用户名: 密码: 验证码:
长循环靶向性载药胶束的构建及其细胞水平评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物胶束是当前药物传输领域研究的热点,在用作药物载体时具有多个优点,如对疏水性或难溶性药物的增溶作用,聚合物亲水链由一定长度的聚乙二醇等组成时可具备长循环性,而在聚合物胶束的表面修饰以靶识别分子可使其具备主动靶向性。本文制备了载香豆素6和米托蒽琨的聚合物胶束,并研究了地塞米松处理对Hela细胞摄取叶酸偶联载香豆素6胶束的影响。
     首先,以双氨基PEG (PEG-bis-amine)、叶酸(folate)、磷脂酰乙醇胺(1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine, DSPE)为原料合成了叶酸-PEG-磷脂酰乙醇胺(folate-PEG-DSPE),并利用傅立叶红外波谱仪和核磁共振谱仪对终产物进行了结构表征,结果证实所得到的终产物为目标化合物;还利用高效液相色谱法对得到的终产物进行了含量分析;然后,以甲氧基聚乙二醇-磷脂酰乙醇胺(mPEG-DSPE)和合成的叶酸-PEG-磷脂酰乙醇胺(folate-PEG-DSPE)为材料,通过膜水化法制备出载香豆素6(coumarin6)的普通胶束(plain micelles)和叶酸偶联胶束(folate-conjugated micelles)。分别采用透射电镜和激光粒度分析仪对胶束的形态和粒径分布进行了检测,发现透射电镜下的干燥胶束粒径约50-60nm,而溶液状态下的胶束平均粒径约100nm;还利用高效液相色谱法分别检测了胶束溶液的香豆素6浓度,并计算出了聚合物胶束的载药量和包封率分别约为0.8%和15.4%;此外,还利用高效液相色谱法检测了叶酸偶联胶束中的folate-PEG-DSPE,实验结果表明,膜水化法是制备载药聚合物胶束的适宜方法,所制备的叶酸偶联胶束含有folate-PEG-DSPE.实验结果还表明,聚合物胶束对于疏水性小分子药物具有显著的增溶作用;
     其次,以甲氧基聚乙二醇一磷脂酰乙醇胺为材料,利用膜水化法制备包载水溶性较好的蒽环类抗肿瘤药米托蒽醌盐酸盐(mitoxantrone hydrochloride)的聚合物胶束,考察了磷脂酰乙醇胺对米托蒽琨包封率和载药量的影响。动态光散射法考察了胶束的粒径分布,其平均粒径约10nm;发现磷脂酰乙醇胺的添加可以使聚合物胶束对米托蒽醌的包封率和载药量增加达23%左右;
     然后,考察了叶酸受体α阳性的Hela细胞对载香豆素6的普通胶束和叶酸偶联胶束的体外摄取实验,利用荧光显微镜和流式细胞仪考察Hela细胞对于叶酸偶联胶束的摄取作用,发现Hela细胞对于叶酸偶联胶束的摄取明显高于普通胶束,证明通过叶酸小分子与细胞表面的叶酸受体a的特异性识别和结合作用,可以促进细胞对于叶酸偶联载药胶束的摄取;
     最后,研究了地塞米松处理对于Hela细胞摄取载香豆素6的叶酸偶联胶束的影响。利用多个剂量(5nM,50nM,100nM)的地塞米松处理Hela细胞96h,并用实时定量PCR技术和流式细胞技术分别检测了处理后Hela细胞的mRNA水平和细胞表面FRa水平,发现地塞米松处理后的Hela细胞的mRNA水平增加了近3倍,而Hela细胞表面FRa水平增加了1倍多;在5nM地塞米松处理96h的Hela细胞中加入叶酸偶联胶束,以未经处理的Hela细胞为对照,采用荧光显微镜和流式细胞仪考察细胞摄取量,发现地塞米松处理的Hela细胞对叶酸偶联胶束的摄取增加了近1倍,也即说明通过上调细胞表面FRa水平可以增强叶酸偶联胶束在肿瘤细胞的内吞。
     本研究成功制备了载香豆素6的普通胶束和叶酸偶联胶束,动态光散射法检测的平均粒径约100nm;此外,还制备了载米托蒽醌的聚合物胶束,平均粒径约10nm,磷脂酰乙醇胺可以增加聚合物胶束对于米托蒽醌的载药量和包封率;在细胞水平证实了通过地塞米松可以上调Hela细胞的FRα表达水平,继而促进其对叶酸偶联载药胶束的摄取。
Polymeric micelles as interests of current drug delivery research have several advantages, such as solubilization for hydrophobic or unsoluble drugs, longevity in blood circulation and active targeting by attaching ligand molecules to the surface of micelles which could specifically initiate ligand-receptor binding-based endocytosis. In this dissertation, folate-conjugated micelles were prepared and evaluated in folate receptor a(FR a)-positive Hela cells. The dissertation consists of five chapters, and is shown as follows.
     Firstly, folate-PEG-DSPE was synthesized by three-step synthesis method, from PEG-bis-amine,folate and phosphatidylethanolamine, and confirmed structurally by FT-IR and1H NMR.In addition, high performance liquid chromatography (HPLC) was utilized to quantify folate-PEG-DSPE.
     Secondly, polymeric micelles were prepared by thin-film rehydration method, fluorescent dyes coumarin6as model of hydrophobic drugs.The micelles containing folate-PEG-DSPE were called folate-conjugated micelles(FM) and those containing no folate-PEG-DSPE were called plain micelles(PM).The surface morphology of FM and PM were observed by transmission electron microscope (TEM), the particle size were also examined by dynamic light scattering(DLS), the drug loading and encapsulation efficiency were assayed by HPLC. In TEM pictures, FM and PM were spherical and uniform-sized particles,with diameter about50-60nm.In micelles solution, the mean particle size of FM and PM were about100nm.The drug loading and encapsulation efficiency of FM and PM were about0.8%and15.4%, respectively.
