II-464
    [28] Lee Y., Hara T., Fujita H., et al. Nodule detection on chest helical CT scans by using agenetic algorithm[A]. IIS'97Proceedings of Intelligent Information Systems[C].1997,67-70
    [29] Dehmeshki J., Ye X., Casique M. V., et al. A hybrid approach for automated detection oflung nodules in CT images[A]. IEEE International Symposium on Biomedical Imaging: Nanoto Macro[C].2006,506-509
    [30] Farag A. A., El-Baz A., Gimel’farb G. G., et al. Automatic detection and recognition oflung abnormalities in helical CT images using deformable templates[J]. Medical ImageComputing and Computer-Assisted Intervention,2004,3217:856-864
    [31] Kawata Y., Niki N., Ohmatsu H., et al. Quantitative surface characterization ofpulmonary nodules based on thin-section CT images[J]. IEEE Transactions on NuclearScience,1998,45(4):2132-2138
    [32] Farag A. A., El-Baz A., Gimel'farb G., et al. Detection and recognition of lungabnormalities using deformable templates[A]. Proceedings of the17thInternationalConference on Pattern Recognition[C].2004,23-26
    [33] Kawata Y., Niki N., Ohmatsu H., et al. Hybrid classification approach of malignant andbenign pulmonary nodules based on topological and histogram features[J]. Medical ImageComputing and Computer-Assisted Intervention,2000,297-306
    [34] Osman O., Ozekes S., Ucan O. N.. Lung nodule diagnosis using3D template matching[J].Computers in Biology and Medicine,2007,37(8):1167-1172
    [35] Wang P., DeNunzio A., Okunieff P., et al. Lung metastases detection in CT images using3D template matching[J]. Medical Physics,2007,34(3):915-922
    [36] Bae K. T., Kim J. S., Na Y. H., et al. Pulmonary nodules: automated detection on CTimages with morphologic matching algorithm—preliminary results [J]. Radiology,2005,236(1):286-293
    [37] Lee Y., Hara T., Fujita H., et al. Automated detection of pulmonary nodules in helical CTimages based on an improved template-matching technique[J]. IEEE Transactions on MedicalImaging,2001,20(7):595-604
    [38] Okada K., Comaniciu D., Krishnan A.. Robust anisotropic Gaussian fitting forvolumetric characterization of pulmonary nodules in multislice CT[J]. IEEE Transactions onMedical Imaging,2005,24(3):409-423
    [39] Garnavi R., Baraani D. A., Moghaddam H. A., et al. A new segmentation method for lungHRCT images[A]. Proceedings of Digital Image Computing: Techniques and Applications[C],2005,52-59
    [40] Wei G. Q., Fan L., Qian J.. Automatic detection of nodules attached to vessels in lung CTby volume projection analysis[J]. Medical Image Computing and Computer-AssistedIntervention,2002,746-752
    [41] Retico A., Delogu P., Fantacci M. E., et al. Lung nodule detection in low-dose andthin-slice computed tomography[J]. Computers in Biology and Medicine,2008,38(4):525-534
    [42] Gori I., Bellotti R., Cerello P., et al. Lung nodule detection in screening computedtomography[A]. IEEE Conference on Nuclear Science Symposium [C].2006,3489-3491
    [43] Arimura H., Katsuragawa S., Suzuki K., et al. Computerized scheme for automateddetection of lung nodules in low-dose computed tomography images for lung cancerscreening[J]. Academic Radiology,2004,11(6):617-629
    [44] Diciotti S., Picozzi G., Falchini M., et al.3-D segmentation algorithm of small lungnodules in spiral CT images[J]. IEEE Transactions on Information Technology inBiomedicine,2008,12(1):7-19
    [45] Sluimer I. C., Waes P. F., Viergever M. A., et al. Computer-aided diagnosis in highresolution CT of the lungs[J]. Medical Physics,2003,30(12):3081-3090
    [46] Ochs R. A., Goldin J. G., Abtin F., et al. Automated classification of lungbronchovascular anatomy in CT using AdaBoost[J]. Medical Image Analysis,2007,11(3):315-324
    [47] Sun S. S., Li H., Hou X. R., et al. Automatic segmentation of pulmonary nodules in CTimages[A]. The International Conference on Bioinformatics and Biomedical Engineering.[C],2007,790-793
    [48] Tong J., Da Z. Z., Jin Z.Y., et al. Automated detection of pulmonary nodules in HRCTimages[A]. The1stInternational Conference on Bioinformatics and Biomedical Engineering.[C],2007,833-836
    [49] Li Q., Sone S., Doi K.. Selective enhancement filters for nodules, vessels, and airwaywalls in two-and three-dimensional CT scans[J]. Medical Physics,2003,30(8):2040-2051