     Thirdly, polymeric micelles loading mitoxantrone(MTO) were prepared by thin-film rehydration method, effect of DSPE as additive on the MTO loading and encapsulation efficiency was examined. The particle size distribution were examined by dynamic light scattering(DLS), and drug loading and encapsulation efficiency were determined by HPLC.The mean size of MTO-loaded polymeric micelles with or without DSPE was about10nm, but the drug loading and encapsulation efficiency were enhanced by DSPE.
     Fourthly, FRa positive Hela cells were co-incubated with FM or PM, the endocytosis of micelles were examined by fluorescence microscope and flow cytometer(FCM). The fluorescent images and FCM histogram showed that the endocytosis of FM was more than PM. This results demonstrated the endocytosis of FRa(+) cells could be enhanced by the specific binding of folate on the micelles and FRa on the cells membrane.
     Finally, Hela cells were treated with dexamethasone(dex,5nM,5OnM,100nM) for96hours in order to upregulating FRa level. And FRa mRNA and membrane FRa level were examined by real-time quantitative polymerase chain reaction (RT-PCR) and FCM. The results showed the mRNA level and FRa level of Hela cells were nearly tripled and doubled by dex treatment, respectively. After Hela cells were treated with dex for96h, folate-conjugated micelles were added to the culture plate and co-incubated for2hours, Hela cells without dex treatment as control, then the endocytosis of micelles were examined by fluorescence microscope and FCM. The results showed that the endocytosis of micelles in Hela cells with dex treatment were more than those without dex treatment.
     In conclusion, the drug loading and encapsulation efficiency of polymeric micelles for MTO could be increased by DSPE. The endocytosis of foalte-conjugated micelles in Hela cells could be enhanced by upregulating FRa level with dex treatment, and this is a promising strategy for facilitating FRa-based targeting and further research is nessesary.
引文
1. Alonso, M.J., Nanomedicines for overcoming biological barriers. Biomed Pharmacother,2004,58(3):168-72.
    2. S. MOEIN MOGHIMI, A. CHRISTY HUNTER, and J.C. MURRAY, Long-Circulating and Target-Specific Nanoparticles:Theory to Practice. Pharmacol Rev,2001,53:283-318.
    3. Bae, Y. and K. Kataoka. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews,2009,61(10):768-784.
    4. Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem,2010,21(5):797-802.
    5. Fang, J., T. Sawa, et al. Factors and mechanism of "EPR" effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol,2003,519:29-49.
    6. Maeda, H., G. Y. Bharate, et al. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm,2009,71(3):409-419.
    7. Letchford, K. and H. Burt. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures:micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics,2007,65(3):259-269.
    8. Dos Santos, N., C. Allen, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes:Relating plasma circulation lifetimes to protein binding. Biochimica et Biophysica Acta (BBA)-Biomembranes,2007,1768(6): 1367-1377.
    9. Maria Laura Immordino, Franco Dosio, and Luigi Cattel. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine.2006,1(3):297-315.
    10. Breunig, M., S. Bauer, et al. Polymers and nanoparticles:Intelligent tools for intracellular targeting? European Journal of Pharmaceutics and Biopharmaceutics,2008,68(1):112-128.
    11. Vonarbourg, A., C. Passirani, et al. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials,2006,27(24):4356-4373.
    12. Romberg, B., C. Oussoren, et al.Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s. Pharmaceutical Research,2007,24(12):2394-2401.
    13. Zhang, X., S.-R. Pan, et al. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery:Effects of PEG molecular weight and PEGylation degree. Journal of Biomedical Materials Research Part A,2008,84A(3):795-804.
    14. Mao, S., M. Neu, et al. Influence of Polyethylene Glycol Chain Length on the Physicochemical and Biological Properties of Poly(ethylene imine)-graft-Poly(ethylene glycol) Block Copolymer/SiRNA Polyplexes. Bioconjugate Chemistry,2006,17(5):1209-1218.
    15. Lutz, J.-F. and H. G Borner. Modern trends in polymer bioconjugates design. Progress in Polymer Science,2008,33(1):1-39.
    16. Veronese, Francesco M; Mero, Anna.The Impact of PEGylation on Biological Therapies. BioDrugs,2008,22:315-329.
    17. Veronese, F.M., Peptide and protein PEGylation:a review of problems and solutions. Biomaterials,2001.22(5):405-417.
    18. Romberg, B., W. Hennink, et al. Sheddable Coatings for Long-Circulating Nanoparticles. Pharmaceutical Research,2008,25(1):55-71.
    19. Torchilin, V.P., et al., Amphiphilic poly-N-vinylpyrrolidones::synthesis, properties and liposome surface modification. Biomaterials,2001.22(22): 3035-3044.
    20. Woodle, M.C., C.M. Engbers, and S. Zalipsky, New Amphipatic Polymer-Lipid Conjugates Forming Long-Circulating Reticuloendothelial System-Evading Liposomes. Bioconjugate Chemistry,1994.5(6):493-496.
    21. Maruyama, K., et al., Phosphatidyl polyglycerols prolong liposome circulation in vivo. Int J Pharm,1994.111(1):103-107.
    22. Takeuchi, H., et al., Prolonged circulation time of doxorubicin-loaded liposomes coated with a modified polyvinyl alcohol after intravenous injection in rats. European Journal of Pharmaceutics and Biopharmaceutics,1999.48(2):123-129.
    23. Nie, S., Y. Xing, et al.Nanotechnology Applications in Cancer. Annual Review of Biomedical Engineering,2007,9(1):257-288.
    24. Owens Iii, D. E. and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics,2006,307(1):93-102.
    25. Harper, GR., et al., Sterie stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro. Biomaterials,1991. 12(7):695-700.
    26. Miiller, M., et al., Surface modification of PLGA microspheres. Journal of Biomedical Materials Research Part A,2003.66A(1):55-61.
    27. Peracchia, M.T., et al., Stealth(?) PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. Journal of Controlled Release, 1999.60(1):121-128.
    28. Bhadra, D., et al., A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm,2003.257(1-2):111-124.
    29. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials,2005.26(18): 3995-4021.
    30. Illum, L., et al., Development of Systems for Targeting the Regional Lymph Nodes for Diagnostic Imaging:In Vivo Behaviour of Colloidal PEG-Coated Magnetite Nanospheres in the Rat Following Interstitial Administration. Pharm Res,2001.18(5):640-645.
    31. Porter, C.J.H., et al., The polyoxyethylene/polyoxypropylene block co-polymer Poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett,1992.305(1): 62-66.
    32. Peer, D., J. M. Karp, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nano,2007,2(12):751-760.
    33. Monsky, W.L., et al., Augmentation of Transvascular Transport of Macromolecules and Nanoparticles in Tumors Using Vascular Endothelial Growth Factor. Cancer Res,1999.59(16):4129-4135.
    34. Hobbs, S.K., et al., Regulation of transport pathways in tumor vessels:role of tumor type and microenvironment. Proc Natl Acad Sci U S A,1998.95(8): 4607-12.
    35. Torchilin, V.P., et al., Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1994.1195(1):p.181-184.
    36. Jamshaid, M., et al., Poloxamer sorption on liposomes:comparison with polystyrene latex and influence on solute efflux. Int J Pharm,1988.48(1-3):p. 125-131.
    37. Vonarbourg, A., C. Passirani, et al.Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials,2006,27(24):4356-4373.
    38. Van Butsele, K., R. Jerome, et al. Functional amphiphilic and biodegradable copolymers for intravenous vectorisation. Polymer,2007,48(26):7431-7443.
    39. Devalapally, H., A. Chakilam, et al. Role of nanotechnology in pharmaceutical product development. Journal of Pharmaceutical Sciences,2007,96(10): 2547-2565.
    40. Han, H. D., M. S. Choi, et al. Hyperthermia-induced antitumor activity of thermosensitive polymer modified temperature-sensitive liposomes. Journal of Pharmaceutical Sciences,2006,95(9):1909-1917.
    41. Couvreur, P. and C. Vauthier. Nanotechnology:Intelligent Design to Treat Complex Disease. Pharmaceutical Research,2006,23(7):1417-1450.
    42. Fenske, D. B., A. Chonn, et al.Liposomal Nanomedicines:An Emerging Field." Toxicologic Pathology,2008,36(1):21-29.
    43. Allen, T.M., et al., Stealth Liposomes:An Improved Sustained Release System for 1-{beta}-D-Arabinofuranosylcytosine. Cancer Res,1992.52(9):p. 2431-2439.
    44. Safra, T., Cardiac Safety of Liposomal Anthracyclines. Oncologist,2003. 8(90002):p.17-24.
    45. Allen, T.M., C.B. Hansen, and D.E.L. de Menezes, Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev,1995.16(2-3):p.267-284.
    46. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov,2005,4(2):145-160.
    47. Sofou, S. and G. Sgouros. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opinion on Drug Delivery,2008,5(2):189-204.
    48. Benhar, I., et al., Rapid humanization of the Fv of monoclonal antibody B3 by using framework exchange of the recombinant immunotoxin B3(Fv)-PE38. Proc Natl Acad Sci U S A,1994.91(25):p.12051-12055.
    49. Elbayoumi, T. and V. Torchilin. Use of Radiolabeled Liposomes for Tumor Imaging. Nanoparticles in Biomedical Imaging. J. W. M. Bulte and M. M. J. Modo, Springer New York.2008,102:211-236.
    50. Huwyler J, Drewe J, Krahenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine.2008;3(1):21-9.
    51. Torchilin, V.P., et al., p-Nitrophenylcarbonyl-PEG-PE-liposomes:fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta,2001. 1511(2):p.397-411.
    52. Torchilin, V.P., et al., Immunomicelles:targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A,2003.100(10):p.6039-44.
    53. Gabizon, A. A., H. Shmeeda, et al. Pros and Cons of the Liposome Platform in Cancer Drug Targeting. Journal of Liposome Research,2006,16(3):175-183.
    54. Wong, J.Y., et al., Direct Measurement of a Tethered Ligand-Receptor Interaction Potential. Science,1997.275(5301):p.820-822.
    55. Alberto Gabizon, et al., Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes:In Vitro Studies. Bioconjug Chem,1999.10:p.289-298.
    56. Lukyanov, A.N., et al., Tumor-targeted liposomes:doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release, 2004.100(1):p.135-44.
    57. Mastrobattista, E., et al., Functional Characterization of an Endosome-disruptive Peptide and Its Application in Cytosolic Delivery of Immunoliposome-entrapped Proteins. Journal of Biological Chemistry,2002.277(30):p.27135-27143.
    58. Hatakeyama, H., et al., Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm,2004. 281(1-2):p.25-33.
    59. Gijsens, A., et al., Targeting of the photocytotoxic compound A1PcS4 to hela cells by transferrin conjugated peg-liposomes. Int J Cancer,2002.101(1):p.78-85.
    60. Deeken, J. F. and W. Loscher.The Blood-Brain Barrier and Cancer:Transporters, Treatment, and Trojan Horses. Clinical Cancer Research,2007,13(6): 1663-1674.
    61. Byrne, J. D., T. Betancourt, et al.Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews,2008,60(15): 1615-1626.
    62. Peer, D. and R. Margalit, Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer,2004.108(5):p.780-789.
    63. Dagar, S., et al., VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer:in vivo studies. Journal of Controlled Release,2003.91(1-2):p. 123-133.
    64. Schiffelers, R.M., et al., Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. Journal of Controlled Release,2003.91(1-2):p.115-122.
    65. Lestini, B.J., et al., Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. Journal of Controlled Release,2002.78(1-3):p. 235-247.