    [50] Oda T., Kubo M., Kawata Y., et al. Detection algorithm of lung cancer candidate noduleson multislice CT images[A]. Medical Imaging2002: Image Processing [C].2002,4684:1354-1361
    [51] Zhou J., Chang S., Metaxas D. N., et al. An automatic method for ground glass opacitynodule detection and segmentation from CT Studies[A]. The28th Annual InternationalConference on Engineering in Medicine and Biology Society[C].2006,3062-3065
    [52] Chang S., Emoto H., Metaxas D. N., et al. Pulmonary micronodule detection from3Dchest CT[J]. Medical Image Computing and Computer-Assisted Intervention,2004,3217:821-828
    [53] Yamamoto S.. Image processing algorithm of computer computer-aided diagnosis in lungcancer screening by CT [J]. Systems and Computers in Japan,2005,36(7):40-53
    [54] Li Q., Li F., Doi K.. Computerized detection of lung nodules in thin-section CT imagesby use of selective enhancement filters and an automated rule-based classifier[J]. AcademicRadiology,2008,15(2):165-175
    [55] Matsumoto S., Kundel H. L., Gee J. C., et al. Pulmonary nodule detection in CT imageswith quantized convergence index filter[J]. Medical Image Analysis,2006,10(3):343-352
    [56] Agam G., Armato S. G., Wu C.. Vessel tree reconstruction in thoracic CT scans withapplication to nodule detection[J]. IEEE Transactions on Medical Imaging,2005,24(4):486-499
    [57] Cohen L. D.. On active contour models and balloons[J]. CVGIP: Image understanding,1991,53(2):211-218
    [58] Xu C., Prince J. L.. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions onImage Processing,1998,7(3):359-369
    [59] Amini A. A., Weymouth T. E., Jain R. C.. Using dynamic programming for solvingvariational problems in vision[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1990,12(9):855-867
    [60] Liu J. H., Zhan G., Wang J. W.. Contour correction liver CT image segmentation methodbased on snake model [A]. The2ndInternational Congress on Image and Signal Proeessing[C].2009,1-4
    [61] Raja S. A., Suryaprakash K., Vipin C.. Segmentation of the liver form abdominal CTusing Markov Random Field Modeland GVF Snakes [A]. International Conference onComplex, Intelligent and Software Intensive Systems[C].2008,293-298
    [62] Soltaninejad S., Keshani M., Tajeripour F.. Lung nodule detection by KNN classifier andactive contour modelling and3D visualization[A]. The16th CSI International Symposium onArtificial Intelligence and Signal Processing (AISP)[C].2012,440-445
    [63] Keshani M., Azimifar Z., Boostani R., et al. Lung nodule segmentation using activecontour modeling[A]. Machine Vision and Image Processing (MVIP)[C].2010,1-6
    [64] Keshani M., Azimifar Z., Tajeripour F., et al. Lung nodule segmentation and recognitionusing SVM classifier and active contour modeling: A complete intelligent system[J].Computers in Biology and Medicine,2013,43(4):287-300
    [65] Jiang H. Y., Cheng Z. Y.. Segmentation of pulmonary nodules based on statistic featuresof wavelet coefficients and dual level sets[A]. The IEEE International Conference onComplex Medical Engineering[C].2007,648-651
    [66] Way T. W., Hadjiiski L M, Sahiner B, et al. Computer-aided diagnosis of pulmonarynodules on CT scans: segmentation and classification using3D active contours[J]. MedicalPhysics,2006,33(7):2323-2337
    [67] Kawata Y., Niki N., Ohamatsu H., et al. Pulmonary nodule segmentation in thoracic3DCT images integrating boundary and region information[A]. International Symposium onMedical Imaging[C].2003,1520-1530
    [68] Zhou J., Chang S., Metaxas D. N., et al. Automatic detection and segmentation of groundglass opacity nodules[J]. Medical Image Computing and Computer-Assisted Intervention,2006,784-791
    [69] Fetita C. I., Preteux F. J.. Bronchial tree modeling and3D reconstruction[A].International Symposium on Optical Science and Technology[C].2000,16-29
    [70] Nie S. D., Chen Z. X., Li L. H.. A CI feature-based pulmonary nodule segmentationusing three-domain mean shift clustering[A]. The International Conference on WaveletAnalysis and Pattern Recognition[C].2007,223-227
    [71] Okada K., Comaniciu D., Krishnan A.. Robust3D segmentation of pulmonary nodules inmultislice CT images[J]. Medical Image Computing and Computer-Assisted Intervention,2004,881-889
    [72] Liu B., Cheng H., Huang J., et al. Probability density difference-based active contour forultrasound image segmentation[J]. Pattern recognition,2010,43(6):2028-2042.
    [73] Krinidis S., Chatzis V.. Fuzzy energy-based active contours[J]. IEEE Transactions onImage Processing,2009,18(12):2747-2755
    [74]李彬.肺癌三维辅助诊断系统的图像处理与识别关键技术研究[D].华南理工大学博士后研究工作报告.广州:广州华博生物制药研究所,2010
    [75] Gomathi M., Thangaraj P.. Automated CAD for lung nodule detection using CT scans[A].The International Conference on Data Storage and Data Engineering (DSDE)[C].2010,150-153
    [76] Armato S. G., McLennan G., Bidaut L., et al. The Lung Image Database Consortium(LIDC) and Image Database Resource Initiative (IDRI): A completed reference database oflung nodules on CT scans[J]. Medical Physics,2011,38(2):915-931
    [77] Pu J., Roos J., Yi C. A., et al. Adaptive border marching algorithm: automatic lungsegmentation on chest CT images[J]. Computerized Medical Imaging and Graphics,2008,32(6):452-462
    [78] Kubo M., Kubota K., Yamada N., et al. A CAD system for lung cancer based on low dosesingle-slice CT image [A]. In: Proceedings of Image Processing[C].2002,4684:1672-1680
    [79] Kanazawa K., Kawata Y., Niki N., et al. Computer-aided diagnosis for pulmonarynodules based on helical CT images[J]. Computerized Medical Imaging and Graphics,1998,22(2):157-167
    [80] Kuhnigk J. M., Dicken V., Bornemann L., et al. Morphological segmentation and partialvolume analysis for volumetry of solid pulmonary lesions in thoracic CT scans[J]. IEEETransactions on Medical Imaging,2006,25(4):417-434
    [81] Kim D. Y., Kim J. H., Noh S. M., et al. Pulmonary nodule detection using chest CTimages[J]. Acta Radiologica,2003,44(3):252-257
    [82] Armato III S G, Giger M L, MacMahon H. Automated lung segmentation in digitizedposteroanterior chest radiographs[J]. Academic Radiology,1998,5(4):245-255
    [83] Hu S., Hoffman E. A., Reinhardt J. M.. Automatic lung segmentation for accuratequantitation of volumetric X-ray CT images[J]. IEEE Transactions on Medical Imaging,2001,20(6):490-498
    [84] Armato S. G., Sensakovic W. F.. Automated lung segmentation for thoracic CT: Impacton computer-aided diagnosis [J]. Academic Radiology,2004,11(9):1011-1021
    [85] Lin D. T., Yan C. R., Chen W. T.. Autonomous detection of pulmonary nodules on CTimages with a neural network-based fuzzy system[J]. Computerized Medical Imaging andGraphics,2005,29(6):447-458
    [86] Wiemker R., Rogalla P., Zwartkruis A., et al. Computer aided lung nodule detection onhigh resolution CT data[A]. Proc SPIE[C],2002,4684:677-688
    [87] Jiao S., Li X., Lu X.. An improved Ostu method for image segmentation[A]. The8thInternational Conference on Signal Processing[C].2006,2:16-20
    [88] Rafael C, Richard E. Digital Image processing [M]. Second Edition.阮秋琦,阮宇智等译.北京:电子工业出版社,2007,420-459
    [89] Tozaki T., Kawata Y., Niki N., et al. Pulmonary organs analysis for differential diagnosisbased on thoracic thin-section CT images[J]. IEEE Transactions on Nuclear Science,1998,45(6):3075-3082
    [90] Hung C. C., Kulkarni S., Kuo B. C.. A new weighted fuzzy C-means clustering algorithmfor remotely sensed image classification[J]. IEEE Journal of Selected Topics in SignalProcessing,2011,5(3):543-553
    [91] Kass M., Witkin A., Terzopoulos D.. Snakes: Active contour models[J]. Internationaljournal of computer vision,1988,1(4):321-331
    [92] Sapiro G.. Geometric partial differential equations and image analysis[M]. CambridgeUniversity Press, Cambridge,2006
    [93] Osher S., Fedkiw R.. Level set methods and dynamic implicit surfaces[M]. New York:Springer,2003
    [94] Sethian J.. A review of recent numerical algorithms for hypersurfaces moving withcurvature dependent speed[J]. Journal of Defferential Geometry,1989,31(4):131-161
    [95] Sethian J. A.. A fast marching level set method for monotonically advancing fronts[J].Proceedings of the National Academy of Sciences,1996,93(4):1591-1595