    66. Asai, T., et al., Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett,2002.520(1-3):p.167-170.
    67. Lipinski, C.A., et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev,2001.46(1-3):p.3-26.
    68. Fernandez, A.-M, et al., N-Succinyl-(β-alanyl-l-leucyl-l-alanyl-l-leucyl)doxorubicin:An Extracellularly Tumor-Activated Prodrug Devoid of Intravenous Acute Toxicity. Journal of Medicinal Chemistry,2001.44(22):p.3750-3753.
    69. Lipinski, C.A., Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods.2000,44(1): p.235-249.
    70. Poulin, P. and F.-P. Theil. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. Journal of Pharmaceutical Sciences,2002,91(1):129-156.
    71. Kim, D. and Y. H. Bae. Polymeric Carriers for Anticancer Drugs. Pharmaceutical Perspectives of Cancer Therapeutics. Y. Lu and R. I. Mahato, Springer New York. 2009,207-243.
    72. Constantinides, P.P., et al., Formulation Development and Antitumor Activity of a Filter-Sterilizable Emulsion of Paclitaxel. Pharm Res,2000.17(2):p.175-182.
    73. Jones, M.-C. and J.-C. Leroux, Polymeric micelles-a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics,1999. 48(2):p.101-111.
    74. Wang, Y.-C., L.-Y. Tang, et al. Self-Assembled Micelles of Biodegradable Triblock Copolymers Based on Poly(ethyl ethylene phosphate) and Poly(□-caprolactone) as Drug Carriers. Biomacromolecules,2007,9(1):388-395.
    75. Mahmud, A., X.-B. Xiong, et al. Polymeric micelles for drug targeting. Journal of Drug Targeting,2007,15(9):553-584.
    76. Letchford, K., R. Liggins, et al. Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations. Journal of Pharmaceutical Sciences,2008,97(3):1179-1190.
    77. Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release,2001.73(2-3):p.137-172.
    78. Sawant, R. M, J. P. Hurley, et al. "SMART" Drug Delivery Systems:□ Double-Targeted pH-Responsive Pharmaceutical Nanocarriers. Bioconjugate Chemistry,2006,17(4):943-949.
    79. Kataoka, K., A. Harada, and Y. Nagasaki, Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv Drug Deliv Rev,2001.47(1):p.113-131.
    80. Jain, R.K., Transport of Molecules, Particles, and Cells in Solid Tumors. Annual Review of Biomedical Engineering,1999.1(1):p.241-263.
    81. Weissig, V., K.R. Whiteman, and V.P. Torchilin, Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res,1998.15(10):p.1552-6.
    82. Sutton, D., N. Nasongkla, et al. Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharmaceutical Research,2007,24(6):1029-1046.
    83. Trubetskoy, V.S. and V.P. Torchilin, Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev,1995.16:p.311-320.
    84. Soga, O., et al., Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. Journal of Controlled Release,2005.103(2):p.341-353.
    85. Le Garrec, D., et al., Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs:in vitro and in vivo evaluation. Journal of Controlled Release,2004.99(1):p.83-101.
    86. Shuai, X., et al., Core-Cross-Linked Polymeric Micelles as Paclitaxel Carriers. Bioconjugate Chemistry,2004.15(3):p.441-448.
    87. Mathot, F., et al., Intestinal uptake and biodistribution of novel polymeric micelles after oral administration. Journal of Controlled Release,2006.111(1-2): p.47-55.
    88. Park, E.K., et al., Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release,2005.109(1-3):p.158-68.
    89. Gao, H., et al., Conjugates of poly(dl-lactic acid) with ethylenediamino or diethylenetriamino bridged bis([beta]-cyclodextrin)s and their nanoparticles as protein delivery systems. Journal of Controlled Release,2006.112(3):p.301-311.
    90. Pillion, D.J., et al., Structure-function relationship among Quillaja saponins serving as excipients for nasal and ocular delivery of insulin. J Pharm Sci,1996. 85(5):p.518-524.
    91. Lallemand, F., et al., Cyclosporine A delivery to the eye:A pharmaceutical challenge. European Journal of Pharmaceutics and Biopharmaceutics,2003.56(3): p.307-318.
    92. Aliabadi, H.M. and A. Lavasanifar, Polymeric micelles for drug delivery. Expert Opinion on Drug Delivery,2006.3(1):p.139-162.
    93. Zhang, L. and A. Eisenberg, Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science,1995.268(5218):p. 1728-1731.
    94. Kabanov, A.V., E.V. Batrakova, and V.Y. Alakhov, Pluronic(?) block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of Controlled Release,2002.82(2-3):p.189-212.
    95. La, S.B., T. Okano, and K. Kataoka, Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci, 1996.85(1):p.85-90.
    96. Hagan, S.A., et al., Polylactide-Poly(ethylene glycol) Copolymers as Drug Delivery Systems.1. Characterization of Water Dispersible Micelle-Forming Systems. Langmuir,1996.12(9):p.2153-2161.
    97. Inoue, T., et al., An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. Journal of Controlled Release,1998.51(2-3):p.221-229.
    98. Morcol, T., et al., Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. Int J Pharm,2004.277(1-2):p.91-97.
    99. Harris, J.M., N.E. Martin, and M. Modi, Pegylation:A Novel Process for Modifying Pharmacokinetics. Clinical Pharmacokinetics,2001.40(7):p. 539-551.
    100. Roberts, M.J., M.D. Bentley, and J.M. Harris, Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev,2002.54(4):p.459-476.
    101. Veronese FM, Harris JM.Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev,2002.54(4):p.453-456.
    102. Calvo, P., et al., PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. Journal of Neuroscience Methods,2001.111(2):p. 151-155.
    103. Torchilin, V.P., et al., Amphiphilic poly-N-vinylpyrrolidones:synthesis, properties and liposome surface modification. Biomaterials,2001.22(22):p.3035-44.
    104. Garrec, D.L., et al., Optimizing pH-responsive Polymeric Micelles for Drug Delivery in a Cancer Photodynamic Therapy Model. J Drug Target,2002.10(5):p. 429-437.
    105. Torchilin, Vladimir P. Lipid-Core Micelles for Targeted Drug Delivery. Current Drug Delivery,2005,2:319-327.
    106. Qiu, L. and Y. Bae. Polymer Architecture and Drug Delivery. Pharmaceutical Research,2006,23(1):1-30.
    107. Sharma, D., et al., Novel Taxol formulation:polyvinylpyrrolidone nanoparticle-encapsulated Taxol for drug delivery in cancer therapy. Vol.8.1996. 281-6.
    108. Moneghini, M., et al., Formulation and Evaluation of Vinylpyrrolidone/Vinylacetate Copolymer Microspheres with Carbamazepine. Pharmaceutical Development and Technology,2000.5(3):p.347-353.
    109. Benahmed, A., M. Ranger, and J.-C. Leroux, Novel Polymeric Micelles Based on the Amphiphilic Diblock Copolymer Poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm Res,2001.18(3):p. 323-328.
    110. Trubetskoy, V.S., et al., Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine:design of long-circulating particulate contrast medium for X-ray computed tomography. J Drug Target,1997.4(6):p.381-8.
    111. Katayose, S. and K. Kataoka, Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J Pharm Sci,1998.87(2):p.160-163.
    112. Yokoyama, M., et al., Characterization and Anticancer Activity of the Micelle-forming Polymeric Anticancer Drug Adriamycin-conjugated Poly(ethylene glycol)-Poly(aspartic acid) Block Copolymer. Cancer Res,1990. 50(6):p.1693-1700.
    113. Harada, A. and K. Kataoka, Novel Polyion Complex Micelles Entrapping Enzyme Molecules in the Core:Preparation of Narrowly-Distributed Micelles from Lysozyme and Poly(ethylene glycol)-Poly(aspartic acid) Block Copolymer in Aqueous Medium. Macromolecules,1998.31(2):p.288-294.
    114. Kim, S.Y., et al., Methoxy poly(ethylene glycol) and [epsilon]-caprolactone amphiphilic block copolymeric micelle containing indomethacin.:Ⅱ. Micelle formation and drug release behaviours. Journal of Controlled Release,1998. 51(1):p.13-22.
    115. Allen, C., et al., Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. Journal of Controlled Release,2000. 63(3):p.275-286.
    116. Ramaswamy, M., et al., Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. J Pharm Sci,1997.86(4):p. 460-464.
    117. Kabanov, A.V. and V.A. Kabanov, Interpolyelectrolyte and block ionomer complexes for gene delivery:physico-chemical aspects. Adv Drug Deliv Rev, 1998.30(1-3):p.49-60.
    118. Torchilin, V.P., et al., Immunomicelles:Targeted pharmaceutical carriers for poorly soluble drugs. ProcNatl Acad Sci U S A,2003.100(10):p.6039-6044.
    119. Lukyanov, A.N., et al., Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res,2002.19(10): p.1424-9.
    120. Lukyanov, A.N., W.C. Hartner, and V.P. Torchilin, Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release,2004.94(1):p.187-93.
    121. Wang, J., et al., Preparation and in vitro synergistic anticancer effect of vitamin K3 and 1,8-diazabicyclo[5,4,0]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int J Pharm,2004.272(1-2):p.129-35.
    122. Krishnadas, A., I. Rubinstein, and H. Onyuksel, Sterically Stabilized Phospholipid Mixed Micelles:In Vitro Evaluation as a Novel Carrier for Water-Insoluble Drugs. Pharm Res,2003.20(2):p.297-302.
    123. Gao, Z., et al., Diacyllipid-Polymer Micelles as Nanocarriers for Poorly Soluble Anticancer Drugs. Nano Lett,2003.2(9):p.979-82.
    124. Gao, Z., et al., PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target,2003.11(2):p.87-92.
    125. Lee, S. C., K. M. Huh, et al. Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:□ In Vitro and In Vivo Characterization. Biomacromolecules,2006,8(1):202-208.
    126. Matsumura, Y. and K. Kataoka, Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Science,2009.100(4):p.572-579.
    127. Matsumura, Y., Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev,2008.60(8):p.899-914.
    128. Hamaguchi, T., et al., NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer,2005.92(7):p.1240-1246.
    129. Yamamoto, T., et al., What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core. Journal of Controlled Release,2007.123(1): p.11-18.
    130. Batrakova, E.V., et al., Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers:Selective energy depletion. Br J Cancer,2001.85(12): p.1987-1997.
    131. Kim, D.-W., et al., Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Annals of Oncology,2007. 18(12):p.2009-2014.
    132. Elnakat, H. and M. Ratnam, Distribution, functionality and gene regulation of folate receptor isoforms:implications in targeted therapy. Adv Drug Deliv Rev, 2004.56(8):p.1067-1084.
    133. Shen, F., et al., Folate Receptor Type.gamma. Is Primarily a Secretory Protein Due to Lack of an Efficient Signal for Glycosylphosphatidylinositol Modification: Protein Characterization and Cell Type Specificity. Biochemistry,1995.34(16):p. 5660-5665.
    134. Weitman, S.D., et al., Distribution of the Folate Receptor GP38 in Normal and Malignant Cell Lines and Tissues. Cancer Res,1992.52(12):p.3396-3401.
    135. Kelley, K.M.M., B.G. Rowan, and M. Ratnam, Modulation of the Folate Receptor {alpha} Gene by the Estrogen Receptor:Mechanism and Implications in Tumor Targeting. Cancer Res,2003.63(11):p.2820-2828.
    136. Nakashima-Matsushita, N., et al., Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis & Rheumatism,1999.42(8):p.1609-1616.
    137. Wang, H., et al., Differentiation-independent retinoid induction of folate receptor type beta, a potential tumor target in myeloid leukemia. Blood,2000.96(10):p. 3529-3536.