    [96] Caselles V., Catté F., Coll T., et al. A geometric model for active contours in imageprocessing[J]. Numerische mathematik,1993,66(1):1-31
    [97] Hua C., Liqun G.. Geodesic active contour, inertia and initial speed[J]. PatternRecognition Letters,2008,29(16):2197-2205
    [98] Papandreou G., Maragos P.. Multigrid geometric active contour models[J]. IEEETransactions on Image Processing,2007,16(1):229-240
    [99] Sakalli M., Lam K. M., Yan H.. A faster converging snake algorithm to locate objectboundaries[J]. IEEE Transactions on Image Processing,2006,15(5):1182-1191
    [100] Sum K., Cheung P.. Boundary vector field for parametric active contours[J]. Patternrecognition,2007,40(6):1635-1645
    [101] Xie X.. Active contouring based on gradient vector interaction and constrained level setdiffusion[J]. IEEE Transactions on Image Processing,2010,19(1):154-164
    [102] Li B., Acton S. T.. Automatic active model initialization via Poisson inverse gradient[J].IEEE Transactions on Image Processing,2008,17(8):1406-1420
    [103] Shih F. Y., Zhang K.. Locating object contours in complex background using improvedsnakes[J]. Computer Vision and Image Understanding,2007,105(2):93-98
    [104] Law Y. N., Lee H. K., Yip A. M.. A multi-resolution stochastic level set method forMumford-Shah image segmentation [J]. IEEE Transactions on Image Processing,2008,17(12):2289-2300
    [105] Gorthi S., Duay V., Bresson X., et al. Active deformation fields: Dense deformationfield estimation for atlas-based segmentation using the active contour framework[J]. MedicalImage Analysis,2011,15(6):787-800
    [106] Lie J., Lysaker M., Tai X. C.. A binary level set model and some applications toMumford-Shah image segmentation[J]. IEEE Transactions on Image Processing,2006,15(5):1171-1181
    [107] Xiao D., Ng W. S., Tsang C. B., et al. A region and gradient based active contour modeland its application in boundary tracking on anal canal ultrasound images[J]. Patternrecognition,2007,40(12):3522-3539
    [108] Ying Z., Guangyao L., Xiehua S., et al. Geometric active contours withoutre-initialization for image segmentation[J]. Pattern recognition,2009,42(9):1970-1976
    [109] Chen L., Zhou Y., Wang Y. G., et al. GACV: geodesic-aided C-V method [J]. PatternRecognition,2006,39(7):1391-1395
    [110] Li C., Kao C. Y., Gore J. C., et al. Minimization of region-scalable fitting energy forimage segmentation[J]. IEEE Transactions on Image Processing,2008,17(10):1940-1949
    [111] He C., Wang Y., Chen Q.. Active contours driven by weighted region-scalable fittingenergy based on local entropy[J]. Signal Processing,2012,92(2):587-600
    [112] Liu S., Peng Y.. A local region-based Chan–Vese model for image segmentation[J].Pattern recognition,2012,45(7):2769-2779
    [113] Zhang K., Song H., Zhang L.. Active contours driven by local image fitting energy[J].Pattern recognition,2010,43(4):1199-1206
    [114] Lankton S., Tannenbaum A.. Localizing region-based active contours[J]. IEEETransactions on Image Processing,2008,17(11):2029-2039
    [115] Darolti C., Mertins A., Bodensteiner C., et al. Local region descriptors for activecontours evolution[J]. IEEE Transactions on Image Processing,2008,17(12):2275-2288
    [116] Wang X. F., Huang D. S., Xu H.. An efficient local Chan–Vese model for imagesegmentation[J]. Pattern recognition,2010,43(3):603-618
    [117] Ge Q., Xiao L., Zhang J., et al. An improved region-based model with local statisticalfeatures for image segmentation[J]. Pattern recognition,2012,45(4):1578-1590
    [118] Li C., Huang R., Ding Z., et al. A level set method for image segmentation in thepresence of intensity inhomogeneities with application to MRI[J]. IEEE Transactions onImage Processing,2011,20(7):2007-2016