    138. Rijnboutt, S., et al., Endocytosis of GPI-linked membrane folate receptor-alpha. The Journal of Cell Biology,1996.132(1):p.35-47.
    139. Kalofonos, H.P., M.V. Karamouzis, and A.A. Epenetos, Radioimmunoscintigraphy in Patients with Ovarian Cancer. Acta Oncologica, 2001.40(5):p.549-557.
    140. Christopher P. Leamon and J.A. Reddy, Folate-targeted chemotherapy. Adv Drug Deliv Rev,2004.56:p.1127-1141.
    141. Reddy, J.A., et al., Preclinical Evaluation of EC145, a Folate-Vinca Alkaloid Conjugate. Cancer Res,2007.67(9):p.4434-4442.
    142. Ke, C.-Y., C.J. Mathias, and M.A. Green, Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev,2004.56(8):p.1143-1160.
    143. Paulos, C., et al., Folate-targeted immunotherapy effectively treats established adjuvant and collagen-induced arthritis. Arthritis Research & Therapy,2006.8(3): p. R77.
    144. Varghese, B., N. Haase, and P.S. Low, Depletion of Folate-Receptor-Positive Macrophages Leads to Alleviation of Symptoms and Prolonged Survival in Two Murine Models of Systemic Lupus Erythematosus. MOLECULAR PHARMACEUTICS,2007.4(5):p.679-685.
    145. Li, S., H.M. Deshmukh, and L. Huang, Folate-Mediated Targeting of Antisense Oligodeoxynucleotides to Ovarian Cancer Cells. Pharm Res,1998.15(10):p. 1540-1545.
    146. Bagshawe, K.D., et al., Antibody directed enzyme prodrug therapy (ADEPT). Annals of Oncology,1994.5(10):p.879-891.
    147. Lee, R.J. and P.S. Low, Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. The Journal of Biological Chemistry,1994. 269(5):p.3198-3204.
    148. Chan, P., et al., Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007.28(3):p.540-549.
    149. Hofland, H.E., et al., Folate-targeted gene transfer in vivo. Mol Ther,2002.5(6): p.739-44.
    150. Wang, S., et al., Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci U S A,1995. 92(8):p.3318-22.
    151. Sausville, E., et al., A phase I study of EC 145 administered weeks 1 and 3 of a 4-week cycle in patients with refractory solid tumors. J Clin Oncol,2007. 25(18_suppl):p.2577-
    152. Messmann, R., et al., A phase II study of FolateImmune (EC90 with GP1-0100 adjuvant followed by EC 17) with low dose cytokines interleukin-2 (IL-2) and interferon-{alpha} (IFN-{alpha}) in patients with refractory or metastatic cancer. J Clin Oncol (Meeting Abstracts),2007.25(18_suppl):p.13516-.
    153. Wu, M., W. Gunning, and M. Ratnam, Expression of Folate Receptor Type a in Relation to Cell Type, Malignancy, and Differentiation in Ovary, Uterus, and Cervix. Cancer Epidemiology Biomarkers & Prevention,1999.8(9):p.775-782.
    154. Chancy, C.D., et al., Expression and Differential Polarization of the Reduced-folate Transporter-1 and the Folate Receptor a in Mammalian Retinal Pigment Epithelium. Journal of Biological Chemistry,2000.275(27):p. 20676-20684.
    155. Toffoli, G, et al., Overexpression of folate binding protein in ovarian cancers. Int J Cancer,1997.74(2):p.193-198.
    156. Tran, T, et al., Enhancement of Folate Receptor{alpha} Expression in Tumor Cells Through the Glucocorticoid Receptor:A Promising Means to Improved Tumor Detection and Targeting. Cancer Res,2005.65(10):p.4431-4441.
    157. Hao, H., et al., Estrogen-induced and TAFII30-mediated gene repression by direct recruitment of the estrogen receptor and co-repressors to the core promoter and its reversal by tamoxifen. Oncogene,2007.26(57):p.7872-7884.
    158. Qi, H. and M. Ratnam, Synergistic Induction of Folate Receptor{beta} by All-Trans Retinoic Acid and Histone Deacetylase Inhibitors in Acute Myelogenous Leukemia Cells:Mechanism and Utility in Enhancing Selective Growth Inhibition by Antifolates. Cancer Res,2006.66(11):p.5875-5882.
    159. Pan, X.Q., et al., Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood,2002.100(2):p.594-602.
    160. Hao, H., H. Qi, and M. Ratnam, Modulation of the folate receptor type{beta} gene by coordinate actions of retinoic acid receptors at activator Spl/ets and repressor AP-1 sites. Blood,2003.101(11):p.4551-4560.
    161. Tekade, R.K., et al., Surface-engineered dendrimers for dual drug delivery:A receptor up-regulation and enhanced cancer targeting strategy. J Drug Target, 2008.16(10):p.758-772.
    1. Alberto Gabizon, Aviva T Horowitz, et al. Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes:In Vitro Studies. Bioconjug Chem,1999,10:289-298.
    2. Trubetskoy, V. S. and V. P. Torchilin. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev,1995,16:311-320.
    3. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis.J Biol Chem,1994,269(5):3198-204.
    4. Wu J, Liu Q, Lee RJ.A folate receptor-targeted liposomal formulation for paclitaxel.Int J Pharm.2006,316(1-2):148-53.
    5. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting.J Control Release.2003,91(1-2):103-13.
    6. Guo WJ,Lee T, et al.Receptor-specific delivery of liposomes via folate-PEG-Chol.J Liposome Res,10(2-3):179-195.
    7. Zhao XB, Muthusamy N, Byrd JC, Lee RJ.Cholesterol as a bilayer anchor for PEGylation and targeting ligand in folate-receptor-targeted liposomes.J Pharm Sci. 2007,96(9):2424-35.
    8.袁黎明编著.制备色谱技术及应用.北京:化学工业出版社,2004:47-67
    9.J E.科林根等著,李慎涛等译.精编蛋白质科学实验指南.北京:科学出版社,2007,224-241.