    [119] Xu X. W., Doi K., Kobayashi T., et al. Development of an improved CAD scheme forautomated detection of lung nodules in digital chest images[J]. Medical Physics,1997,24(9):1395-1403
    [120] Taguchi H., Kawata Y., Niki N., et al. Lung cancer detection based on helical CTimages using curved surface morphology analysis[C]. Proceeding SPIE,1999,3661:1307-1314
    [121] Campadelli P, Casiraghi E, Valentini G. Lung nodules detection and classification[A].,IEEE International Conference on Image Processing[C].2005,1117-1120
    [122] Aoyama M., Li Q., Katsuragawa S., et al. Computerized scheme for determination ofthe likelihood measure of malignancy for pulmonary nodules on low-dose CT images[J].Medical Physics,2003,30(3):387-394
    [123] Wang H., Guo X. H., Jia Z. W., et al. Multilevel binomial logistic prediction model formalignant pulmonary nodules based on texture features of CT image[J]. European journal ofradiology,2010,74(1):124-129
    [124] McNitt G. M., Wyckoff N., Sayre J., et al. The effects of co-occurrence matrix basedtexture parameters on the classification of solitary pulmonary nodules imaged on computedtomography[J]. Computerized Medical Imaging and Graphics,1999,23(6):339-348
    [125] Theodoridis S., Koutroumbas K.. Pattern Recognition [M]. Fourth Edition.李晶皎,王爱侠,王骄等译.北京:电子工业出版社,2010
    [126] Giger M. L., Bae K. T., MacMahon H.. Computerized detection of pulmonary nodulesin computed tomography images[J]. Investigative radiology,1994,29(4):459-465
    [127] Carreira M. J., Cabello D., Penedo M. G., et al. Computer-aided diagnosis: automaticdetection of lung nodules[J]. Medical Physics,1998,25(4):1998-2006
    [128] Ko J. P., Betke M.. Chest CT: automated nodule detection and assessment of changeover time—preliminary experience [J]. Radiology,2001,218(1):267-273
    [129] Brown M. S., Mcnitt G. M. F., Mankovich N. J., et al. Method for segmenting chest CTimage data using an anatomical model: preliminary results[J]. IEEE Transactions on MedicalImaging,1997,16(6):828-839
    [130] Liang Y., He Z., Liu Y.. A Strategy for SPN detection based on biomimetic patternrecognition and knowledge-based features[J]. Next-Generation Applied Intelligence,2009,672-681
    [131] Fukano G., Takizawa H., Shigemoto K., et al. Recognition method of lung nodulesusing blood vessel extraction techniques and3D object models [A]. In: Proceedings ofMedical Imaging: Image Processing[C].2003,5032:190-196
    [132] Armato S. G., Altman M. B., Wilkie J., et al. Automated lung nodule classificationfollowing automated nodule detection on CT: a serial approach[J]. Medical Physics,2003,30(6):1188-1197
    [133] Kim H., Nakashima T., Itai Y., et al. Automatic detection of ground glass opacity fromthe thoracic MDCT images by using density features[A]. International Conference on Control,Automation and Systems[C].2007,1274-1277
    [134] Lin J. S., Lo S. C., Hasegawa A., et al. Reduction of false positives in lung noduledetection using a two-level neural classification[J]. IEEE Transactions on Medical Imaging,1996,15(2):206-217
    [135] Dehmeshki J., Chen J., Casique M. V., et al. Classification of lung data by sampling andsupport vector machine[A]. The26th Annual International Conference on Engineering inMedicine and Biology Society[C].2004,3194-3197
    [136] Zhao L., Boroczky L., Lee K.. False positive reduction for lung nodule CAD usingsupport vector machines and genetic algorithms[A]. International Congress Series[C].2005,1099-1114
    [137] Boroczky L., Zhao L., Lee K. P.. Feature subset selection for improving theperformance of false positive reduction in lung nodule CAD[J]. IEEE Transactions onInformation Technology in Biomedicine,2006,10(3):504-511