    10. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro.Biochim Biophys Acta.1995,1233(2):134-44.
    11.国家药典委员会编.中华人民共和国药典(2000年版二部).北京:化学工业出版社,2000:137
    12.张毓凡、曹玉蓉、冯宵、张宝申、王佰全、杨家慧.有机化学实验.天津:南开大学出版社,2007:93-98
    13.邢其毅、裴伟伟、徐瑞秋、裴坚.基础有机化学(上下册).北京:高等教育出版社,2005:169-213
    14. Torchilin VP, Weissig V.Liposome:A Practical Approach.Second Edition.Oxford University Press.2003:259-260.
    1. Bader, H., H. Ringsdorf, and B. Schmidt, Watersoluble polymers in medicine. Angewandte Makromolekulare Chemie,1984.123(1):p.457-485.
    2. Yokoyama, M., et al., Toxicity and Antitumor Activity against Solid Tumors of Micelle-forming Polymeric Anticancer Drag and Its Extremely Long Circulation in Blood. Cancer Res,1991.51(12):p.3229-3236.
    3. Gabizon, A., et al., Prolonged Circulation Time and Enhanced Accumulation in Malignant Exudates of Doxorubicin Encapsulated in Polyethylene-glycol Coated Liposomes. Cancer Res,1994.54(4):p.987-992.
    4. Yokoyama, M., et al., Molecular design for missile drug:Synthesis of adriamycin conjugated with immunoglobulin G using poly(ethylene glycol)-block-poly(aspartic acid) as intermediate carrier. Die Makromolekulare Chemie,1989. 190(9):p.2041-2054.
    5. Kwon, G.S., et al., Physical Entrapment of Adriamycin in AB Block Copolymer Micelles. Pharm Res,1995.12(2):p.192-195.
    6. Masayuki, Y, et al., Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Journal of Controlled Release,1990.11(1-3):p.269-278.
    7. Kabanov, A.V., et al., The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles:Micelles as microcontainers for drug targeting. FEBS Lett,1989.258(2):p.343-345.
    8. Hagan, S.A., et al., Polylactide-Poly(ethylene glycol) Copolymers as Drug Delivery Systems.1. Characterization of Water Dispersible Micelle-Forming Systems. Langmuir,1996.12(9):p.2153-2161.
    9. Harada, A. and K. Kataoka, Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block Copolymers with Poly(ethylene glycol) Segments. Macromolecules,1995.28(15):p.5294-5299.
    10. Harada, A. and K. Kataoka, Formation of Stable and Monodispersive Polyion Complex Micelles in Aqueous Medium from Poly(L-lysine) And Poly(Ethylene Glycol)-Poly(Aspartic Acid) Block Copolymer. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry,1997.34(10):p.2119-2133.
    11. Kataoka, K., et al., Spontaneous Formation of Polyion Complex Micelles with Narrow Distribution from Antisense Oligonucleotide and Cationic Block Copolymer in Physiological Saline. Macromolecules,1996.29(26):p. 8556-8557.
    12. Kabanov, A.V., et al., Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery. Bioconjugate Chemistry,1995.6(6):p.639-643.
    13. Kabanov, A.V., et al., Soluble Stoichiometric Complexes from Poly(N-ethyl-4-vinylpyridinium) Cations and Poly(ethylene oxide)-block-polymethacrylate Anions. Macromolecules,1996.29(21):p. 6797-6802.
    14. Yokoyama, M., et al., Introduction of cisplatin into polymeric micelle. Journal of Controlled Release,1996.39(2-3):p.351-356.
    15. Kataoka, K., et al., Effect of the Secondary Structure of Poly(1-lysine) Segments on the Micellization in Aqueous Milieu of Poly(ethylene glycol)-Poly(1-lysine) Block Copolymer Partially Substituted with a Hydrocinnamoyl Group at the Ns-Position. Macromolecules,1998.31(18):p.6071-6076.
    16. Gaucher, G., et al., Block copolymer micelles:preparation, characterization and application in drug delivery. Journal of Controlled Release,2005.109(1-3):p. 169-188.
    17. Yokoyama, M., et al., Polymer Design and Incorporation Methods for Polymeric Micelle Carrier System Containing Water-insoluble Anti-cancer Agent Camptothecin. J Drug Target,2004.12(6):p.373-384.
    18. Eley, J.G., V.D. Pujari, and J. McLane, Poly (Lactide-co-Glycolide) Nanoparticles Containing Coumarin-6 for Suppository Delivery:In Vitro Release Profile and In Vivo Tissue Distribution. Drug Delivery,2004.11(4):p.255-261.
    19. Torchilin, V.P., et al., Immunomicelles:targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A,2003.100(10):p.6039-44.
    20. Krishnadas, A., I. Rubinstein, and H. Onyuksel, Sterically Stabilized Phospholipid Mixed Micelles:In Vitro Evaluation as a Novel Carrier for Water-Insoluble Drugs. Pharm Res,2003.20(2):p.297-302.
    21. Nagarajan, R. and K. Ganesh, Block copolymer self-assembly in selective solvents:theory of solubilization in spherical micelles. Macromolecules,1989. 22(11):p.4312-4325.
    1. Torchilin, V.P., Micellar nanocarriers:pharmaceutical perspectives. Pharm Res, 2007.24(1):p.1-16.
    2. Weiss, R.B., et al., Anthracycline analogs The past, present, and future. Cancer Chemother Pharmacol,1986.18(3):p.185-197.
    3. Faulds, D., et al., Mitoxantrone:A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential in the Chemotherapy of Cancer. Drugs,1991.41(3):p.400-449.
    4. Rentsch, K.M., R.A. Schwendener, and E. Hanseler, Determination of mitoxantrone in mouse whole blood and different tissues by high-performance liquid chromatography. Journal of Chromatography B:Biomedical Sciences and Applications,1996.679(1-2):p.185-192.