    [138] Lee Y., Seo J. B., Lee J. G., et al. Performance testing of several classifiers fordifferentiating obstructive lung diseases based on texture analysis at high-resolutioncomputerized tomography (HRCT)[J]. Computer methods and programs in biomedicine,2009,93(2):206-215
    [139] Kim N., Seo J. B., Lee Y., et al. Development of an automatic classification system fordifferentiation of obstructive lung disease using HRCT[J]. Journal of digital imaging,2009,22(2):136-148
    [140] Gangeh M. J., S rensen L., Shaker S. B., et al. A texton-based approach for theclassification of lung parenchyma in CT images[J]. Medical Image Computing andComputer-Assisted Intervention,2010,595-602
    [141] Eftekhari A., Forouzanfar M., Abrishami M. H., et al. Block-wise2D kernel PCA/LDAfor face recognition[J]. Information Processing Letters,2010,110(17):761-766
    [142] Suzuki K., Li F., Sone S.. Computer-aided diagnostic scheme for distinction betweenbenign and malignant nodules in thoracic low-dose CT by use of massive training artificialneural network[J]. IEEE Transactions on Medical Imaging,2005,24(9):1138-1150
    [143] Suzuki K., Li F., Li Q., et al. Comparison between2D and3D massive-training ANNs(MTANNs) in CAD for lung nodule detection on MDCT[J]. Internations Journal of ComputerAssisted Radiology and Surgery,2006,1:354-355
    [144] Li F., Aoyama M., Shiraishi J., et al. Radiologists' performance for differentiatingbenign from malignant lung nodules on high-resolution CT using computer-estimatedlikelihood of malignancy[J]. American Journal of Roentgenology,2004,183(5):1209-1215
    [145] Suzuki K., Shiraishi J., Abe H., et al. False-positive reduction in computer-aideddiagnostic scheme for detecting nodules in chest radiographs by means of massive trainingartificial neural network [J]. Academic Radiology,2005,12(2):191-201
    [146] Muramatsu C., Li Q., Suzuki K., et al. Investigation of psychophysical measure forevaluation of similar images for mammographic masses: Preliminary results[J]. MedicalPhysics,2005,32(7):2295-2304
    [147] Yuan Y., Giger M. L., Li H., et al. A dual-stage method for lesion segmentation ondigital mammograms[J]. Medical Physics,2007,34(11):4180-4193
    [148] Li F., Arimura H., Suzuki K., et al. Computer-aided detection of peripheral lung cancersmissed at CT: ROC analyses without and with localization [J]. Radiology,2005,237(2):684-690
    [149] Suzuki K., Abe H., MaeMahon H., et al. Image-proeessing technique for suppressingribs in chest radiographs by means of massive training artificial neural network (MTANN)[J].IEEETransactions on Medical Imaging,2006,25(4):406-416
    [150] Shiraishi J., Li Q., Suzuki K., et al. Computer-aided diagnostic scheme for the detectionof lung nodules on chest radiographs: localized search method based on anatomicalclassification[J]. Medical Physics,2006,33(7):2642-2653
    [151] Oda S., Awai K., Stlztlki K., et al. Detection of small pulmonary nodules on chestradiographs: effect of rib suppression by the massive training artificial neural network(MTANN) technique on the performance of rediologists [J]. Alneriean Jounal ofRoentgenology,2009,193(1): W397-W402
    [152] Suzuki K., Zhang J., Xu J.. Massive-training artificial neural network coupled withLaplacian-eigenfunction-based dimensionality reduction for computer-aided detection ofpolyps in CT colonography[J]. IEEE Transactions on Medical Imaging,2010,29(11):1907-1917
    [153] Kubota T., Jerebko A. K., Dewan M., et al. Segmentation of pulmonary nodules ofvarious densities with morphological approaches and convexity models[J]. Medical ImageAnalysis,2011,15(1):133-154
    [154] Diciotti S., Lombardo S., Falchini M., et al. Automated segmentation refinement ofsmall lung nodules in CT scans by local shape analysis[J]. IEEE Transactions on BiomedicalEngineering,2011,58(12):3418-3428