    5. Tang, N., et al., Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst,2007.99(13):p.1004-15.
    6. Gao, Z., et al., PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target,2003.11(2):p.87-92.
    7. Yoo, H.S. and T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release,2004.96(2):p.273-83.
    1. Weinstein, S.J., et al., Null Association between Prostate Cancer and Serum Folate, Vitamin B6, Vitamin B12, and Homocysteine. Cancer Epidemiology Biomarkers & Prevention,2003.12(11):p.1271-1272.
    2. Hilary, C., Folate status and the safety profile of antifolates. Seminars in oncology, 2002.29(2):p.3-7.
    3. Weitman, S.D., et al., Distribution of the Folate Receptor GP38 in Normal and Malignant Cell Lines and Tissues. Cancer Res,1992.52(12):p.3396-3401.
    4. Coney, L.R., et al., Cloning of a Tumor-associated Antigen:MOv18 and MOvl9 Antibodies Recognize a Folate-binding Protein. Cancer Res,1991.51(22):p. 6125-6132.
    5. Lee, R.J., S. Wang, and P.S. Low, Measurement of endosome pH following folate receptor-mediated endocytosis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1996.1312(3):p.237-242.
    6. Ke, C.-Y, C.J. Mathias, and M.A. Green, Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev,2004.56(8):p.1143-1160.
    7. Reddy, J.A., et al., Preclinical Evaluation of EC145, a Folate-Vinca Alkaloid Conjugate. Cancer Res,2007.67(9):p.4434-4442.
    8. Li, S., H.M. Deshmukh, and L. Huang, Folate-Mediated Targeting of Antisense Oligodeoxynucleotides to Ovarian Cancer Cells. Pharm Res,1998.15(10):p. 1540-1545.
    9. Bagshawe, K.D., et al., Antibody directed enzyme prodrug therapy (ADEPT). Annals of Oncology,1994.5(10):p.879-891.
    10. Hofland, H.E., et al., Folate-targeted gene transfer in vivo. Mol Ther,2002.5(6): p.739-44.
    11. Bae, Y., et al., Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst,2005.1(3):p.242-50.
    12. Panyam, J., et al., Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(,-lactide-co-glycolide) nanoparticles. Int J Pharm,2003. 262(1-2):p.1-11.
    13. Leamon, C.P., P.S. Low, Delivery of macromolecules into living cells:a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A,1991.88(13): p.5572-6.
    1. Zhao, X., H. Li, and R.J. Lee, Targeted drug delivery via folate receptors. Expert Opinion on Drug Delivery,2008.5(3):p.309-319.
    2. Wu, M., W. Gunning, and M. Ratnam, Expression of Folate Receptor Type a in Relation to Cell Type, Malignancy, and Differentiation in Ovary, Uterus, and Cervix. Cancer Epidemiology Biomarkers & Prevention,1999.8(9):p.775-782.
    3. Chancy, C.D., et al., Expression and Differential Polarization of the Reduced-folate Transporter-1 and the Folate Receptor a in Mammalian Retinal Pigment Epithelium. Journal of Biological Chemistry,2000.275(27):p. 20676-20684.
    4. Elnakat, H. and M. Ratnam, Distribution, functionality and gene regulation of folate receptor isoforms:implications in targeted therapy. Adv Drug Deliv Rev, 2004.56(8):p.1067-1084.
    5. Toffoli, G., et al., Overexpression of folate binding protein in ovarian cancers. Int J Cancer,1997.74(2):p.193-198.
    6. Tran, T., et al., Enhancement of Folate Receptor{alpha} Expression in Tumor Cells Through the Glucocorticoid Receptor:A Promising Means to Improved Tumor Detection and Targeting. Cancer Res,2005.65(10):p.4431-4441.
    7. Kelley, K.M.M., B.G. Rowan, and M. Ratnam, Modulation of the Folate Receptor {alpha} Gene by the Estrogen Receptor:Mechanism and Implications in Tumor Targeting. Cancer Res,2003.63(11):p.2820-2828.
    8. Hao, H., et al., Estrogen-induced and TAFⅡ30-mediated gene repression by direct recruitment of the estrogen receptor and co-repressors to the core promoter and its reversal by tamoxifen. Oncogene,2007.26(57):p.7872-7884.
    9. Wang, H., et al., Differentiation-independent retinoid induction of folate receptor type beta, a potential tumor target in myeloid leukemia. Blood,2000.96(10):p. 3529-3536.
    10. Qi, H. and M. Ratnam, Synergistic Induction of Folate Receptor{beta} by All-Trans Retinoic Acid and Histone Deacetylase Inhibitors in Acute Myelogenous Leukemia Cells:Mechanism and Utility in Enhancing Selective Growth Inhibition by Antifolates. Cancer Res,2006.66(11):p.5875-5882.
    11. Pan, X.Q., et al., Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood,2002.100(2):p.594-602.
    12. Hao, H., H. Qi, and M. Ratnam, Modulation of the folate receptor type{beta} gene by coordinate actions of retinoic acid receptors at activator Sp1/ets and repressor AP-1 sites. Blood,2003.101(11):p.4551-4560.
    13. Tekade, R.K., et al., Surface-engineered dendrimers for dual drug delivery:A receptor up-regulation and enhanced cancer targeting strategy. J Drug Target, 2008.16(10):p.758-772.
    14. Marathe, S.V. and J.E. McEwen, Vectors with the gus reporter gene for identifying and quantitating promoter regions in Saccharomyces cerevisiae. Gene, 1995.154(1):p.105-107.
    15. Yuan, Y., et al., Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Human Pathology,2009.40(10):p.1453-1460.
    16. Nishimura, M.; Nikawa, T.; Kawano, Y.; Nakayama, M.; Ikeda, M. Effects of dimethyl sulfoxide and dexamethasone on mRNA expression of housekeeping genes in cultures of C2C12 myotubes. Biochem. Biophys. Res. Commun.2008, 14,603-608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700