    [155] Tong J., Ying W., Dong W. C.. A lung cancer lesions dectection scheme based on CTimage[A]. The2ndInternational Conference on Signal Processing Systems (ICSPS)[C].2010,1: V1-557-V1-560
    [156] Liu S., Li J.. Automatic medical image segmentation using gradient and intensitycombined level set method[A]. The28th Annual International Conference on Engineering inMedicine and Biology Society[C].2006,3118-3121
    [157] Jing X., Nie S. D.. Segmentation of Pulmonary nodule in CT Image Based on level SetMethod [A]. The2thInternational Conference on Bioinformatics and Biomedical Engineering[C].2008,2698-2701
    [158] Yang J., Duncan J. S..3D image segmentation of deformable objects with jointshape-intensity prior models using level sets[J]. Medical Image Analysis,2004,8(3):285-294
    [159] Ye X., Lin X., Dehmeshki J., et al. Shape-based computer-aided detection of lungnodules in thoracic CT images[J]. IEEE Transactions on Biomedical Engineering,2009,56(7):1810-1820
    [160] Bloch I.. Duality vs. adjunction for fuzzy mathematical morphology and general formof fuzzy erosions and dilations[J]. Fuzzy Sets and Systems,2009,160(13):1858-1867
    [161] Chan T. F., Vese L. A.. Active contours without edges[J]. IEEE Transactions on ImageProcessing,2001,10(2):266-277
    [162] Son W., Park S. J., Park C. M., et al. Automated volumetric segmentation method forcomputerized-diagnosis of pure nodular ground-glass opacity in high-resolution CT[J]. SPIEMedical Imaging,2010,76241p-1-76241p-7
    [163] Tsai N. C., Chen H. W., Hsu S. L.. Computer-aided diagnosis for early-stage breastcancer by using Wavelet Transform[J]. Computerized Medical Imaging and Graphics,2011,35(1):1-8
    [164] Dempster A. P., Laird N. M., Rubin D B. Maximum likelihood from incomplete data viathe EM algorithm[J]. Journal of the Royal Statistical Society Series B (Methodological),1977,1-38
    [165] Redner R. A., Walker H. F.. Mixture densities, maximum likelihood and the EMalgorithm[J]. SIAM review,1984,26(2):195-239
    [166] Achuthan A., Rajeswari M., Ramachandram D., et al. Wavelet energy-guided levelset-based active contour: A segmentation method to segment highly similar regions[J].Computers in Biology and Medicine,2010,40(7):608-620
    [167] Maalouf A., Carre P., Bertrand A., et al. Cooperation of the partial differential equationmethods and the wavelet transform for the segmentation of multi-valued images [J]. SignalProcessing: Image Communication,2008,23(1):14-30
    [168] Dehmeshki J., Ye X., Lin X., et al. Automated detection of lung nodules in CT imagesusing shape-based genetic algorithm[J]. Computerized Medical Imaging and Graphics,2007,31(6):408-417
    [169] Ye X., Beddoe G., Slabaugh G.. Automatic graph cut segmentation of lesions in CTusing mean shift superpixels[J]. Journal of Biomedical Imaging,2010,9:1-13
    [170] Sun S. S.. Vessel Attachment Nodule Segmentation Based on Mean-Shift and EM[J].Advanced Materials Research,2011,204:589-595
    [171] Pu J., Paik D. S., Meng X., et al. Shape “break-and-repair” strategy and its applicationto automated medical image segmentation[J]. IEEE Transactions on Visualization andComputer Graphics,2011,17(1):115-124
    [172] Pinho R., Tournoy K. G., Sijbers J.. Assessment and stenting of tracheal stenosis usingdeformable shape models[J]. Medical Image Analysis,2011,15(2):250-266
    [173] Fang W., Chan K. L.. Incorporating shape prior into geodesic active contours fordetecting partially occluded object[J]. Pattern recognition,2007,40(8):2163-2172
    [174] Dydenko I., Jamal F., Bernard O., et al. A level set framework with a shape and motionprior for segmentation and region tracking in echocardiography[J]. Medical Image Analysis,2006,10(2):162-177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700